- Author:
- Shelley Fong <s.fong@auckland.ac.nz>
- Date:
- 2022-01-20 09:45:32+13:00
- Desc:
- formatting 2
- Permanent Source URI:
- https://models.physiomeproject.org/workspace/674/rawfile/3bb9ea9284bd150c01d130c38291a851b7d0ac03/parameter_finder/find_BG_parameters.m
% This script calculates the bond graph parameters for all reactions of the
% a given module. Specify the directory.
% based on SERCA model of Pan et al, which is based on Tran et al. (2009).
% Parameters calculated in module's directory, by using the kinetic
% parameters and stoichiometric matrix.
% 19 Jul INITIAL CONDITIONS
% given dq/dt = A.q + c where A is a square matrix, use null(A) to find ICs
% of q.
% A is constructed from linearising equations through lm, and
% contains BG parameters
% K kappa are contained in c, but disregarding this
% as this is not dependent on q.
% return W from kinetic_parameters
clear;
clc;
close all;
%% booleans
write_parameters_file = true;
include_constraints = true;
include_type2_reactions = true;
%% Set directories
current_dir = pwd;
Idx_backslash = find(current_dir == filesep);
data_dir = [current_dir filesep 'data' filesep];
output_dir = [current_dir filesep 'output' filesep];
modname = current_dir(Idx_backslash(end-1):Idx_backslash(end));
modname = modname(5:end-1);
if contains(current_dir, 'beta1') && false
matstr = '_withR_LR_scheme4';
else
matstr = '';
end
%% Define volumes
V_myo = 34.4; % pL
V = struct();
V.V_myo = V_myo;
%% Load forward matrix
if include_type2_reactions
stoich_path = [data_dir sprintf('all_forward_matrix%s.txt',matstr)];
else
stoich_path = [data_dir 'all_noType2_forward_matrix.txt'];
end
stoich_file_id = fopen(stoich_path,'r');
stoich_file_data = textscan(stoich_file_id,'%s','delimiter','\n');
fclose(stoich_file_id);
num_rows = length(stoich_file_data{1});
num_cols = sum(stoich_file_data{1}{1} == ',')+1;
dims = struct();
dims.num_cols = num_cols;
dims.num_rows = num_rows;
N_f = zeros(num_rows,num_cols);
for i_row = 1:num_rows
line_str = stoich_file_data{1}{i_row};
line_split = regexp(line_str,',','split');
for i_col = 1:num_cols
N_f(i_row,i_col) = str2double(line_split{i_col});
end
end
%% Load reverse matrix
if include_type2_reactions
stoich_path = [data_dir sprintf('all_reverse_matrix%s.txt',matstr)];
else
stoich_path = [data_dir 'all_noType2_reverse_matrix.txt'];
end
stoich_file_id = fopen(stoich_path,'r');
stoich_file_data = textscan(stoich_file_id,'%s','delimiter','\n');
fclose(stoich_file_id);
num_rows = length(stoich_file_data{1}); % num of kappa + K
num_cols = sum(stoich_file_data{1}{1} == ',')+1; % num of reactions
N_r = zeros(num_rows,num_cols);
for i_row = 1:num_rows
line_str = stoich_file_data{1}{i_row};
line_split = regexp(line_str,',','split');
for i_col = 1:num_cols
N_r(i_row,i_col) = str2double(line_split{i_col});
end
end
N_fT = transpose(N_f);
N_rT = transpose(N_r);
%% Calculate stoichiometric matrix
% I matrix to align with placement of kappa down the column.
% x-axis of stoich matrix (R1a, R1b etc) coincides with the kp km of that
% kinetic reaction
N = N_r - N_f;
N_T = N_rT - N_fT;
I = eye(num_cols);
M = [I N_fT; I N_rT];
addpath(current_dir);
addpath(data_dir);
[k_kinetic, N_cT, K_C, W] = kinetic_parameters(M, include_type2_reactions, dims, V); %%%%%%%%%%%%%%%%
if ~include_constraints
N_cT = [];
end
M = [M; N_cT];
% Calculate bond graph constants from kinetic parameters
% Note: units of kappa are fmol/s, units of K are fmol^-1
k = transpose([k_kinetic' K_C]);
lambdaW = exp(pinv(M) * log(k));
% Check that kinetic parameters are reproduced by bond graph parameters
k_sub = exp(M*log(lambdaW));
diff = (k - k_sub)./k;
error = sum(abs(diff));
% Check that there is a detailed balance constraint
Z = transpose(null(transpose(M),'r'));
N_rref = rref(N);
R_mat = null(N,'r');
kf = k_kinetic(1:num_cols);
kr = k_kinetic(num_cols+1:end);
K_eq = kf'./kr';
zero_est = R_mat'*(K_eq');
zero_est_log = R_mat'*log(K_eq');
if isempty(R_mat)
warning('R_mat is empty: matrix is full rank');
end
%% Save bond graph parameters
lambda = lambdaW./W;
kappa = lambda(1:num_cols);
K = lambda(num_cols+1:end);
fID = fopen([data_dir 'rxnID.txt'], 'r');
rxnID = textscan(fID,'%s', 'delimiter','\n');
fclose(fID);
fID = fopen([data_dir 'Kname.txt'], 'r');
Kname = textscan(fID,'%s');
fclose(fID);
Knamed = struct();
for k = 1:length(Kname{1})
% assign name to K values. store as struct for output in .mat.
sname = Kname{1}{k};
Knamed.(sname) = K(k);
end
kappa_named = struct();
for k = 1:length(rxnID{1})
% assign name to K values. store as struct for output in .mat.
sname = rxnID{1}{k};
kappa_named.(['r' sname]) = kappa(k);
end
if write_parameters_file
save([output_dir 'all_params.mat'],'kappa','K','k_kinetic', 'Knamed','kappa_named'); %
end
for j = 1:length(kappa)
fprintf('var kappa_%s: fmol_per_sec {init: %g, pub: out};\n',rxnID{1}{j},kappa(j));
end
for j = 1:length(K)
fprintf('var K_%s: per_fmol {init: %g, pub: out};\n',Kname{1}{j},K(j));
end
if true
if false
for j=1:length(K)
fprintf('var q_%s: fmol {init: 1e-13};\n',Kname{1}{j});
end
for j=1:length(kappa)
fprintf('var v%s: fmol_per_sec;\n',rxnID{1}{j})
end
for j=1:length(K)
fprintf('var mu_%s: J_per_mol;\n',Kname{1}{j});
end
for j=1:length(kappa)
fprintf('v%s = kappa_%s*exp(mu_a/(R*T));\n',rxnID{1}{j}, rxnID{1}{j})
end
for j=1:length(K)
fprintf('ode(q_%s, time) = p;\n',Kname{1}{j});
end
end
disp(newline)
disp('// Global value');
for j=1:length(K)
fprintf('var q_%s: fmol {pub: out};\n',Kname{1}{j});
end
disp('// From submodule');
for j=1:length(K)
fprintf('var q_%s_m%s: fmol {pub: in};\n',Kname{1}{j}, modname);
end
for j=1:length(K)
fprintf('q_%s = q_%s_m%s + q_%s_init;\n',Kname{1}{j}, Kname{1}{j},...
modname,Kname{1}{j});
end
disp(newline)
disp('// Input from global environment');
for j=1:length(K)
fprintf('var q_%s_global: fmol {pub: in};\n',Kname{1}{j});
end
disp('// Output to global environment');
for j=1:length(K)
fprintf('var q_%s: fmol {init: 1e-16, pub: out};\n',Kname{1}{j});
end
for j=1:length(K)
fprintf('mu_%s = R*T*ln(K_%s*q_%s_global);\n',Kname{1}{j},Kname{1}{j},Kname{1}{j});
end
disp(newline)
fprintf('def map between environment and %s for\n',modname);
fprintf('vars time and time;\n');
for j=1:length(K)
fprintf('vars q_%s_m%s and q_%s;\n',Kname{1}{j}, modname,Kname{1}{j});
fprintf('vars q_%s and q_%s_global;\n',Kname{1}{j}, Kname{1}{j});
end
disp('enddef;');
end
disp(newline)