Views

  • State: Published

Bifurcation analysis of the regulatory modules of the mammalian G1/S transition

Exposure Information

Latest Exposure To the presentational view for the most recent revision of data reviewed and published from this workspace.

Workspace Summary

Description
MOTIVATION: Mathematical models of the cell cycle can contribute to an understanding of its basic mechanisms. Modern simulation tools make the analysis of key components and their interactions very effective. This paper focuses on the role of small modules and feedbacks in the gene-protein network governing the G1/S transition in mammalian cells. Mutations in this network may lead to uncontrolled cell proliferation. Bifurcation analysis helps to identify the key components of this extremely complex interaction network. RESULTS: We identify various positive and negative feedback loops in the network controlling the G1/S transition. It is shown that the positive feedback regulation of E2F1 and a double activator-inhibitor module can lead to bistability. Extensions of the core module preserve the essential features such as bistability. The complete model exhibits a transcritical bifurcation in addition to bistability. We relate these bifurcations to the cell cycle checkpoint and the G1/S phase transition point. Thus, core modules can explain major features of the complex G1/S network and have a robust decision taking function.
Owner
Hanne Nielsen <hnie010@aucklanduni.ac.nz>
URI for git clone/pull/push
https://models.physiomeproject.org/w/hnielsen/swat_2004
Report an issue with this workspace

Files

Filename Size Date Options
.DS_Store 6148 2011-11-11 [browse]
swat_2004.ai 229162 2011-11-11 [browse]
swat_2004.cellml 39505 2011-11-11 [browse]
swat_2004.html 2313 2011-11-11 [browse]
swat_2004.png 73916 2011-11-11 [browse]
swat_2004.session.xml 20148 2011-11-11 [browse] [run]
swat_2004.svg 42040 2011-11-11 [browse]
swat_2004.xul 50490 2011-11-11 [browse]