Generated Code
The following is python code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
# Size of variable arrays: sizeAlgebraic = 8 sizeStates = 3 sizeConstants = 8 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "t in component environment (second)" legend_constants[0] = "R in component environment (J_per_K_per_mol)" legend_constants[1] = "T in component environment (kelvin)" legend_constants[2] = "F in component environment (C_per_mol)" legend_constants[3] = "C_m in component environment (fF)" legend_states[0] = "q_K_o in component environment (fmol)" legend_states[1] = "q_K_i in component environment (fmol)" legend_algebraic[6] = "v_K_ATP in component K_ATP (fmol_per_sec)" legend_states[2] = "q_mem in component environment (fC)" legend_algebraic[7] = "I_mem_K_ATP in component K_ATP (fA)" legend_constants[4] = "kappa_K_ATP in component K_ATP_parameters (fmol_per_sec)" legend_constants[5] = "K_K_i in component K_ATP_parameters (per_fmol)" legend_constants[6] = "K_K_o in component K_ATP_parameters (per_fmol)" legend_constants[7] = "zK in component K_ATP_parameters (dimensionless)" legend_algebraic[1] = "mu_K_o in component K_ATP (J_per_mol)" legend_algebraic[2] = "mu_K_i in component K_ATP (J_per_mol)" legend_algebraic[4] = "Am_K_ATP in component K_ATP (J_per_mol)" legend_algebraic[3] = "Af_K_ATP in component K_ATP (J_per_mol)" legend_algebraic[5] = "Ar_K_ATP in component K_ATP (J_per_mol)" legend_algebraic[0] = "V_mem in component K_ATP (volt)" legend_rates[0] = "d/dt q_K_o in component environment (fmol)" legend_rates[1] = "d/dt q_K_i in component environment (fmol)" legend_rates[2] = "d/dt q_mem in component environment (fC)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; constants[0] = 8.314 constants[1] = 310 constants[2] = 96485 constants[3] = 153400 states[0] = 27.9828 states[1] = 5510 states[2] = -13039 constants[4] = 1.1812e-05 constants[5] = 9.99086e-05 constants[6] = 0.000663229 constants[7] = 1 return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic algebraic[0] = states[2]/constants[3] algebraic[4] = constants[7]*constants[2]*algebraic[0] algebraic[2] = constants[0]*constants[1]*log(constants[5]*states[1]) algebraic[3] = algebraic[2]+constants[7]*constants[2]*algebraic[0] algebraic[1] = constants[0]*constants[1]*log(constants[6]*states[0]) algebraic[5] = algebraic[1] algebraic[6] = custom_piecewise([equal(algebraic[4] , 0.00000), constants[4]*(exp(algebraic[3]/(constants[0]*constants[1]))-exp(algebraic[5]/(constants[0]*constants[1]))) , True, (((constants[4]*algebraic[4])/(constants[0]*constants[1]))/(exp(algebraic[4]/(constants[0]*constants[1]))-1.00000))*(exp(algebraic[3]/(constants[0]*constants[1]))-exp(algebraic[5]/(constants[0]*constants[1])))]) rates[0] = algebraic[6] rates[1] = -algebraic[6] algebraic[7] = constants[2]*-constants[7]*algebraic[6] rates[2] = algebraic[7] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[0] = states[2]/constants[3] algebraic[4] = constants[7]*constants[2]*algebraic[0] algebraic[2] = constants[0]*constants[1]*log(constants[5]*states[1]) algebraic[3] = algebraic[2]+constants[7]*constants[2]*algebraic[0] algebraic[1] = constants[0]*constants[1]*log(constants[6]*states[0]) algebraic[5] = algebraic[1] algebraic[6] = custom_piecewise([equal(algebraic[4] , 0.00000), constants[4]*(exp(algebraic[3]/(constants[0]*constants[1]))-exp(algebraic[5]/(constants[0]*constants[1]))) , True, (((constants[4]*algebraic[4])/(constants[0]*constants[1]))/(exp(algebraic[4]/(constants[0]*constants[1]))-1.00000))*(exp(algebraic[3]/(constants[0]*constants[1]))-exp(algebraic[5]/(constants[0]*constants[1])))]) algebraic[7] = constants[2]*-constants[7]*algebraic[6] return algebraic def custom_piecewise(cases): """Compute result of a piecewise function""" return select(cases[0::2],cases[1::2]) def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)