# Model Mathematics

### Component: membrane

$dd time V =- i_NaP + i_Na + i_K + i_L + i_tonic_e + i_syn_e + i_app C$

### Component: fast_sodium_current

$i_Na = g_Na ⁢ m_infinity 3.0 ⁢ 1.0 - n ⁢ V - E_Na$

### Component: fast_sodium_current_m_gate

$m_infinity = 1.0 1.0 +ⅇ V - theta_m sigma_m$

### Component: fast_sodium_current_n_gate

$dd time n = n_infinity - n tau_n n_infinity = 1.0 1.0 +ⅇ V - theta_n sigma_n tau_n = tau_n_max cosh⁡ V - theta_n 2.0 ⁢ sigma_n$

### Component: potassium_current

$i_K = g_K ⁢ n 4.0 ⁢ V - E_K$

### Component: potassium_current_n_gate

$dd time n = n_infinity - n tau_n n_infinity = 1.0 1.0 +ⅇ V - theta_n sigma_n tau_n = tau_n_max cosh⁡ V - theta_n 2.0 ⁢ sigma_n$

### Component: persistent_sodium_current

$i_NaP = g_NaP ⁢ m_infinity ⁢ h ⁢ V - E_Na$

### Component: persistent_sodium_current_m_gate

$m_infinity = 1.0 1.0 +ⅇ V - theta_m sigma_m$

### Component: persistent_sodium_current_h_gate

$dd time h = h_infinity - h tau_h h_infinity = 1.0 1.0 +ⅇ V - theta_h sigma_h tau_h = tau_h_max cosh⁡ V - theta_h 2.0 ⁢ sigma_h$

### Component: leakage_current

$i_L = g_L ⁢ V - E_L$

### Component: tonic_current

$i_tonic_e = g_tonic_e ⁢ V - E_syn_e$

### Component: synaptic_input

$i_syn_e = sum_g_syn_e_s ⁢ V - E_syn_e s_infinity = 1.0 1.0 +ⅇ V - theta_s sigma_s s = 1.0 - s ⁢ s_infinity -- kr ⁢ s tau_s$
Source
Derived from workspace Butera, Rinzel, Smith II 1999 at changeset f27dca51f30f.
Collaboration
To begin collaborating on this work, please use your git client and issue this command: