- Author:
- WeiweiAi <wai484@aucklanduni.ac.nz>
- Date:
- 2022-01-20 12:46:30+13:00
- Desc:
- revert the scaling in the currents
- Permanent Source URI:
- https://models.physiomeproject.org/workspace/701/rawfile/1451a14f3fbe8fd7aacd0d0a73d87cec591b26de/Components/forceProduction.cellml
<?xml version='1.0' encoding='UTF-8'?>
<!-- Yang et al (2003)
Yang, Jin, et al. "The myogenic response in isolated rat cerebrovascular arteries: smooth muscle cell model."
Medical engineering & physics 25.8 (2003): 691-709.-->
<model name="forceProduction" xmlns="http://www.cellml.org/cellml/1.1#" xmlns:cellml="http://www.cellml.org/cellml/1.1#" xmlns:xlink="http://www.w3.org/1999/xlink">
<import xlink:href="../cellLib/Components/units.cellml">
<units name="um" units_ref="um"/>
<units name="ms" units_ref="ms"/>
<units name="uN_per_um" units_ref="uN_per_um"/>
<units name="uN" units_ref="uN"/>
<units name="um_per_ms" units_ref="um_per_ms"/>
<units name="uN_ms_per_um" units_ref="uN_ms_per_um"/>
</import>
<component name="forceProduction">
<variable name="time" public_interface="in" units="ms"/>
<variable name="AMp" public_interface="in" units="dimensionless"/>
<variable name="AM" public_interface="in" units="dimensionless"/>
<variable name="l_c" public_interface="in" units="um"/>
<variable name="l_c0" public_interface="in" units="um"/>
<variable name="l_s0" public_interface="in" units="um"/>
<variable name="l_opt" public_interface="in" units="um"/>
<variable name="k_x1" public_interface="in" units="uN_per_um"/>
<variable name="k_x2" public_interface="in" units="uN_per_um"/>
<variable name="k_s" public_interface="in" units="uN"/>
<variable name="k_p" public_interface="in" units="uN"/>
<variable name="v_x" public_interface="in" units="um_per_ms"/>
<variable name="f_AMp" public_interface="in" units="uN_ms_per_um"/>
<variable name="f_AM" public_interface="in" units="uN_ms_per_um"/>
<variable name="mu_s" public_interface="in" units="uN_ms_per_um"/>
<variable name="alpha_s" public_interface="in" units="dimensionless"/>
<variable name="alpha_p" public_interface="in" units="dimensionless"/>
<variable name="beta" public_interface="in" units="dimensionless"/>
<variable name="ls_init" public_interface="in" units="um"/>
<variable name="la_init" public_interface="in" units="um"/>
<variable name="lx_init" public_interface="in" units="um"/>
<variable name="l_x" public_interface="out" units="um"/>
<variable initial_value="ls_init" name="l_s" public_interface="out" units="um"/>
<variable initial_value="la_init" name="l_a" public_interface="out" units="um"/>
<variable name="F_p" public_interface="out" units="uN"/>
<variable name="F_a" public_interface="out" units="uN"/>
<variable name="F_s" public_interface="out" units="uN"/>
<variable name="F_x" public_interface="out" units="uN"/>
<variable name="F_t" public_interface="out" units="uN"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>l_s</ci>
</apply>
<apply>
<times/>
<apply>
<divide/>
<cn cellml:units="dimensionless">1</cn>
<ci>mu_s</ci>
</apply>
<apply>
<minus/>
<ci>F_s</ci>
<apply>
<minus/>
<apply>
<times/>
<ci>k_s</ci>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<times/>
<ci>alpha_s</ci>
<apply>
<minus/>
<ci>l_s</ci>
<ci>l_s0</ci>
</apply>
</apply>
<ci>l_s0</ci>
</apply>
</apply>
</apply>
<cn cellml:units="uN">1</cn>
</apply>
</apply>
</apply>
</apply>
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>l_a</ci>
</apply>
<apply>
<divide/>
<apply>
<minus/>
<apply>
<times/>
<ci>F_a</ci>
<apply>
<exp/>
<apply>
<times/>
<ci>beta</ci>
<apply>
<power/>
<apply>
<divide/>
<apply>
<minus/>
<ci>l_a</ci>
<ci>l_opt</ci>
</apply>
<ci>l_opt</ci>
</apply>
<cn cellml:units="dimensionless">2</cn>
</apply>
</apply>
</apply>
</apply>
<apply>
<times/>
<ci>f_AMp</ci>
<ci>AMp</ci>
<ci>v_x</ci>
</apply>
</apply>
<apply>
<plus/>
<apply>
<times/>
<ci>f_AM</ci>
<ci>AM</ci>
</apply>
<apply>
<times/>
<ci>f_AMp</ci>
<ci>AMp</ci>
</apply>
</apply>
</apply>
</apply>
<!-- ode(l_x, time) = ((k_x1*AMp+k_x2*AM)*(l_c-l_a-l_s)-f_AMp*AMp*v_x)/(f_AM*AM+f_AMp*AMp);-->
<apply>
<eq/>
<ci>l_x</ci>
<apply>
<minus/>
<apply>
<minus/>
<ci>l_c</ci>
<ci>l_a</ci>
</apply>
<ci>l_s</ci>
</apply>
</apply>
<apply>
<eq/>
<ci>F_p</ci>
<apply>
<times/>
<ci>k_p</ci>
<apply>
<minus/>
<apply>
<exp/>
<apply>
<divide/>
<apply>
<times/>
<ci>alpha_p</ci>
<apply>
<minus/>
<ci>l_c</ci>
<ci>l_c0</ci>
</apply>
</apply>
<ci>l_c0</ci>
</apply>
</apply>
<cn cellml:units="dimensionless">1</cn>
</apply>
</apply>
</apply>
<apply>
<eq/>
<ci>F_x</ci>
<apply>
<times/>
<apply>
<plus/>
<apply>
<times/>
<ci>k_x1</ci>
<ci>AMp</ci>
</apply>
<apply>
<times/>
<ci>k_x2</ci>
<ci>AM</ci>
</apply>
</apply>
<ci>l_x</ci>
<apply>
<exp/>
<apply>
<times/>
<apply>
<minus/>
<ci>beta</ci>
</apply>
<apply>
<power/>
<apply>
<divide/>
<apply>
<minus/>
<ci>l_a</ci>
<ci>l_opt</ci>
</apply>
<ci>l_opt</ci>
</apply>
<cn cellml:units="dimensionless">2</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
<!-- F_a = (f_AMp*AMp*(v_x+ode(l_a, time))+f_AM*AM*ode(l_a, time))*exp(-beta*sqr((l_a-l_opt)/l_opt));
F_a = (f_AMp*AMp*(v_x+l_a)+f_AM*AM*l_a)*exp(-beta*sqr((-l_a-l_opt)/l_opt)); //cpp
F_s = mu_s*ode(l_s,time)+k_s*(exp(alpha_s*(l_s-l_s0)/l_s0)-1{uN});-->
<!-- F_s = F_a;-->
<apply>
<eq/>
<ci>F_s</ci>
<ci>F_x</ci>
</apply>
<apply>
<eq/>
<ci>F_a</ci>
<ci>F_x</ci>
</apply>
<apply>
<eq/>
<ci>F_t</ci>
<apply>
<plus/>
<ci>F_a</ci>
<ci>F_p</ci>
</apply>
</apply>
</math>
</component>
</model>