- Author:
- Tommy Yu <tommy.yu@auckland.ac.nz>
- Date:
- 2010-08-25 18:19:05+12:00
- Desc:
- xml:base fix
- Permanent Source URI:
- https://models.physiomeproject.org/workspace/guyton_pulmonary_fluid_dynamics_2008/rawfile/1a8f675f318d96a3785d24b4dc8b2287f5358373/guyton_pulmonary_fluid_dynamics_2008.cellml
<?xml version="1.0" encoding="utf-8"?>
<model
name="pulmonary_fluid_dynamics_CellML1_0_model"
cmeta:id="pulmonary_fluid_dynamics_CellML1_0_model"
xmlns="http://www.cellml.org/cellml/1.0#"
xmlns:cellml="http://www.cellml.org/cellml/1.0#"
xmlns:cmeta="http://www.cellml.org/metadata/1.0#"
xmlns:xlink="http://www.w3.org/1999/xlink">
<!-- ======================================== DOCUMENTATION ============================================= -->
<documentation xmlns="http://cellml.org/tmp-documentation">
<article>
<articleinfo>
<title>Guyton Model: pulmonary_fluid_dynamics</title>
<author>
<firstname>Catherine</firstname>
<surname>Lloyd</surname>
<affiliation>
<shortaffil>Auckland Bioengineering Institute, University of Auckland</shortaffil>
</affiliation>
</author>
</articleinfo>
<section id="sec_status">
<title>Model Status</title>
<para>
This CellML model has been validated. Due to the differences between procedural code (in this case C-code) and declarative
languages (CellML), some aspects of the original model were not able to be encapsulated by the CellML model (such as the
damping of variables). This may effect the transient behaviour of the model, however the steady-state behaviour would remain
the same. The equations in this file and the steady-state output from the model conform to the results from the MODSIM program.
</para>
</section>
<sect1 id="sec_structure">
<title>Model Structure</title>
<para>
Arthur Guyton (1919-2003) was an American physiologist who became famous for his 1950s experiments in which he studied the physiology
of cardiac output and its relationship with the peripheral circulation. The results of these experiments challenged the conventional
wisdom that it was the heart itself that controlled cardiac output. Instead Guyton demonstrated that it was the need of the body
tissues for oxygen which was the real regulator of cardiac output. The "Guyton Curves" describe the relationship between right atrial
pressures and cardiac output, and they form a foundation for understanding the physiology of circulation.
</para>
<para>
The Guyton model of fluid, electrolyte, and circulatory regulation is an extensive mathematical model of human circulatory physiology,
capable of simulating a variety of experimental conditions, and contains a number of linked subsystems relating to circulation and its
neuroendocrine control.
</para>
<para>
This is a CellML translation of the Guyton model of the regulation of the circulatory system. The complete model consists of separate
modules each of which characterise a separate physiological subsystems. The Circulation Dynamics is the primary system, to which other
modules/blocks are connected. The other modules characterise the dynamics of the kidney, electrolytes and cell water, thirst and drinking,
hormone regulation, autonomic regulation, cardiovascular system etc, and these feedback on the central circulation model. The CellML code
in these modules is based on the C code from the programme C-MODSIM created by Dr Jean-Pierre Montani.
</para>
<para>
This particular CellML model describes a highly simplified analysis of pulmonary fluid dynamics. In general, the gel portion of the
pulmonary fluid is ignored, so that the pulmonary fluid volume (VPF) is in reality an approximation of the amount of fluid that is
relatively freely mobile. Though this fluid is called "interstitial fluid," it includes fluid in the respiratory passages. Likewise,
the pressure-volume curve of the pulmonary interstitium is highly simplified, as well as the control of lymph flow. Nevertheless, for
many purposes, this simplified analysis serves quite well.
</para>
<informalfigure float="0" id="full_diagram">
<mediaobject>
<imageobject>
<objectinfo>
<title>model diagram</title>
</objectinfo>
<imagedata fileref="full_model.png"/>
</imageobject>
</mediaobject>
<caption>A systems analysis diagram for the full Guyton model describing circulation regulation.</caption>
</informalfigure>
<informalfigure float="0" id="pulmonary_fluid_dynamics_diagram">
<mediaobject>
<imageobject>
<objectinfo>
<title>model diagram</title>
</objectinfo>
<imagedata fileref="pulm_fluid.png"/>
</imageobject>
</mediaobject>
<caption>A schematic diagram of the components and processes described in the current CellML model.</caption>
</informalfigure>
<para>
There are several publications referring to the Guyton model. One of these papers is cited below:
</para>
<para>
Circulation: Overall Regulation, A.C. Guyton, T.G. Coleman, and H.J. Granger, 1972,
<emphasis>Annual Review of Physiology</emphasis>
, 34, 13-44. (A PDF version of the article are available to journal subscribers on the <emphasis>Annual Review of Physiology</emphasis> website.) <ulink url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=4334846&query_hl=1&itool=pubmed_docsum">PubMed ID: 4334846</ulink>
</para>
</sect1>
</article>
</documentation>
<!-- ======================================================= CITATION AND KEYWORD METADATA ================================================== -->
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bqs="http://www.cellml.org/bqs/1.0#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#">
<rdf:Description rdf:about="#pulmonary_fluid_dynamics_CellML1_0_model">
<bqs:reference rdf:parseType="Resource">
<bqs:JournalArticle rdf:parseType="Resource">
<dc:creator>
<rdf:Seq>
<rdf:li rdf:parseType="Resource">
<rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person" />
<vCard:N rdf:parseType="Resource">
<vCard:Family>Guyton</vCard:Family>
<vCard:Given></vCard:Given>
<vCard:Other></vCard:Other>
</vCard:N>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person" />
<vCard:N rdf:parseType="Resource">
<vCard:Family>Pulmonary Fluid Dynamics</vCard:Family>
<vCard:Given></vCard:Given>
<vCard:Other></vCard:Other>
</vCard:N>
</rdf:li>
</rdf:Seq>
</dc:creator>
<dc:title>Description of Guyton pulmonary fluid dynamics module</dc:title>
<bqs:volume />
<bqs:first_page />
<bqs:last_page />
<bqs:Journal rdf:parseType="Resource">
<dc:title></dc:title>
</bqs:Journal>
<dcterms:issued rdf:parseType="Resource">
<dcterms:W3CDTF>2008-00-00 00:00</dcterms:W3CDTF>
</dcterms:issued>
</bqs:JournalArticle>
</bqs:reference>
<bqs:reference rdf:parseType="Resource">
<dc:subject rdf:parseType="Resource">
<bqs:subject_type>keyword</bqs:subject_type>
<rdf:value>
<rdf:Bag>
<rdf:li>physiology</rdf:li>
<rdf:li>organ systems</rdf:li>
<rdf:li>cardiovascular circulation</rdf:li>
<rdf:li>pulmonary fluid dynamics</rdf:li>
<rdf:li>Guyton</rdf:li>
</rdf:Bag>
</rdf:value>
</dc:subject>
</bqs:reference>
</rdf:Description>
</rdf:RDF>
<!-- ======================================================= UNITS ================================================== -->
<units name="minute">
<unit multiplier="60" units="second"/>
</units>
<units name="per_minute">
<unit units="minute" exponent="-1"/>
</units>
<units name="mmHg">
<unit multiplier="133.322" units="newton"/>
<unit units="metre" exponent="-2"/>
</units>
<units name="per_mmHg">
<unit units="mmHg" exponent="-1"/>
</units>
<units name="mmHg_per_mL">
<unit units="mmHg"/>
<unit units="mL" exponent="-1"/>
</units>
<units name="mmHg_L">
<unit units="mmHg"/>
<unit units="litre"/>
</units>
<units name="per_mmHg2">
<unit units="mmHg" exponent="-2"/>
</units>
<units name="mmHg3">
<unit units="mmHg" exponent="3"/>
</units>
<units name="monovalent_mEq">
<unit units="mole" prefix="milli"/>
</units>
<units name="monovalent_mEq_per_minute">
<unit units="mole" prefix="milli"/>
<unit units="minute" exponent="-1"/>
</units>
<units name="monovalent_mEq_per_litre">
<unit units="mole" prefix="milli"/>
<unit units="litre" exponent="-1"/>
</units>
<units name="monovalent_mEq_per_litre_per_minute">
<unit units="mole" prefix="milli"/>
<unit units="litre" exponent="-1"/>
<unit units="minute" exponent="-1"/>
</units>
<units name="litre2_per_monovalent_mEq_per_minute">
<unit units="litre" exponent="2"/>
<unit units="mole" prefix="milli" exponent="-1"/>
<unit units="minute" exponent="-1"/>
</units>
<units name="L_per_minute">
<unit units="litre"/>
<unit units="minute" exponent="-1"/>
</units>
<units name="mL">
<unit units="litre" prefix="milli"/>
</units>
<units name="gram_per_L">
<unit units="gram"/>
<unit units="litre" exponent="-1"/>
</units>
<units name="L_mmHg_per_gram">
<unit units="litre"/>
<unit units="mmHg"/>
<unit units="gram" exponent="-1"/>
</units>
<units name="mmHg_minute_per_L">
<unit units="minute"/>
<unit units="mmHg"/>
<unit units="litre" exponent="-1"/>
</units>
<units name="gram_per_minute">
<unit units="gram"/>
<unit units="minute" exponent="-1"/>
</units>
<units name="mL_per_L">
<unit units="litre" prefix="milli"/>
<unit units="litre" exponent="-1"/>
</units>
<units name="mL_per_L_per_mmHg">
<unit units="litre" prefix="milli"/>
<unit units="litre" exponent="-1"/>
<unit units="mmHg" exponent="-1"/>
</units>
<units name="mL_per_L_per_minute">
<unit units="litre" prefix="milli"/>
<unit units="litre" exponent="-1"/>
<unit units="minute" exponent="-1"/>
</units>
<units name="mL_per_minute_per_mmHg">
<unit units="litre" prefix="milli"/>
<unit units="minute" exponent="-1"/>
<unit units="mmHg" exponent="-1"/>
</units>
<units name="L_mL_per_minute_per_mmHg">
<unit units="litre"/>
<unit units="litre" prefix="milli"/>
<unit units="minute" exponent="-1"/>
<unit units="mmHg" exponent="-1"/>
</units>
<units name="L_per_mL">
<unit units="litre" prefix="milli" exponent="-1"/>
<unit units="litre"/>
</units>
<units name="mL_per_minute">
<unit units="mL"/>
<unit units="minute" exponent="-1"/>
</units>
<units name="L_per_minute_per_mmHg">
<unit units="litre"/>
<unit units="minute" exponent="-1"/>
<unit units="mmHg" exponent="-1"/>
</units>
<!-- ============================================================================================================ -->
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about="#pulmonary_fluid_dynamics_CellML1_0_model">
<rdf:value>
This is a highly simplified analysis of pulmonary fluid dynamics. In general, the gel
portion of the pulmonary fluid is ignored, so that the pulmonary fluid volume (VPF) is
in reality an approximation of the amount of fluid that is relatively freely mobile.
Though this fluid is called "interstitial fluid," it includes fluid in the respiratory
passages. Likewise, the pressure-volume curve of the pulmonary interstitium is highly
simplified, as well as the control of lymph flow. Nevertheless, for many purposes, this
simplified analysis serves quite well.
</rdf:value>
</rdf:Description>
</rdf:RDF>
<!-- ======================================== ENVIRONMENT COMPONENT ============================================= -->
<component name="environment">
<variable cmeta:id="environment_time"
name="time" units="minute" private_interface="none" public_interface="out"/>
</component>
<!-- ======================================== PULMONARY FLUID DYNAMICS TOP-LEVEL COMPONENT ============================================= -->
<component name="pulmonary_fluid_dynamics"
cmeta:id="pulmonary_fluid_dynamics">
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about="#pulmonary_fluid_dynamics">
<rdf:value>
Encapsulation grouping component containing all the components in the Pulmonary Fluid Dynamics Model.
The inputs and outputs of the Pulmonary Fluid Dynamics Model must be passed by this component.
</rdf:value>
</rdf:Description>
</rdf:RDF>
<variable name="time" units="minute" private_interface="out" public_interface="in"/>
<!-- Inputs from components in other models -->
<variable name="PPC" initial_value="29.9941" units="mmHg" private_interface="out" public_interface="none"/>
<variable name="PPA" initial_value="15.6376" units="mmHg" private_interface="out" public_interface="none"/>
<variable name="PLA" initial_value="2" units="mmHg" private_interface="out" public_interface="none"/>
<variable name="CPP" initial_value="71.9719" units="gram_per_L" private_interface="out" public_interface="none"/>
<variable name="RPV" initial_value="1.55719" units="mmHg_minute_per_L" private_interface="out" public_interface="none"/>
<variable name="RPA" initial_value="1.5683" units="mmHg_minute_per_L" private_interface="out" public_interface="none"/>
</component>
<!-- INPUT CONNECTIONS -->
<connection>
<map_components component_1="pulmonary_fluid_dynamics" component_2="environment"/>
<map_variables variable_1="time" variable_2="time"/>
</connection>
<!-- ======================================== PULMONARY CAPILLARY PRESSURE ============================================= -->
<component name="pulmonary_capillary_pressure"
cmeta:id="pulmonary_capillary_pressure">
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about="#pulmonary_capillary_pressure">
<rdf:value>
PD1, PD2, PD2A, and PD3:
Calculation of pulmonary capillary pressure (PCP) from the pulmonary arterial
pressure (PPA) and left atrial pressure (PLA), and also from the vascular
resistances in the arterial (RPA) and venous (RPV) sides of the pulmonary
capillaries. The arterial resistance is set to be 1.6 times the venous
resistance.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#PD1_to_PD3">
<rdf:value>
PD1, PD2, PD2A, and PD3:
Calculation of pulmonary capillary pressure (PCP) from the pulmonary arterial
pressure (PPA) and left atrial pressure (PLA), and also from the vascular
resistances in the arterial (RPA) and venous (RPV) sides of the pulmonary
capillaries. The arterial resistance is set to be 1.6 times the venous
resistance.
</rdf:value>
</rdf:Description>
</rdf:RDF>
<!-- Inputs from other components -->
<variable name="PPA" units="mmHg" private_interface="none" public_interface="in"/>
<variable name="PLA" units="mmHg" private_interface="none" public_interface="in"/>
<variable name="RPV" units="mmHg_minute_per_L" private_interface="none" public_interface="in"/>
<variable name="RPA" units="mmHg_minute_per_L" private_interface="none" public_interface="in"/>
<!-- Outputs to other components -->
<variable name="PCP" units="mmHg" private_interface="none" public_interface="out"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="PD1_to_PD3">
<eq/>
<ci>PCP</ci>
<apply>
<plus/>
<apply>
<divide/>
<apply>
<times/>
<apply>
<minus/>
<ci>PPA</ci>
<ci>PLA</ci>
</apply>
<ci>RPV</ci>
</apply>
<apply>
<plus/>
<ci>RPV</ci>
<ci>RPA</ci>
</apply>
</apply>
<ci>PLA</ci>
</apply>
</apply>
</math>
</component>
<!-- INPUT CONNECTIONS -->
<connection>
<map_components component_1="pulmonary_capillary_pressure" component_2="pulmonary_fluid_dynamics"/>
<map_variables variable_1="PPA" variable_2="PPA"/>
<map_variables variable_1="PLA" variable_2="PLA"/>
<map_variables variable_1="RPV" variable_2="RPV"/>
<map_variables variable_1="RPA" variable_2="RPA"/>
</connection>
<!-- ======================================== FLUID FILTRATION INTO PULMONARY INTERSTITIUM ============================================= -->
<component name="fluid_filtration_into_pulmonary_interstitium"
cmeta:id="fluid_filtration_into_pulmonary_interstitium">
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about="#fluid_filtration_into_pulmonary_interstitium">
<rdf:value>
PD4:
The pressure gradient across the pulmonary capillary membrane (PGRPCM) is equal
to the pulmonary capillary pressure (PCP), plus the colloid osmotic pressure of
the pulmonary interstitial fluid (POS), minus the pulmonary interstitial fluid
pressure (PPI), minus the plasma colloid osmotic pressure (PPC).
PD5:
Rate of filtration of fluid outward through the pulmonary capillary membranes
into the interstitium (PFI) is equal to the pressure gradient across the
pulmonary capillary membrane (PGRPCM) times the pulmonary capillary filtration
coefficient (CPF).
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#PD4_and_PD5">
<rdf:value>
PD4:
The pressure gradient across the pulmonary capillary membrane (PGRPCM) is equal
to the pulmonary capillary pressure (PCP), plus the colloid osmotic pressure of
the pulmonary interstitial fluid (POS), minus the pulmonary interstitial fluid
pressure (PPI), minus the plasma colloid osmotic pressure (PPC).
PD5:
Rate of filtration of fluid outward through the pulmonary capillary membranes
into the interstitium (PFI) is equal to the pressure gradient across the
pulmonary capillary membrane (PGRPCM) times the pulmonary capillary filtration
coefficient (CPF).
</rdf:value>
</rdf:Description>
</rdf:RDF>
<!-- Inputs from other components -->
<variable name="PCP" units="mmHg" private_interface="none" public_interface="in"/>
<variable name="PPC" units="mmHg" private_interface="none" public_interface="in"/>
<variable name="POS" units="mmHg" private_interface="none" public_interface="in"/>
<variable name="PPI" units="mmHg" private_interface="none" public_interface="in"/>
<!-- Outputs to other components -->
<variable name="PFI" units="L_per_minute" private_interface="none" public_interface="out"/>
<!-- Parameters from parameter_file -->
<variable name="CPF" units="L_per_minute_per_mmHg" private_interface="none" public_interface="in"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="PD4_and_PD5">
<eq/>
<ci>PFI</ci>
<apply>
<times/>
<apply>
<minus/>
<apply>
<plus/>
<apply>
<minus/>
<ci>PCP</ci>
<ci>PPI</ci>
</apply>
<ci>POS</ci>
</apply>
<ci>PPC</ci>
</apply>
<ci>CPF</ci>
</apply>
</apply>
</math>
</component>
<!-- INPUT CONNECTIONS -->
<connection>
<map_components component_1="fluid_filtration_into_pulmonary_interstitium" component_2="pulmonary_capillary_pressure"/>
<map_variables variable_1="PCP" variable_2="PCP"/>
</connection>
<connection>
<map_components component_1="fluid_filtration_into_pulmonary_interstitium" component_2="pulmonary_fluid_dynamics"/>
<map_variables variable_1="PPC" variable_2="PPC"/>
</connection>
<connection>
<map_components component_1="fluid_filtration_into_pulmonary_interstitium" component_2="colloid_osmotic_pressure_of_pulmonary_interstitium"/>
<map_variables variable_1="POS" variable_2="POS"/>
</connection>
<connection>
<map_components component_1="fluid_filtration_into_pulmonary_interstitium" component_2="pulmonary_interstitial_fluid_pressure"/>
<map_variables variable_1="PPI" variable_2="PPI"/>
</connection>
<!-- PARAMETER CONNECTIONS -->
<connection>
<map_components component_1="fluid_filtration_into_pulmonary_interstitium" component_2="parameter_values"/>
<map_variables variable_1="CPF" variable_2="CPF"/>
</connection>
<!-- ======================================== PULMONARY INTERSTITIAL FREE FLUID VOLUME ============================================= -->
<component name="pulmonary_interstitial_free_fluid_volume"
cmeta:id="pulmonary_interstitial_free_fluid_volume">
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about="#pulmonary_interstitial_free_fluid_volume">
<rdf:value>
PD5A, PD5B, and PD5C:
The rate of change of the fluid volume in the lungs (DFP) is equal to the rate
of filtration of fluid out of the pulmonary capillary membranes (PFI), minus the
rate of return of fluid to the circulation from the pulmonary interstitium by way
of the pulmonary lymphatics (PLF). Blocks 5B and 5C are computational blocks for
preventing oscillation and for preventing overshoot of the iteration. The damping
factor (Z) is used at multiple points in the model.
PD6:
Calculation of the volume of free fluid in the pulmonary interstitium (and
respiratory passageways) (VPF) by integrating the rate of change of the free fluid
in the lungs (DFP).
NB: - Damping in PD5B has been removed so that DFP = DFZ.
- PD5C has been rearranged so that "if" statement is dependent on VPF which may alter
the DFP output. (DFP IMPORTED INTO CP10 - Capillary Dynamics! CHECK THIS!!!).
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#PD5A">
<rdf:value>
PD5A, PD5B, and PD5C:
The rate of change of the fluid volume in the lungs (DFP) is equal to the rate
of filtration of fluid out of the pulmonary capillary membranes (PFI), minus the
rate of return of fluid to the circulation from the pulmonary interstitium by way
of the pulmonary lymphatics (PLF). Blocks 5B and 5C are computational blocks for
preventing oscillation and for preventing overshoot of the iteration. The damping
factor (Z) is used at multiple points in the model.
NB: - Damping in PD5B has been removed so that DFP = DFZ.
- PD5C has been rearranged so that "if" statement is dependent on VPF which may alter
the DFP output. (DFP IMPORTED INTO CP10 - Capillary Dynamics! CHECK THIS!!!).
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#PD5B">
<rdf:value>
PD5A, PD5B, and PD5C:
The rate of change of the fluid volume in the lungs (DFP) is equal to the rate
of filtration of fluid out of the pulmonary capillary membranes (PFI), minus the
rate of return of fluid to the circulation from the pulmonary interstitium by way
of the pulmonary lymphatics (PLF). Blocks 5B and 5C are computational blocks for
preventing oscillation and for preventing overshoot of the iteration. The damping
factor (Z) is used at multiple points in the model.
NB: - Damping in PD5B has been removed so that DFP = DFZ.
- PD5C has been rearranged so that "if" statement is dependent on VPF which may alter
the DFP output. (DFP IMPORTED INTO CP10 - Capillary Dynamics! CHECK THIS!!!).
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#PD5C">
<rdf:value>
PD5A, PD5B, and PD5C:
The rate of change of the fluid volume in the lungs (DFP) is equal to the rate
of filtration of fluid out of the pulmonary capillary membranes (PFI), minus the
rate of return of fluid to the circulation from the pulmonary interstitium by way
of the pulmonary lymphatics (PLF). Blocks 5B and 5C are computational blocks for
preventing oscillation and for preventing overshoot of the iteration. The damping
factor (Z) is used at multiple points in the model.
NB: - Damping in PD5B has been removed so that DFP = DFZ.
- PD5C has been rearranged so that "if" statement is dependent on VPF which may alter
the DFP output. (DFP IMPORTED INTO CP10 - Capillary Dynamics! CHECK THIS!!!).
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#PD6">
<rdf:value>
PD6:
Calculation of the volume of free fluid in the pulmonary interstitium (and
respiratory passageways) (VPF) by integrating the rate of change of the free fluid
in the lungs (DFP).
</rdf:value>
</rdf:Description>
</rdf:RDF>
<!-- Inputs from other components -->
<variable name="PFI" units="L_per_minute" private_interface="none" public_interface="in"/>
<variable name="PLF" units="L_per_minute" private_interface="none" public_interface="in"/>
<variable name="time" units="minute" private_interface="none" public_interface="in"/>
<!-- Outputs to other components -->
<variable cmeta:id="pulmonary_interstitial_free_fluid_volume_DFP"
name="DFP" units="L_per_minute" private_interface="none" public_interface="out"/>
<variable cmeta:id="pulmonary_interstitial_free_fluid_volume_VPF"
name="VPF" units="litre" private_interface="none" public_interface="out"/>
<!-- Internal variables -->
<variable name="DFZ" units="L_per_minute" private_interface="none" public_interface="none"/>
<variable name="VPF1" initial_value="0.0123238" units="litre" private_interface="none" public_interface="none"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="PD5A">
<eq/>
<ci>DFZ</ci>
<apply>
<minus/>
<ci>PFI</ci>
<ci>PLF</ci>
</apply>
</apply>
<apply id="PD5B">
<eq/>
<ci>DFP</ci>
<ci>DFZ</ci>
</apply>
<apply id="PD6">
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>VPF1</ci>
</apply>
<ci>DFP</ci>
</apply>
<apply id="PD5C">
<eq/>
<ci>VPF</ci>
<piecewise>
<piece>
<cn cellml:units="litre">0.001</cn>
<apply>
<lt/>
<ci>VPF1</ci>
<cn cellml:units="litre">0.001</cn>
</apply>
</piece>
<otherwise>
<ci>VPF1</ci>
</otherwise>
</piecewise>
</apply>
</math>
</component>
<!-- INPUT CONNECTIONS -->
<connection>
<map_components component_1="pulmonary_interstitial_free_fluid_volume" component_2="fluid_filtration_into_pulmonary_interstitium"/>
<map_variables variable_1="PFI" variable_2="PFI"/>
</connection>
<connection>
<map_components component_1="pulmonary_interstitial_free_fluid_volume" component_2="lung_lymphatic_protein_flow"/>
<map_variables variable_1="PLF" variable_2="PLF"/>
</connection>
<connection>
<map_components component_1="pulmonary_interstitial_free_fluid_volume" component_2="pulmonary_fluid_dynamics"/>
<map_variables variable_1="time" variable_2="time"/>
</connection>
<!-- ======================================== PULMONARY INTERSTITIAL FLUID PRESSURE ============================================= -->
<component name="pulmonary_interstitial_fluid_pressure"
cmeta:id="pulmonary_interstitial_fluid_pressure">
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about="#pulmonary_interstitial_fluid_pressure">
<rdf:value>
PD10 and PD11:
Curve-fitting blocks to calculate the pulmonary interstitial fluid pressure (PPI)
from the pulmonary interstitial fluid volume (VPF).
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#PD10_and_PD11">
<rdf:value>
PD10 and PD11:
Curve-fitting blocks to calculate the pulmonary interstitial fluid pressure (PPI)
from the pulmonary interstitial fluid volume (VPF).
</rdf:value>
</rdf:Description>
</rdf:RDF>
<!-- Inputs from other components -->
<variable name="VPF" units="litre" private_interface="none" public_interface="in"/>
<!-- Outputs to other components -->
<variable name="PPI" units="mmHg" private_interface="none" public_interface="out"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="PD10_and_PD11">
<eq/>
<ci>PPI</ci>
<apply>
<minus/>
<cn cellml:units="mmHg">2</cn>
<apply>
<divide/>
<cn cellml:units="mmHg_L">0.15</cn>
<ci>VPF</ci>
</apply>
</apply>
</apply>
</math>
</component>
<!-- INPUT CONNECTIONS -->
<connection>
<map_components component_1="pulmonary_interstitial_fluid_pressure" component_2="pulmonary_interstitial_free_fluid_volume"/>
<map_variables variable_1="VPF" variable_2="VPF"/>
</connection>
<!-- ======================================== CONCENTRATION OF PROTEIN IN PULMONARY INTERSTITIUM ============================================= -->
<component name="concentration_of_protein_in_pulmonary_interstitium"
cmeta:id="concentration_of_protein_in_pulmonary_interstitium">
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about="#concentration_of_protein_in_pulmonary_interstitium">
<rdf:value>
PD15, PD15A, and PD15B:
The rate of change of the total quantity of protein in the pulmonary interstitium (PPD)
is equal to the rate of influx of protein into the interstitium as a result of protein
leakage through the pulmonary capillary membrane (PPN) minus the rate of return of protein
to the circulation from the interstitium by way of the lymphatics (PPO). Blocks 15A and
15B are computational blocks for the purpose of preventing overshoot of an iteration and
for preventing oscillation. The factor (Z) is a damping factor that is used widely
throughout the model.
NB: - Damping in PF15A has been removed so that PPD = PPZ.
- PD15B has been rearranged so that "if" statement is dependent on PPR which may alter
the PPD output. (PPD IMPORTED INTO CP33 - Capillary Dynamics! CHECK THIS!!!).
PD16:
The total quantity of protein in the pulmonary interstital free fluid (PPR) is calculated
by integrating with respect to time the rate of change of protein in the pulmonary
interstitium (PPD).
PD17:
The concentration of protein in the pulmonary interstitium (CPN) is equal to the total
quantity of protein in the interstitium (PPR) divided by the volume of interstitial
fluid (VPF).
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#PD15">
<rdf:value>
PD15, PD15A, and PD15B:
The rate of change of the total quantity of protein in the pulmonary interstitium (PPD)
is equal to the rate of influx of protein into the interstitium as a result of protein
leakage through the pulmonary capillary membrane (PPN) minus the rate of return of protein
to the circulation from the interstitium by way of the lymphatics (PPO). Blocks 15A and
15B are computational blocks for the purpose of preventing overshoot of an iteration and
for preventing oscillation. The factor (Z) is a damping factor that is used widely
throughout the model.
NB: - Damping in PF15A has been removed so that PPD = PPZ.
- PD15B has been rearranged so that "if" statement is dependent on PPR which may alter
the PPD output. (PPD IMPORTED INTO CP33 - Capillary Dynamics! CHECK THIS!!!).
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#PD15A">
<rdf:value>
PD15, PD15A, and PD15B:
The rate of change of the total quantity of protein in the pulmonary interstitium (PPD)
is equal to the rate of influx of protein into the interstitium as a result of protein
leakage through the pulmonary capillary membrane (PPN) minus the rate of return of protein
to the circulation from the interstitium by way of the lymphatics (PPO). Blocks 15A and
15B are computational blocks for the purpose of preventing overshoot of an iteration and
for preventing oscillation. The factor (Z) is a damping factor that is used widely
throughout the model.
NB: - Damping in PF15A has been removed so that PPD = PPZ.
- PD15B has been rearranged so that "if" statement is dependent on PPR which may alter
the PPD output. (PPD IMPORTED INTO CP33 - Capillary Dynamics! CHECK THIS!!!).
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#PD15B">
<rdf:value>
PD15, PD15A, and PD15B:
The rate of change of the total quantity of protein in the pulmonary interstitium (PPD)
is equal to the rate of influx of protein into the interstitium as a result of protein
leakage through the pulmonary capillary membrane (PPN) minus the rate of return of protein
to the circulation from the interstitium by way of the lymphatics (PPO). Blocks 15A and
15B are computational blocks for the purpose of preventing overshoot of an iteration and
for preventing oscillation. The factor (Z) is a damping factor that is used widely
throughout the model.
NB: - Damping in PF15A has been removed so that PPD = PPZ.
- PD15B has been rearranged so that "if" statement is dependent on PPR which may alter
the PPD output. (PPD IMPORTED INTO CP33 - Capillary Dynamics! CHECK THIS!!!).
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#PD16">
<rdf:value>
PD16:
The total quantity of protein in the pulmonary interstital free fluid (PPR) is calculated
by integrating with respect to time the rate of change of protein in the pulmonary
interstitium (PPD).
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#PD17">
<rdf:value>
PD17:
The concentration of protein in the pulmonary interstitium (CPN) is equal to the total
quantity of protein in the interstitium (PPR) divided by the volume of interstitial
fluid (VPF).
</rdf:value>
</rdf:Description>
</rdf:RDF>
<!-- Inputs from other components -->
<variable name="PPO" units="gram_per_minute" private_interface="none" public_interface="in"/>
<variable name="PPN" units="gram_per_minute" private_interface="none" public_interface="in"/>
<variable name="VPF" units="litre" private_interface="none" public_interface="in"/>
<variable name="time" units="minute" private_interface="none" public_interface="in"/>
<!-- Outputs to other components -->
<variable cmeta:id="concentration_of_protein_in_pulmonary_interstitium_PPD"
name="PPD" units="gram_per_minute" private_interface="none" public_interface="out"/>
<variable name="CPN" units="gram_per_L" private_interface="none" public_interface="out"/>
<!-- Internal variables -->
<variable name="PPZ" units="gram_per_minute" private_interface="none" public_interface="none"/>
<variable name="PPR1" initial_value="0.419998" units="gram" private_interface="none" public_interface="none"/>
<variable name="PPR" units="gram" private_interface="none" public_interface="none"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="PD15">
<eq/>
<ci>PPZ</ci>
<apply>
<minus/>
<ci>PPN</ci>
<ci>PPO</ci>
</apply>
</apply>
<apply id="PD15A">
<eq/>
<ci>PPD</ci>
<ci>PPZ</ci>
</apply>
<apply id="PD16">
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>PPR1</ci>
</apply>
<ci>PPD</ci>
</apply>
<apply id="PD15B">
<eq/>
<ci>PPR</ci>
<piecewise>
<piece>
<cn cellml:units="gram">0.025</cn>
<apply>
<lt/>
<ci>PPR1</ci>
<cn cellml:units="gram">0.025</cn>
</apply>
</piece>
<otherwise>
<ci>PPR1</ci>
</otherwise>
</piecewise>
</apply>
<apply id="PD17">
<eq/>
<ci>CPN</ci>
<apply>
<divide/>
<ci>PPR</ci>
<ci>VPF</ci>
</apply>
</apply>
</math>
</component>
<!-- INPUT CONNECTIONS -->
<connection>
<map_components component_1="concentration_of_protein_in_pulmonary_interstitium" component_2="pulmonary_interstitial_free_fluid_volume"/>
<map_variables variable_1="VPF" variable_2="VPF"/>
</connection>
<connection>
<map_components component_1="concentration_of_protein_in_pulmonary_interstitium" component_2="pulmonary_fluid_dynamics"/>
<map_variables variable_1="time" variable_2="time"/>
</connection>
<!-- ======================================== COLLOID OSMOTIC PRESSURE OF PULMONARY INTERSTITIUM ============================================= -->
<component name="colloid_osmotic_pressure_of_pulmonary_interstitium"
cmeta:id="colloid_osmotic_pressure_of_pulmonary_interstitium">
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about="#colloid_osmotic_pressure_of_pulmonary_interstitium">
<rdf:value>
PD18:
The colloid osmotic pressure of the pulmonary interstitial fluid (POS) is equal to
the concentration of protein in the pulmonary interstitium (CPN) times a constant.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#PD18">
<rdf:value>
PD18:
The colloid osmotic pressure of the pulmonary interstitial fluid (POS) is equal to
the concentration of protein in the pulmonary interstitium (CPN) times a constant.
</rdf:value>
</rdf:Description>
</rdf:RDF>
<!-- Inputs from other components -->
<variable name="CPN" units="gram_per_L" private_interface="none" public_interface="in"/>
<!-- Outputs to other components -->
<variable name="POS" units="mmHg" private_interface="none" public_interface="out"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="PD18">
<eq/>
<ci>POS</ci>
<apply>
<times/>
<ci>CPN</ci>
<cn cellml:units="L_mmHg_per_gram">0.4</cn>
</apply>
</apply>
</math>
</component>
<!-- INPUT CONNECTIONS -->
<connection>
<map_components component_1="colloid_osmotic_pressure_of_pulmonary_interstitium" component_2="concentration_of_protein_in_pulmonary_interstitium"/>
<map_variables variable_1="CPN" variable_2="CPN"/>
</connection>
<!-- ======================================== PROTEIN LEAKAGE INTO PULMONARY INTERSTITIUM ============================================= -->
<component name="protein_leakage_into_pulmonary_interstitium"
cmeta:id="protein_leakage_into_pulmonary_interstitium">
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about="#protein_leakage_into_pulmonary_interstitium">
<rdf:value>
PD19 and PD20:
The rate of leakage of protein through the pulmonary capillary membrane into the pulmonary
interstitium (PPN) is equal to the concentration of protein in the plasma (CPP), minus the
concentration of protein in the pulmonary interstitium (CPN) times a constant.
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#PD19_and_PD20">
<rdf:value>
PD19 and PD20:
The rate of leakage of protein through the pulmonary capillary membrane into the pulmonary
interstitium (PPN) is equal to the concentration of protein in the plasma (CPP), minus the
concentration of protein in the pulmonary interstitium (CPN) times a constant.
</rdf:value>
</rdf:Description>
</rdf:RDF>
<!-- Inputs from other components -->
<variable name="CPP" units="gram_per_L" private_interface="none" public_interface="in"/>
<variable name="CPN" units="gram_per_L" private_interface="none" public_interface="in"/>
<!-- Outputs to other components -->
<variable name="PPN" units="gram_per_minute" private_interface="none" public_interface="out"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="PD19_and_PD20">
<eq/>
<ci>PPN</ci>
<apply>
<times/>
<apply>
<minus/>
<ci>CPP</ci>
<ci>CPN</ci>
</apply>
<cn cellml:units="L_per_minute">0.000225</cn>
</apply>
</apply>
</math>
</component>
<!-- INPUT CONNECTIONS -->
<connection>
<map_components component_1="protein_leakage_into_pulmonary_interstitium" component_2="pulmonary_fluid_dynamics"/>
<map_variables variable_1="CPP" variable_2="CPP"/>
</connection>
<connection>
<map_components component_1="protein_leakage_into_pulmonary_interstitium" component_2="concentration_of_protein_in_pulmonary_interstitium"/>
<map_variables variable_1="CPN" variable_2="CPN"/>
<map_variables variable_1="PPN" variable_2="PPN"/>
</connection>
<!-- ======================================== LUNG LYMPHATIC PROTEIN FLOW ============================================= -->
<component name="lung_lymphatic_protein_flow"
cmeta:id="lung_lymphatic_protein_flow">
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about="#lung_lymphatic_protein_flow">
<rdf:value>
PD12 and PD13:
Curve-fitting blocks to calculate the rate of pulmonary lymph flow (PLF) from the
pulmonary interstitial fluid pressure (PPI).
PD14:
Rate of return of protein from the pulmonary interstitium to the circulation in
the pulmonary lymph (PPO) is equal to the concentration of protein in the
pulmonary interstitial fluid (CPN) times the rate of pulmonary lymph flow (PLF).
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#PD12_and_PD13">
<rdf:value>
PD12 and PD13:
Curve-fitting blocks to calculate the rate of pulmonary lymph flow (PLF) from the
pulmonary interstitial fluid pressure (PPI).
</rdf:value>
</rdf:Description>
<rdf:Description rdf:about="#PD14">
<rdf:value>
PD14:
Rate of return of protein from the pulmonary interstitium to the circulation in
the pulmonary lymph (PPO) is equal to the concentration of protein in the
pulmonary interstitial fluid (CPN) times the rate of pulmonary lymph flow (PLF).
</rdf:value>
</rdf:Description>
</rdf:RDF>
<!-- Inputs from other components -->
<variable name="PPI" units="mmHg" private_interface="none" public_interface="in"/>
<variable name="CPN" units="gram_per_L" private_interface="none" public_interface="in"/>
<!-- Outputs to other components -->
<variable name="PLF" units="L_per_minute" private_interface="none" public_interface="out"/>
<variable name="PPO" units="gram_per_minute" private_interface="none" public_interface="out"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="PD12_and_PD13">
<eq/>
<ci>PLF</ci>
<apply>
<times/>
<apply>
<plus/>
<ci>PPI</ci>
<cn cellml:units="mmHg">11</cn>
</apply>
<cn cellml:units="L_per_minute_per_mmHg">0.0003</cn>
</apply>
</apply>
<apply id="PD14">
<eq/>
<ci>PPO</ci>
<apply>
<times/>
<ci>PLF</ci>
<ci>CPN</ci>
</apply>
</apply>
</math>
</component>
<!-- INPUT CONNECTIONS -->
<connection>
<map_components component_1="lung_lymphatic_protein_flow" component_2="pulmonary_interstitial_fluid_pressure"/>
<map_variables variable_1="PPI" variable_2="PPI"/>
</connection>
<connection>
<map_components component_1="lung_lymphatic_protein_flow" component_2="concentration_of_protein_in_pulmonary_interstitium"/>
<map_variables variable_1="CPN" variable_2="CPN"/>
<map_variables variable_1="PPO" variable_2="PPO"/>
</connection>
<!-- ========================================================== PARAMETER VALUES ================================================================ -->
<component name="parameter_values"
cmeta:id="parameter_values">
<variable name="CPF" units="L_per_minute_per_mmHg" initial_value="0.0003" private_interface="none" public_interface="out"/> <!-- pulmonary capillary filtration coefficient [P] -->
</component>
<!-- ============================================================ GROUPING =============================================================== -->
<group>
<relationship_ref relationship="containment"/>
<component_ref component="pulmonary_fluid_dynamics">
<component_ref component="pulmonary_capillary_pressure"/>
<component_ref component="fluid_filtration_into_pulmonary_interstitium"/>
<component_ref component="pulmonary_interstitial_free_fluid_volume"/>
<component_ref component="pulmonary_interstitial_fluid_pressure"/>
<component_ref component="concentration_of_protein_in_pulmonary_interstitium"/>
<component_ref component="colloid_osmotic_pressure_of_pulmonary_interstitium"/>
<component_ref component="protein_leakage_into_pulmonary_interstitium"/>
<component_ref component="lung_lymphatic_protein_flow"/>
</component_ref>
</group>
<group>
<relationship_ref relationship="encapsulation"/>
<component_ref component="pulmonary_fluid_dynamics">
<component_ref component="parameter_values"/>
<component_ref component="pulmonary_capillary_pressure"/>
<component_ref component="fluid_filtration_into_pulmonary_interstitium"/>
<component_ref component="pulmonary_interstitial_free_fluid_volume"/>
<component_ref component="pulmonary_interstitial_fluid_pressure"/>
<component_ref component="concentration_of_protein_in_pulmonary_interstitium"/>
<component_ref component="colloid_osmotic_pressure_of_pulmonary_interstitium"/>
<component_ref component="protein_leakage_into_pulmonary_interstitium"/>
<component_ref component="lung_lymphatic_protein_flow"/>
</component_ref>
</group>
<!-- SIMULATION METADATA -->
<RDF:RDF xmlns:RDF="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<RDF:Description RDF:about="#pulmonary_fluid_dynamics_CellML1_0_model">
<NS1:simulation xmlns:NS1="http://www.cellml.org/metadata/simulation/1.0#" RDF:resource="rdf:#$QQv43"/>
</RDF:Description>
<RDF:Description RDF:about="rdf:#$4SdBX3">
<RDF:first RDF:resource="rdf:#$5SdBX3"/>
<RDF:rest RDF:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>
</RDF:Description>
<RDF:Description RDF:about="rdf:#$3SdBX3">
<NS1:boundIntervals xmlns:NS1="http://www.cellml.org/metadata/simulation/1.0#" RDF:resource="rdf:#$4SdBX3"/>
</RDF:Description>
<RDF:Description xmlns:NS1="http://www.cellml.org/metadata/simulation/1.0#" RDF:about="rdf:#$5SdBX3" NS1:endingValue="500"/>
<RDF:Description xmlns:NS1="http://www.cellml.org/metadata/simulation/1.0#" RDF:about="rdf:#$SQv43" NS1:endingValue="500" NS1:nonstandard-pointDensity="1000"/>
<RDF:Description xmlns:NS1="http://www.cellml.org/metadata/simulation/1.0#" RDF:about="rdf:#$d2Cb93" NS1:nonstandard-pointDensity="1000"/>
<RDF:Description RDF:about="#pulmonary_fluid_dynamics_CellML1_0_model#LfY7zdZ%60EYs">
<NS1:simulation xmlns:NS1="http://www.cellml.org/metadata/simulation/1.0#" RDF:resource="rdf:#$b2Cb93"/>
<NS1:simulation xmlns:NS1="http://www.cellml.org/metadata/simulation/1.0#" RDF:resource="rdf:#$3SdBX3"/>
</RDF:Description>
<RDF:Description RDF:about="rdf:#$QQv43">
<NS1:boundIntervals xmlns:NS1="http://www.cellml.org/metadata/simulation/1.0#" RDF:resource="rdf:#$RQv43"/>
</RDF:Description>
<RDF:Description RDF:about="rdf:#$RQv43">
<RDF:first RDF:resource="rdf:#$SQv43"/>
<RDF:rest RDF:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>
</RDF:Description>
<RDF:Description RDF:about="rdf:#$b2Cb93">
<NS1:boundIntervals xmlns:NS1="http://www.cellml.org/metadata/simulation/1.0#" RDF:resource="rdf:#$c2Cb93"/>
</RDF:Description>
<RDF:Description RDF:about="rdf:#$c2Cb93">
<RDF:first RDF:resource="rdf:#$d2Cb93"/>
<RDF:rest RDF:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>
</RDF:Description>
</RDF:RDF>
</model>