Location: BG_Ks @ 3e2973fc7e95 / parameter_finder / kinetic_parameters_Ks.py

Author:
Shelley Fong <s.fong@auckland.ac.nz>
Date:
2022-03-07 15:55:11+13:00
Desc:
fix equation for q_mem
Permanent Source URI:
https://models.physiomeproject.org/workspace/82d/rawfile/3e2973fc7e95561205c84e3977ffb07d2d7f9847/parameter_finder/kinetic_parameters_Ks.py

# fast Na module

# Return kinetic parameters, constraints, and vector of volumes in each
# compartment (pL) (1 if gating variable, or in element corresponding to
# kappa)

# Translated from Pan 2018 cardiac AP 

import numpy as np

def kinetic_parameters(M, include_type2_reactions, dims, V):
    # Set the kinetic rate constants

    num_cols = dims['num_cols']
    num_rows = dims['num_rows']
    # constants are stored in V
    F = V['F']
    R = V['R']
    T = V['T']
    N_A = V['N_A']

    G_GHK = 2.865471173593366E-7    # Unit mA/mM
    P_ks = G_GHK/F * 1e12 # Unit pL/s . G_GHK [=] Amp/(mol/s)
    x_Ks_channel = 5369/N_A*1e15 # unit    fmol

    # load gate transition parameters
    params_xs1 = [1.4553735686818794,	0.7139137911117777,	1.4406316908249004,	-0.48710409409640176]
    params_xs2 = [0.3348069123572211,	0.7798495649896808,	0.3176442832555819,	-0.518794842790217]
    alpha_xs1 = params_xs1[0] # unit    s ^ -1
    beta_xs1 = params_xs1[2] # unit    s ^ -1

    alpha_xs2 = params_xs2[0] # unit    s ^ -1
    beta_xs2 = params_xs2[2] # unit    s ^ -1

    # Calculate bond graph constants from kinetic parameters
    # Note: units of kappa are fmol/s, units of K are fmol^-1

    kf_Ks = [P_ks / x_Ks_channel,     # R_GHK
    alpha_xs1,     # Rx1_0
    alpha_xs1,     # Rx1_1
    alpha_xs2,     # Rx2_0
    alpha_xs2] # Rx2_1

    kr_Ks = [P_ks / x_Ks_channel,     # R_GHK
    beta_xs1,     # Rx1_0
    beta_xs1,     # Rx1_1
    beta_xs2,     # Rx2_0
    beta_xs2] # Rx2_1


    k_kinetic = kf_Ks + kr_Ks

    # CONSTRAINTS
    N_cT = []
    K_C = []

    # volume vector
    # W = list(np.append([1] * num_cols, [V['V_myo']] * num_rows))
    W = [1] * num_cols + [V['V_myo'], V['V_o']] + [1] * (num_rows-2)

    return (k_kinetic, N_cT, K_C, W)