Generated Code
The following is matlab code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction() % This is the "main function". In Matlab, things work best if you rename this function to match the filename. [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel(); end function [algebraicVariableCount] = getAlgebraicVariableCount() % Used later when setting a global variable with the number of algebraic variables. % Note: This is not the "main method". algebraicVariableCount =5; end % There are a total of 3 entries in each of the rate and state variable arrays. % There are a total of 14 entries in the constant variable array. % function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel() % Create ALGEBRAIC of correct size global algebraicVariableCount; algebraicVariableCount = getAlgebraicVariableCount(); % Initialise constants and state variables [INIT_STATES, CONSTANTS] = initConsts; % Set timespan to solve over tspan = [0, 10]; % Set numerical accuracy options for ODE solver options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1); % Solve model with ODE solver [VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options); % Compute algebraic variables [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS); ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI); % Plot state variables against variable of integration [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends(); figure(); plot(VOI, STATES); xlabel(LEGEND_VOI); l = legend(LEGEND_STATES); set(l,'Interpreter','none'); end function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends() LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = ''; LEGEND_VOI = strpad('time in component environment (second)'); LEGEND_STATES(:,1) = strpad('V in component membrane (millivolt)'); LEGEND_CONSTANTS(:,1) = strpad('Cm in component membrane (picoF)'); LEGEND_ALGEBRAIC(:,1) = strpad('i_s in component calcium_channel (femtoA)'); LEGEND_ALGEBRAIC(:,3) = strpad('i_K in component potassium_channel (femtoA)'); LEGEND_ALGEBRAIC(:,4) = strpad('i_K_ACh in component acetyl_choline_activated_potassium_channel (femtoA)'); LEGEND_ALGEBRAIC(:,5) = strpad('i_j in component coupling_current (femtoA)'); LEGEND_CONSTANTS(:,2) = strpad('g_s in component calcium_channel (picoS)'); LEGEND_CONSTANTS(:,3) = strpad('V_s in component calcium_channel (millivolt)'); LEGEND_CONSTANTS(:,4) = strpad('V_1 in component calcium_channel (millivolt)'); LEGEND_CONSTANTS(:,5) = strpad('V_2 in component calcium_channel (millivolt)'); LEGEND_CONSTANTS(:,6) = strpad('g_K in component potassium_channel (picoS)'); LEGEND_CONSTANTS(:,7) = strpad('V_K in component potassium_channel (millivolt)'); LEGEND_STATES(:,2) = strpad('w in component potassium_channel_w_gate (dimensionless)'); LEGEND_CONSTANTS(:,8) = strpad('lambda_w in component potassium_channel_w_gate (per_second)'); LEGEND_CONSTANTS(:,9) = strpad('V_3 in component potassium_channel_w_gate (millivolt)'); LEGEND_CONSTANTS(:,10) = strpad('V_4 in component potassium_channel_w_gate (millivolt)'); LEGEND_STATES(:,3) = strpad('u in component acetyl_choline_activated_potassium_channel_u_gate (dimensionless)'); LEGEND_CONSTANTS(:,14) = strpad('alpha in component acetyl_choline_activated_potassium_channel_u_gate (per_second)'); LEGEND_ALGEBRAIC(:,2) = strpad('beta in component acetyl_choline_activated_potassium_channel_u_gate (per_second)'); LEGEND_CONSTANTS(:,11) = strpad('ACh in component acetyl_choline_activated_potassium_channel_u_gate (molar)'); LEGEND_CONSTANTS(:,12) = strpad('g_j in component coupling_current (picoS)'); LEGEND_CONSTANTS(:,13) = strpad('V_B in component coupling_current (millivolt)'); LEGEND_RATES(:,1) = strpad('d/dt V in component membrane (millivolt)'); LEGEND_RATES(:,2) = strpad('d/dt w in component potassium_channel_w_gate (dimensionless)'); LEGEND_RATES(:,3) = strpad('d/dt u in component acetyl_choline_activated_potassium_channel_u_gate (dimensionless)'); LEGEND_STATES = LEGEND_STATES'; LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC'; LEGEND_RATES = LEGEND_RATES'; LEGEND_CONSTANTS = LEGEND_CONSTANTS'; end function [STATES, CONSTANTS] = initConsts() VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = []; STATES(:,1) = -52.07606; CONSTANTS(:,1) = 60; CONSTANTS(:,2) = 382.9118; CONSTANTS(:,3) = 214.1429; CONSTANTS(:,4) = -35.9358; CONSTANTS(:,5) = 7.8589; CONSTANTS(:,6) = 536.1093; CONSTANTS(:,7) = -259.0783; STATES(:,2) = 0.0008971; CONSTANTS(:,8) = 20.7796; CONSTANTS(:,9) = -27.9375; CONSTANTS(:,10) = 6.321; STATES(:,3) = 0.2344555; CONSTANTS(:,11) = 1e-6; CONSTANTS(:,12) = 0; CONSTANTS(:,13) = -50; CONSTANTS(:,14) = 0.0123320./(1.00000+4.20000e-06./CONSTANTS(:,11)); if (isempty(STATES)), warning('Initial values for states not set');, end end function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS) global algebraicVariableCount; statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; ALGEBRAIC = zeros(1, algebraicVariableCount); utilOnes = 1; else statesRowCount = statesSize(1); ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount); RATES = zeros(statesRowCount, statesColumnCount); utilOnes = ones(statesRowCount, 1); end RATES(:,2) = CONSTANTS(:,8).*cosh((STATES(:,1) - CONSTANTS(:,9))./( 2.00000.*CONSTANTS(:,10))).*( (1.00000./2.00000).*(1.00000+ tanh((STATES(:,1) - CONSTANTS(:,9))./CONSTANTS(:,10))) - STATES(:,2)); ALGEBRAIC(:,2) = 0.0100000.*exp( 0.0133000.*(STATES(:,1)+40.0000)); RATES(:,3) = CONSTANTS(:,14).*(1.00000 - STATES(:,3)) - ALGEBRAIC(:,2).*STATES(:,3); ALGEBRAIC(:,1) = (1.00000./2.00000).*CONSTANTS(:,2).*(1.00000+ tanh((STATES(:,1) - CONSTANTS(:,4))./CONSTANTS(:,5))).*(STATES(:,1) - CONSTANTS(:,3)); ALGEBRAIC(:,3) = CONSTANTS(:,6).*STATES(:,2).*(STATES(:,1) - CONSTANTS(:,7)); ALGEBRAIC(:,4) = 1.00000.*0.270000.*STATES(:,3).*(STATES(:,1)+90.0000); ALGEBRAIC(:,5) = CONSTANTS(:,12).*(STATES(:,1) - CONSTANTS(:,13)); RATES(:,1) = - (ALGEBRAIC(:,1)+ALGEBRAIC(:,3)+ALGEBRAIC(:,4)+ALGEBRAIC(:,5))./CONSTANTS(:,1); RATES = RATES'; end % Calculate algebraic variables function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI) statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; utilOnes = 1; else statesRowCount = statesSize(1); utilOnes = ones(statesRowCount, 1); end ALGEBRAIC(:,2) = 0.0100000.*exp( 0.0133000.*(STATES(:,1)+40.0000)); ALGEBRAIC(:,1) = (1.00000./2.00000).*CONSTANTS(:,2).*(1.00000+ tanh((STATES(:,1) - CONSTANTS(:,4))./CONSTANTS(:,5))).*(STATES(:,1) - CONSTANTS(:,3)); ALGEBRAIC(:,3) = CONSTANTS(:,6).*STATES(:,2).*(STATES(:,1) - CONSTANTS(:,7)); ALGEBRAIC(:,4) = 1.00000.*0.270000.*STATES(:,3).*(STATES(:,1)+90.0000); ALGEBRAIC(:,5) = CONSTANTS(:,12).*(STATES(:,1) - CONSTANTS(:,13)); end % Pad out or shorten strings to a set length function strout = strpad(strin) req_length = 160; insize = size(strin,2); if insize > req_length strout = strin(1:req_length); else strout = [strin, blanks(req_length - insize)]; end end