Generated Code
The following is python code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
# Size of variable arrays: sizeAlgebraic = 1 sizeStates = 2 sizeConstants = 34 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "t in component environment (second)" legend_constants[0] = "x in component environment (nanometer)" legend_states[0] = "n in component Crossbridges_attached (dimensionless)" legend_states[1] = "A_c in component Actin_free (dimensionless)" legend_constants[23] = "f in component f (per_second)" legend_constants[24] = "g in component g (per_second)" legend_constants[1] = "h in component Crossbridges_attached (nanometer)" legend_constants[2] = "f_1 in component f (per_second)" legend_constants[3] = "g_1 in component g (per_second)" legend_constants[4] = "g_2 in component g (per_second)" legend_algebraic[0] = "Ca_f in component Ca_sarcoplasm (molar)" legend_constants[5] = "t_d in component Ca_sarcoplasm (second)" legend_constants[6] = "a_1 in component Ca_sarcoplasm (per_second_squared)" legend_constants[7] = "b_1 in component Ca_sarcoplasm (per_second_squared)" legend_constants[8] = "Ca_0 in component Ca_sarcoplasm (molar)" legend_constants[9] = "c_1 in component Actin_free (per_second)" legend_constants[26] = "c_2 in component Actin_free (per_second)" legend_constants[10] = "c_2_0 in component Actin_free (per_second)" legend_constants[11] = "k_i in component Actin_free (dimensionless)" legend_constants[25] = "s_h in component s_h (muscle_length)" legend_constants[12] = "q in component Actin_free (dimensionless)" legend_constants[13] = "AT_0 in component Actin_free (dimensionless)" legend_constants[32] = "F_SE in component Series_Elastic_Element (force)" legend_constants[14] = "alpha_s in component Series_Elastic_Element (force)" legend_constants[15] = "beta_s in component Series_Elastic_Element (muscle_length)" legend_constants[31] = "x_s in component SE_constants (muscle_length)" legend_constants[16] = "x_so in component Series_Elastic_Element (muscle_length)" legend_constants[30] = "X_M_0 in component X_0 (muscle_length)" legend_constants[17] = "L_max in component Series_Elastic_Element (muscle_length)" legend_constants[28] = "F_PE in component Parallel_Elastic_Element (force)" legend_constants[18] = "alpha_p in component Parallel_Elastic_Element (force)" legend_constants[19] = "beta_p in component Parallel_Elastic_Element (muscle_length)" legend_constants[27] = "x_p in component PE_constants (muscle_length)" legend_constants[20] = "x_po in component Parallel_Elastic_Element (muscle_length)" legend_constants[33] = "F_CE in component Contractile_Element (force)" legend_constants[21] = "F_PL in component s_h (force)" legend_constants[29] = "X_S_0 in component X_0 (muscle_length)" legend_constants[22] = "F_PL in component X_0 (force)" legend_rates[0] = "d/dt n in component Crossbridges_attached (dimensionless)" legend_rates[1] = "d/dt A_c in component Actin_free (dimensionless)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; constants[0] = 10 states[0] = 0 states[1] = 1 constants[1] = 12 constants[2] = 70 constants[3] = 40 constants[4] = 240 constants[5] = 0.3 constants[6] = 200 constants[7] = 5 constants[8] = 0.45e-6 constants[9] = 200e12 constants[10] = 20 constants[11] = 30.9 constants[12] = 1.45 constants[13] = 2 constants[14] = 0.1027 constants[15] = 20 constants[16] = 0.0387 constants[17] = 1 constants[18] = 0.00224 constants[19] = 20 constants[20] = 0.221 constants[21] = 3 constants[22] = 3 constants[23] = custom_piecewise([less(constants[0] , 0.00000), 0.00000 , greater_equal(constants[0] , 0.00000) & less(constants[0] , constants[1]), (constants[2]*constants[0])/constants[1] , True, 0.00000]) constants[24] = custom_piecewise([less(constants[0] , 0.00000), constants[4] , greater_equal(constants[0] , 0.00000) & less(constants[0] , constants[1]), (constants[3]*constants[0])/constants[1] , True, (constants[3]*constants[0])/constants[1]]) constants[25] = constants[20]-(1.00000*1.00000*log(1.00000+constants[21]/constants[18], 10))/constants[19] constants[26] = constants[10]*exp(constants[11]*(power(constants[25]/1.00000, constants[12]))) constants[27] = constants[20]-constants[25] constants[28] = constants[18]*(exp((constants[19]*constants[27])/(1.00000*1.00000))-1.00000) constants[29] = (1.00000*1.00000*log(1.00000+constants[22]/constants[14], 10))/constants[15] constants[30] = ((constants[29]+constants[17])-constants[25])-constants[16] constants[31] = (constants[16]+constants[25]+constants[30])-constants[17] constants[32] = constants[14]*(exp((constants[15]*constants[31])/(1.00000*1.00000))-1.00000) constants[33] = constants[32]-constants[28] return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic rates[0] = constants[23]*(states[1]-states[0])-constants[24]*states[0] algebraic[0] = constants[8]*fabs(1.00000-exp(-constants[6]*(power(voi, 2.00000))))*exp(-constants[7]*(power(voi-constants[5], 2.00000))) rates[1] = constants[9]*(power(algebraic[0]/1.00000, 2.00000))*(constants[13]-states[1])-constants[26]*states[1] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[0] = constants[8]*fabs(1.00000-exp(-constants[6]*(power(voi, 2.00000))))*exp(-constants[7]*(power(voi-constants[5], 2.00000))) return algebraic def custom_piecewise(cases): """Compute result of a piecewise function""" return select(cases[0::2],cases[1::2]) def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)