Generated Code
The following is c code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
/* There are a total of 199 entries in the algebraic variable array. There are a total of 46 entries in each of the rate and state variable arrays. There are a total of 146 entries in the constant variable array. */ /* * VOI is time in component environment (millisecond). * CONSTANTS[0] is nao in component extracellular (millimolar). * CONSTANTS[1] is cao in component extracellular (millimolar). * CONSTANTS[2] is ko in component extracellular (millimolar). * CONSTANTS[3] is R in component physical_constants (joule_per_kilomole_kelvin). * CONSTANTS[4] is T in component physical_constants (kelvin). * CONSTANTS[5] is F in component physical_constants (coulomb_per_mole). * CONSTANTS[6] is zna in component physical_constants (dimensionless). * CONSTANTS[7] is zca in component physical_constants (dimensionless). * CONSTANTS[8] is zk in component physical_constants (dimensionless). * CONSTANTS[9] is L in component cell_geometry (centimeter). * CONSTANTS[10] is rad in component cell_geometry (centimeter). * CONSTANTS[11] is greekpi in component cell_geometry (dimensionless). * CONSTANTS[119] is vcell in component cell_geometry (microliter). * CONSTANTS[123] is Ageo in component cell_geometry (centimeter_squared). * CONSTANTS[124] is Acap in component cell_geometry (centimeter_squared). * CONSTANTS[125] is vmyo in component cell_geometry (microliter). * CONSTANTS[126] is vnsr in component cell_geometry (microliter). * CONSTANTS[127] is vjsr in component cell_geometry (microliter). * CONSTANTS[128] is vcsr in component cell_geometry (microliter). * CONSTANTS[130] is vsl in component cell_geometry (microliter). * CONSTANTS[129] is vss in component cell_geometry (microliter). * STATES[0] is v in component membrane (millivolt). * ALGEBRAIC[36] is vffrt in component membrane (coulomb_per_mole). * ALGEBRAIC[44] is vfrt in component membrane (dimensionless). * ALGEBRAIC[63] is INa in component INa (microA_per_microF). * ALGEBRAIC[65] is INaL in component INaL (microA_per_microF). * ALGEBRAIC[66] is Ito in component Ito (microA_per_microF). * ALGEBRAIC[68] is Isus in component Isus (microA_per_microF). * ALGEBRAIC[79] is ICaL in component ICaL (microA_per_microF). * ALGEBRAIC[82] is ICaT in component ICaT (microA_per_microF). * ALGEBRAIC[80] is ICaNa in component ICaL (microA_per_microF). * ALGEBRAIC[81] is ICaK in component ICaL (microA_per_microF). * ALGEBRAIC[87] is IKr in component IKr (microA_per_microF). * ALGEBRAIC[89] is IKs in component IKs (microA_per_microF). * ALGEBRAIC[92] is If in component If (microA_per_microF). * ALGEBRAIC[94] is IK1 in component IK1 (microA_per_microF). * ALGEBRAIC[126] is INaCa_i in component INaCa_i (microA_per_microF). * ALGEBRAIC[156] is INaCa_ss in component INaCa_i (microA_per_microF). * ALGEBRAIC[175] is INaK in component INaK (microA_per_microF). * ALGEBRAIC[176] is INab in component INab (microA_per_microF). * ALGEBRAIC[182] is IpCa in component IpCa (microA_per_microF). * ALGEBRAIC[179] is ICab in component ICab (microA_per_microF). * ALGEBRAIC[15] is Istim in component membrane (microA_per_microF). * CONSTANTS[12] is amp in component membrane (microA_per_microF). * CONSTANTS[13] is duration in component membrane (millisecond). * CONSTANTS[14] is KmCaMK in component CaMK (millimolar). * CONSTANTS[15] is aCaMK in component CaMK (per_millimolar_per_millisecond). * CONSTANTS[16] is bCaMK in component CaMK (per_millisecond). * CONSTANTS[17] is CaMKo in component CaMK (dimensionless). * CONSTANTS[18] is KmCaM in component CaMK (millimolar). * ALGEBRAIC[49] is CaMKb in component CaMK (millimolar). * ALGEBRAIC[50] is CaMKa in component CaMK (millimolar). * STATES[1] is CaMKt in component CaMK (millimolar). * STATES[2] is cass in component intracellular_ions (millimolar). * CONSTANTS[19] is BSRmax in component intracellular_ions (millimolar). * CONSTANTS[20] is KmBSR in component intracellular_ions (millimolar). * CONSTANTS[21] is BSLmax in component intracellular_ions (millimolar). * CONSTANTS[22] is KmBSL in component intracellular_ions (millimolar). * CONSTANTS[23] is csqnmax in component intracellular_ions (millimolar). * CONSTANTS[24] is kmcsqn in component intracellular_ions (millimolar). * CONSTANTS[25] is csqnmaxsl in component intracellular_ions (millimolar). * CONSTANTS[26] is cmdnmax in component intracellular_ions (millimolar). * CONSTANTS[27] is kmcmdn in component intracellular_ions (millimolar). * CONSTANTS[28] is cmdnmaxsl in component intracellular_ions (millimolar). * CONSTANTS[29] is trpnmax in component intracellular_ions (millimolar). * CONSTANTS[30] is kmtrpn in component intracellular_ions (millimolar). * CONSTANTS[31] is trpnmaxsl in component intracellular_ions (millimolar). * STATES[3] is nai in component intracellular_ions (millimolar). * STATES[4] is nasl in component intracellular_ions (millimolar). * STATES[5] is nass in component intracellular_ions (millimolar). * STATES[6] is ki in component intracellular_ions (millimolar). * STATES[7] is kss in component intracellular_ions (millimolar). * STATES[8] is ksl in component intracellular_ions (millimolar). * STATES[9] is cai in component intracellular_ions (millimolar). * STATES[10] is casl in component intracellular_ions (millimolar). * STATES[11] is cansr in component intracellular_ions (millimolar). * STATES[12] is cajsr in component intracellular_ions (millimolar). * STATES[13] is cacsr in component intracellular_ions (millimolar). * ALGEBRAIC[90] is IfNa in component If (microA_per_microF). * ALGEBRAIC[91] is IfK in component If (microA_per_microF). * ALGEBRAIC[178] is JdiffNa in component diff (millimolar_per_millisecond). * ALGEBRAIC[181] is JgapNa in component diff (millimolar_per_millisecond). * ALGEBRAIC[183] is Jdiff in component diff (millimolar_per_millisecond). * ALGEBRAIC[184] is Jgap in component diff (millimolar_per_millisecond). * ALGEBRAIC[177] is JdiffK in component diff (millimolar_per_millisecond). * ALGEBRAIC[180] is JgapK in component diff (millimolar_per_millisecond). * ALGEBRAIC[189] is Jup1 in component SERCA (millimolar_per_millisecond). * ALGEBRAIC[190] is Jup2 in component SERCA (millimolar_per_millisecond). * STATES[14] is Jrel1 in component ryr (millimolar_per_millisecond). * STATES[15] is Jrel2 in component ryr (millimolar_per_millisecond). * ALGEBRAIC[193] is Jip3 in component IP3 (millimolar_per_millisecond). * ALGEBRAIC[195] is Jtr1 in component trans_flux (millimolar_per_millisecond). * ALGEBRAIC[197] is Jtr2 in component trans_flux (millimolar_per_millisecond). * ALGEBRAIC[51] is Bcai in component intracellular_ions (dimensionless). * ALGEBRAIC[54] is Bcajsr in component intracellular_ions (dimensionless). * ALGEBRAIC[55] is Bcacsr in component intracellular_ions (dimensionless). * ALGEBRAIC[52] is Bcass in component intracellular_ions (dimensionless). * ALGEBRAIC[53] is Bcasl in component intracellular_ions (dimensionless). * CONSTANTS[32] is cm in component intracellular_ions (microF_per_centimeter_squared). * CONSTANTS[33] is PKNa in component reversal_potentials (dimensionless). * ALGEBRAIC[56] is ENa in component reversal_potentials (millivolt). * ALGEBRAIC[57] is EK in component reversal_potentials (millivolt). * ALGEBRAIC[58] is ECa in component reversal_potentials (millivolt). * ALGEBRAIC[59] is EKs in component reversal_potentials (millivolt). * ALGEBRAIC[0] is mss in component INa (dimensionless). * ALGEBRAIC[16] is tm in component INa (millisecond). * CONSTANTS[34] is mssV1 in component INa (millivolt). * CONSTANTS[35] is mssV2 in component INa (millivolt). * CONSTANTS[36] is mtV1 in component INa (millivolt). * CONSTANTS[37] is mtV2 in component INa (millivolt). * CONSTANTS[38] is mtD1 in component INa (dimensionless). * CONSTANTS[39] is mtD2 in component INa (dimensionless). * CONSTANTS[40] is mtV3 in component INa (millivolt). * CONSTANTS[41] is mtV4 in component INa (millivolt). * STATES[16] is m in component INa (dimensionless). * ALGEBRAIC[1] is hss in component INa (dimensionless). * ALGEBRAIC[17] is thf in component INa (millisecond). * ALGEBRAIC[18] is ths in component INa (millisecond). * CONSTANTS[42] is hssV1 in component INa (millivolt). * CONSTANTS[43] is hssV2 in component INa (millivolt). * CONSTANTS[112] is Ahs in component INa (dimensionless). * CONSTANTS[44] is Ahf in component INa (dimensionless). * STATES[17] is hf in component INa (dimensionless). * STATES[18] is hs in component INa (dimensionless). * ALGEBRAIC[60] is h in component INa (dimensionless). * CONSTANTS[45] is GNa in component INa (milliS_per_microF). * ALGEBRAIC[19] is jss in component INa (dimensionless). * ALGEBRAIC[37] is tj in component INa (millisecond). * STATES[19] is j in component INa (dimensionless). * ALGEBRAIC[38] is hssp in component INa (dimensionless). * ALGEBRAIC[45] is thsp in component INa (millisecond). * STATES[20] is hsp in component INa (dimensionless). * ALGEBRAIC[61] is hp in component INa (dimensionless). * ALGEBRAIC[46] is tjp in component INa (millisecond). * STATES[21] is jp in component INa (dimensionless). * ALGEBRAIC[62] is fINap in component INa (dimensionless). * ALGEBRAIC[39] is mLss in component INaL (dimensionless). * ALGEBRAIC[47] is tmL in component INaL (millisecond). * STATES[22] is mL in component INaL (dimensionless). * CONSTANTS[46] is thL in component INaL (millisecond). * ALGEBRAIC[2] is hLss in component INaL (dimensionless). * STATES[23] is hL in component INaL (dimensionless). * ALGEBRAIC[3] is hLssp in component INaL (dimensionless). * CONSTANTS[113] is thLp in component INaL (millisecond). * STATES[24] is hLp in component INaL (dimensionless). * CONSTANTS[47] is GNaL in component INaL (milliS_per_microF). * ALGEBRAIC[64] is fINaLp in component INaL (dimensionless). * ALGEBRAIC[4] is ass in component Ito (dimensionless). * ALGEBRAIC[20] is taua in component Ito (millisecond). * ALGEBRAIC[5] is iss in component Ito (dimensionless). * ALGEBRAIC[21] is tauis in component Ito (millisecond). * ALGEBRAIC[22] is tauif in component Ito (millisecond). * STATES[25] is a in component Ito (dimensionless). * STATES[26] is i1 in component Ito (dimensionless). * STATES[27] is i2 in component Ito (dimensionless). * CONSTANTS[48] is Gto in component Ito (milliS_per_microF). * CONSTANTS[49] is Gsus in component Isus (milliS_per_microF). * ALGEBRAIC[67] is asus in component Isus (dimensionless). * CONSTANTS[50] is Kmn in component ICaL (millimolar). * CONSTANTS[51] is k2n in component ICaL (per_millisecond). * ALGEBRAIC[6] is dss in component ICaL (dimensionless). * STATES[28] is d in component ICaL (dimensionless). * ALGEBRAIC[7] is fss in component ICaL (dimensionless). * CONSTANTS[114] is Aff in component ICaL (dimensionless). * CONSTANTS[120] is Afs in component ICaL (dimensionless). * STATES[29] is ff in component ICaL (dimensionless). * STATES[30] is fs in component ICaL (dimensionless). * ALGEBRAIC[69] is f in component ICaL (dimensionless). * ALGEBRAIC[23] is fcass in component ICaL (dimensionless). * ALGEBRAIC[70] is Afcaf in component ICaL (dimensionless). * ALGEBRAIC[71] is Afcas in component ICaL (dimensionless). * STATES[31] is fcaf in component ICaL (dimensionless). * STATES[32] is fcas in component ICaL (dimensionless). * ALGEBRAIC[72] is fca in component ICaL (dimensionless). * STATES[33] is jca in component ICaL (dimensionless). * STATES[34] is ffp in component ICaL (dimensionless). * ALGEBRAIC[73] is fp in component ICaL (dimensionless). * STATES[35] is fcafp in component ICaL (dimensionless). * ALGEBRAIC[74] is fcap in component ICaL (dimensionless). * ALGEBRAIC[8] is km2n in component ICaL (per_millisecond). * ALGEBRAIC[24] is anca in component ICaL (dimensionless). * STATES[36] is nca in component ICaL (dimensionless). * ALGEBRAIC[75] is PhiCaL in component ICaL (dimensionless). * ALGEBRAIC[76] is PhiCaNa in component ICaL (dimensionless). * ALGEBRAIC[77] is PhiCaK in component ICaL (dimensionless). * CONSTANTS[52] is PCa in component ICaL (dimensionless). * CONSTANTS[115] is PCap in component ICaL (dimensionless). * CONSTANTS[116] is PCaNa in component ICaL (dimensionless). * CONSTANTS[117] is PCaK in component ICaL (dimensionless). * CONSTANTS[121] is PCaNap in component ICaL (dimensionless). * CONSTANTS[122] is PCaKp in component ICaL (dimensionless). * ALGEBRAIC[78] is fICaLp in component ICaL (dimensionless). * ALGEBRAIC[25] is td in component ICaL (millisecond). * ALGEBRAIC[26] is tff in component ICaL (millisecond). * ALGEBRAIC[27] is tfs in component ICaL (millisecond). * ALGEBRAIC[40] is tfcaf in component ICaL (millisecond). * ALGEBRAIC[41] is tfcas in component ICaL (millisecond). * CONSTANTS[118] is tjca in component ICaL (millisecond). * ALGEBRAIC[42] is tffp in component ICaL (millisecond). * ALGEBRAIC[48] is tfcafp in component ICaL (millisecond). * CONSTANTS[53] is GCaT in component ICaT (milliS_per_microF). * ALGEBRAIC[9] is bss in component ICaT (dimensionless). * ALGEBRAIC[10] is gss in component ICaT (dimensionless). * ALGEBRAIC[28] is taub in component ICaT (millisecond). * ALGEBRAIC[29] is taug in component ICaT (millisecond). * STATES[37] is b in component ICaT (dimensionless). * STATES[38] is g in component ICaT (dimensionless). * CONSTANTS[54] is GKr in component IKr (milliS_per_microF). * ALGEBRAIC[11] is xrss in component IKr (dimensionless). * ALGEBRAIC[30] is txrf in component IKr (millisecond). * ALGEBRAIC[31] is txrs in component IKr (millisecond). * ALGEBRAIC[83] is Axrf in component IKr (dimensionless). * ALGEBRAIC[84] is Axrs in component IKr (dimensionless). * STATES[39] is xrf in component IKr (dimensionless). * STATES[40] is xrs in component IKr (dimensionless). * ALGEBRAIC[85] is xr in component IKr (dimensionless). * ALGEBRAIC[86] is rkr in component IKr (dimensionless). * CONSTANTS[55] is GKs in component IKs (milliS_per_microF). * ALGEBRAIC[12] is xs1ss in component IKs (dimensionless). * ALGEBRAIC[32] is xs2ss in component IKs (dimensionless). * ALGEBRAIC[33] is txs1 in component IKs (millisecond). * STATES[41] is xs1 in component IKs (dimensionless). * STATES[42] is xs2 in component IKs (dimensionless). * ALGEBRAIC[88] is KsCa in component IKs (dimensionless). * ALGEBRAIC[43] is txs2 in component IKs (millisecond). * CONSTANTS[56] is GfNa in component If (milliS_per_microF). * CONSTANTS[57] is GfK in component If (milliS_per_microF). * ALGEBRAIC[13] is yss in component If (dimensionless). * ALGEBRAIC[34] is tauy in component If (millisecond). * STATES[43] is y in component If (dimensionless). * CONSTANTS[58] is GK1 in component IK1 (milliS_per_microF). * ALGEBRAIC[14] is xk1ss in component IK1 (dimensionless). * ALGEBRAIC[35] is txk1 in component IK1 (millisecond). * STATES[44] is xk1 in component IK1 (dimensionless). * ALGEBRAIC[93] is rk1 in component IK1 (millisecond). * CONSTANTS[59] is kna1 in component INaCa_i (per_millisecond). * CONSTANTS[60] is kna2 in component INaCa_i (per_millisecond). * CONSTANTS[61] is kna3 in component INaCa_i (per_millisecond). * CONSTANTS[62] is kasymm in component INaCa_i (dimensionless). * CONSTANTS[63] is wna in component INaCa_i (dimensionless). * CONSTANTS[64] is wca in component INaCa_i (dimensionless). * CONSTANTS[65] is wnaca in component INaCa_i (dimensionless). * CONSTANTS[66] is kcaon in component INaCa_i (per_millisecond). * CONSTANTS[67] is kcaoff in component INaCa_i (per_millisecond). * CONSTANTS[68] is qna in component INaCa_i (dimensionless). * CONSTANTS[69] is qca in component INaCa_i (dimensionless). * ALGEBRAIC[96] is hna in component INaCa_i (dimensionless). * ALGEBRAIC[95] is hca in component INaCa_i (dimensionless). * CONSTANTS[70] is KmCaAct in component INaCa_i (millimolar). * CONSTANTS[71] is Gncx in component INaCa_i (milliS_per_microF). * ALGEBRAIC[97] is h1_i in component INaCa_i (dimensionless). * ALGEBRAIC[98] is h2_i in component INaCa_i (dimensionless). * ALGEBRAIC[99] is h3_i in component INaCa_i (dimensionless). * ALGEBRAIC[100] is h4_i in component INaCa_i (dimensionless). * ALGEBRAIC[101] is h5_i in component INaCa_i (dimensionless). * ALGEBRAIC[102] is h6_i in component INaCa_i (dimensionless). * ALGEBRAIC[103] is h7_i in component INaCa_i (dimensionless). * ALGEBRAIC[104] is h8_i in component INaCa_i (dimensionless). * ALGEBRAIC[105] is h9_i in component INaCa_i (dimensionless). * CONSTANTS[131] is h10_i in component INaCa_i (dimensionless). * CONSTANTS[132] is h11_i in component INaCa_i (dimensionless). * CONSTANTS[133] is h12_i in component INaCa_i (dimensionless). * CONSTANTS[134] is k1_i in component INaCa_i (dimensionless). * CONSTANTS[135] is k2_i in component INaCa_i (dimensionless). * ALGEBRAIC[106] is k3p_i in component INaCa_i (dimensionless). * ALGEBRAIC[107] is k3pp_i in component INaCa_i (dimensionless). * ALGEBRAIC[108] is k3_i in component INaCa_i (dimensionless). * ALGEBRAIC[111] is k4_i in component INaCa_i (dimensionless). * ALGEBRAIC[109] is k4p_i in component INaCa_i (dimensionless). * ALGEBRAIC[110] is k4pp_i in component INaCa_i (dimensionless). * CONSTANTS[136] is k5_i in component INaCa_i (dimensionless). * ALGEBRAIC[112] is k6_i in component INaCa_i (dimensionless). * ALGEBRAIC[113] is k7_i in component INaCa_i (dimensionless). * ALGEBRAIC[114] is k8_i in component INaCa_i (dimensionless). * ALGEBRAIC[115] is x1_i in component INaCa_i (dimensionless). * ALGEBRAIC[116] is x2_i in component INaCa_i (dimensionless). * ALGEBRAIC[117] is x3_i in component INaCa_i (dimensionless). * ALGEBRAIC[118] is x4_i in component INaCa_i (dimensionless). * ALGEBRAIC[119] is E1_i in component INaCa_i (dimensionless). * ALGEBRAIC[120] is E2_i in component INaCa_i (dimensionless). * ALGEBRAIC[121] is E3_i in component INaCa_i (dimensionless). * ALGEBRAIC[122] is E4_i in component INaCa_i (dimensionless). * ALGEBRAIC[123] is allo_i in component INaCa_i (dimensionless). * ALGEBRAIC[124] is JncxNa_i in component INaCa_i (millimolar_per_millisecond). * ALGEBRAIC[125] is JncxCa_i in component INaCa_i (millimolar_per_millisecond). * ALGEBRAIC[127] is h1_ss in component INaCa_i (dimensionless). * ALGEBRAIC[128] is h2_ss in component INaCa_i (dimensionless). * ALGEBRAIC[129] is h3_ss in component INaCa_i (dimensionless). * ALGEBRAIC[130] is h4_ss in component INaCa_i (dimensionless). * ALGEBRAIC[131] is h5_ss in component INaCa_i (dimensionless). * ALGEBRAIC[132] is h6_ss in component INaCa_i (dimensionless). * ALGEBRAIC[133] is h7_ss in component INaCa_i (dimensionless). * ALGEBRAIC[134] is h8_ss in component INaCa_i (dimensionless). * ALGEBRAIC[135] is h9_ss in component INaCa_i (dimensionless). * CONSTANTS[137] is h10_ss in component INaCa_i (dimensionless). * CONSTANTS[138] is h11_ss in component INaCa_i (dimensionless). * CONSTANTS[139] is h12_ss in component INaCa_i (dimensionless). * CONSTANTS[140] is k1_ss in component INaCa_i (dimensionless). * CONSTANTS[141] is k2_ss in component INaCa_i (dimensionless). * ALGEBRAIC[136] is k3p_ss in component INaCa_i (dimensionless). * ALGEBRAIC[137] is k3pp_ss in component INaCa_i (dimensionless). * ALGEBRAIC[138] is k3_ss in component INaCa_i (dimensionless). * ALGEBRAIC[141] is k4_ss in component INaCa_i (dimensionless). * ALGEBRAIC[139] is k4p_ss in component INaCa_i (dimensionless). * ALGEBRAIC[140] is k4pp_ss in component INaCa_i (dimensionless). * CONSTANTS[142] is k5_ss in component INaCa_i (dimensionless). * ALGEBRAIC[142] is k6_ss in component INaCa_i (dimensionless). * ALGEBRAIC[143] is k7_ss in component INaCa_i (dimensionless). * ALGEBRAIC[144] is k8_ss in component INaCa_i (dimensionless). * ALGEBRAIC[145] is x1_ss in component INaCa_i (dimensionless). * ALGEBRAIC[146] is x2_ss in component INaCa_i (dimensionless). * ALGEBRAIC[147] is x3_ss in component INaCa_i (dimensionless). * ALGEBRAIC[148] is x4_ss in component INaCa_i (dimensionless). * ALGEBRAIC[149] is E1_ss in component INaCa_i (dimensionless). * ALGEBRAIC[150] is E2_ss in component INaCa_i (dimensionless). * ALGEBRAIC[151] is E3_ss in component INaCa_i (dimensionless). * ALGEBRAIC[152] is E4_ss in component INaCa_i (dimensionless). * ALGEBRAIC[153] is allo_ss in component INaCa_i (dimensionless). * ALGEBRAIC[154] is JncxNa_ss in component INaCa_i (millimolar_per_millisecond). * ALGEBRAIC[155] is JncxCa_ss in component INaCa_i (millimolar_per_millisecond). * CONSTANTS[72] is k1p in component INaK (per_millisecond). * CONSTANTS[73] is k1m in component INaK (per_millisecond). * CONSTANTS[74] is k2p in component INaK (per_millisecond). * CONSTANTS[75] is k2m in component INaK (per_millisecond). * CONSTANTS[76] is k3p in component INaK (per_millisecond). * CONSTANTS[77] is k3m in component INaK (per_millisecond). * CONSTANTS[78] is k4p in component INaK (per_millisecond). * CONSTANTS[79] is k4m in component INaK (per_millisecond). * CONSTANTS[80] is Knai0 in component INaK (millimolar). * CONSTANTS[81] is Knao0 in component INaK (millimolar). * CONSTANTS[82] is delta in component INaK (millivolt). * CONSTANTS[83] is Kki in component INaK (per_millisecond). * CONSTANTS[84] is Kko in component INaK (per_millisecond). * CONSTANTS[85] is MgADP in component INaK (millimolar). * CONSTANTS[86] is MgATP in component INaK (millimolar). * CONSTANTS[87] is Kmgatp in component INaK (millimolar). * CONSTANTS[88] is H in component INaK (millimolar). * CONSTANTS[89] is eP in component INaK (dimensionless). * CONSTANTS[90] is Khp in component INaK (millimolar). * CONSTANTS[91] is Knap in component INaK (millimolar). * CONSTANTS[92] is Kxkur in component INaK (millimolar). * CONSTANTS[93] is Pnak in component INaK (milliS_per_microF). * ALGEBRAIC[157] is Knai in component INaK (millimolar). * ALGEBRAIC[158] is Knao in component INaK (millimolar). * ALGEBRAIC[159] is P in component INaK (dimensionless). * ALGEBRAIC[160] is a1 in component INaK (dimensionless). * CONSTANTS[143] is b1 in component INaK (dimensionless). * CONSTANTS[144] is a2 in component INaK (dimensionless). * ALGEBRAIC[161] is b2 in component INaK (dimensionless). * ALGEBRAIC[162] is a3 in component INaK (dimensionless). * ALGEBRAIC[163] is b3 in component INaK (dimensionless). * CONSTANTS[145] is a4 in component INaK (dimensionless). * ALGEBRAIC[164] is b4 in component INaK (dimensionless). * ALGEBRAIC[165] is x1 in component INaK (dimensionless). * ALGEBRAIC[166] is x2 in component INaK (dimensionless). * ALGEBRAIC[167] is x3 in component INaK (dimensionless). * ALGEBRAIC[168] is x4 in component INaK (dimensionless). * ALGEBRAIC[169] is E1 in component INaK (dimensionless). * ALGEBRAIC[170] is E2 in component INaK (dimensionless). * ALGEBRAIC[171] is E3 in component INaK (dimensionless). * ALGEBRAIC[172] is E4 in component INaK (dimensionless). * ALGEBRAIC[173] is JnakNa in component INaK (millimolar_per_millisecond). * ALGEBRAIC[174] is JnakK in component INaK (millimolar_per_millisecond). * CONSTANTS[94] is PNab in component INab (milliS_per_microF). * CONSTANTS[95] is PCab in component ICab (milliS_per_microF). * CONSTANTS[96] is GpCa in component IpCa (milliS_per_microF). * CONSTANTS[97] is KmCap in component IpCa (millimolar). * CONSTANTS[98] is sstau in component diff (millisecond). * CONSTANTS[99] is gaptau in component diff (millisecond). * ALGEBRAIC[196] is REL in component ryr (millimolar_per_millisecond). * ALGEBRAIC[198] is irelss in component ryr (millimolar_per_millisecond). * ALGEBRAIC[185] is ireltau in component ryr (dimensionless). * ALGEBRAIC[192] is REL2 in component ryr (millimolar_per_millisecond). * ALGEBRAIC[194] is irelss2 in component ryr (millimolar_per_millisecond). * ALGEBRAIC[186] is ireltau2 in component ryr (dimensionless). * CONSTANTS[100] is dqupcamkbar in component SERCA (dimensionless). * CONSTANTS[101] is dkmplbbar in component SERCA (dimensionless). * CONSTANTS[102] is kmup in component SERCA (dimensionless). * CONSTANTS[103] is nsrbar in component SERCA (dimensionless). * ALGEBRAIC[187] is dkmplb in component SERCA (dimensionless). * ALGEBRAIC[188] is dqupcamk in component SERCA (dimensionless). * CONSTANTS[104] is IP3 in component IP3 (dimensionless). * CONSTANTS[105] is k1 in component IP3 (dimensionless). * CONSTANTS[106] is k1a in component IP3 (dimensionless). * CONSTANTS[107] is k0 in component IP3 (dimensionless). * CONSTANTS[108] is k0a in component IP3 (dimensionless). * CONSTANTS[109] is k2 in component IP3 (dimensionless). * CONSTANTS[110] is k2a in component IP3 (dimensionless). * CONSTANTS[111] is tauip3 in component IP3 (millisecond). * ALGEBRAIC[191] is POip3 in component IP3 (dimensionless). * STATES[45] is u in component IP3 (millimolar_per_millisecond). * RATES[0] is d/dt v in component membrane (millivolt). * RATES[1] is d/dt CaMKt in component CaMK (millimolar). * RATES[3] is d/dt nai in component intracellular_ions (millimolar). * RATES[4] is d/dt nasl in component intracellular_ions (millimolar). * RATES[5] is d/dt nass in component intracellular_ions (millimolar). * RATES[6] is d/dt ki in component intracellular_ions (millimolar). * RATES[8] is d/dt ksl in component intracellular_ions (millimolar). * RATES[7] is d/dt kss in component intracellular_ions (millimolar). * RATES[9] is d/dt cai in component intracellular_ions (millimolar). * RATES[2] is d/dt cass in component intracellular_ions (millimolar). * RATES[10] is d/dt casl in component intracellular_ions (millimolar). * RATES[11] is d/dt cansr in component intracellular_ions (millimolar). * RATES[12] is d/dt cajsr in component intracellular_ions (millimolar). * RATES[13] is d/dt cacsr in component intracellular_ions (millimolar). * RATES[16] is d/dt m in component INa (dimensionless). * RATES[17] is d/dt hf in component INa (dimensionless). * RATES[18] is d/dt hs in component INa (dimensionless). * RATES[19] is d/dt j in component INa (dimensionless). * RATES[20] is d/dt hsp in component INa (dimensionless). * RATES[21] is d/dt jp in component INa (dimensionless). * RATES[22] is d/dt mL in component INaL (dimensionless). * RATES[23] is d/dt hL in component INaL (dimensionless). * RATES[24] is d/dt hLp in component INaL (dimensionless). * RATES[25] is d/dt a in component Ito (dimensionless). * RATES[26] is d/dt i1 in component Ito (dimensionless). * RATES[27] is d/dt i2 in component Ito (dimensionless). * RATES[28] is d/dt d in component ICaL (dimensionless). * RATES[29] is d/dt ff in component ICaL (dimensionless). * RATES[30] is d/dt fs in component ICaL (dimensionless). * RATES[31] is d/dt fcaf in component ICaL (dimensionless). * RATES[32] is d/dt fcas in component ICaL (dimensionless). * RATES[33] is d/dt jca in component ICaL (dimensionless). * RATES[34] is d/dt ffp in component ICaL (dimensionless). * RATES[35] is d/dt fcafp in component ICaL (dimensionless). * RATES[36] is d/dt nca in component ICaL (dimensionless). * RATES[37] is d/dt b in component ICaT (dimensionless). * RATES[38] is d/dt g in component ICaT (dimensionless). * RATES[39] is d/dt xrf in component IKr (dimensionless). * RATES[40] is d/dt xrs in component IKr (dimensionless). * RATES[41] is d/dt xs1 in component IKs (dimensionless). * RATES[42] is d/dt xs2 in component IKs (dimensionless). * RATES[43] is d/dt y in component If (dimensionless). * RATES[44] is d/dt xk1 in component IK1 (dimensionless). * RATES[14] is d/dt Jrel1 in component ryr (millimolar_per_millisecond). * RATES[15] is d/dt Jrel2 in component ryr (millimolar_per_millisecond). * RATES[45] is d/dt u in component IP3 (millimolar_per_millisecond). */ void initConsts(double* CONSTANTS, double* RATES, double *STATES) { CONSTANTS[0] = 140; CONSTANTS[1] = 1.8; CONSTANTS[2] = 5.4; CONSTANTS[3] = 8314; CONSTANTS[4] = 310; CONSTANTS[5] = 96485; CONSTANTS[6] = 1; CONSTANTS[7] = 2; CONSTANTS[8] = 1; CONSTANTS[9] = 0.0164; CONSTANTS[10] = 0.00175; CONSTANTS[11] = 3.14159265; STATES[0] = -86.6814002878592; CONSTANTS[12] = -40; CONSTANTS[13] = 1; CONSTANTS[14] = 0.15; CONSTANTS[15] = 0.05; CONSTANTS[16] = 0.00068; CONSTANTS[17] = 0.05; CONSTANTS[18] = 0.0015; STATES[1] = 0.00505983330678751; STATES[2] = 0.000101777993438818; CONSTANTS[19] = 0.019975; CONSTANTS[20] = 0.00087; CONSTANTS[21] = 0.4777; CONSTANTS[22] = 0.0087; CONSTANTS[23] = 2.88; CONSTANTS[24] = 0.8; CONSTANTS[25] = 1.2; CONSTANTS[26] = 0.1125; CONSTANTS[27] = 0.00238; CONSTANTS[28] = 0.0125; CONSTANTS[29] = 0.0315; CONSTANTS[30] = 0.0005; CONSTANTS[31] = 0.0035; STATES[3] = 8.23183964616932; STATES[4] = 8.23153516580562; STATES[5] = 8.23154325237268; STATES[6] = 143.767359809132; STATES[7] = 143.767768218104; STATES[8] = 143.767769906216; STATES[9] = 4.36004404734282e-5; STATES[10] = 0.000102004317781147; STATES[11] = 1.26350902016858; STATES[12] = 1.24811940209535; STATES[13] = 1.26516959198518; STATES[14] = 0.000108240945806962; STATES[15] = 1.25045800437317e-69; CONSTANTS[32] = 1; CONSTANTS[33] = 0.01833; CONSTANTS[34] = 48.4264; CONSTANTS[35] = 7.5653; CONSTANTS[36] = 11.64; CONSTANTS[37] = 34.77; CONSTANTS[38] = 6.765; CONSTANTS[39] = 8.552; CONSTANTS[40] = 77.42; CONSTANTS[41] = 5.955; STATES[16] = 0.00632661703915808; CONSTANTS[42] = 78.5; CONSTANTS[43] = 6.22; CONSTANTS[44] = 0.99; STATES[17] = 0.788611739889677; STATES[18] = 0.788545979951331; CONSTANTS[45] = 39.4572; STATES[19] = 0.790474358603666; STATES[20] = 0.579693514309867; STATES[21] = 0.790947058236417; STATES[22] = 0.000241925773627233; CONSTANTS[46] = 200; STATES[23] = 0.463574582508218; STATES[24] = 0.240216198686475; CONSTANTS[47] = 0.0189; STATES[25] = 0.000272851144435704; STATES[26] = 0.649604795721571; STATES[27] = 0.989965695822495; CONSTANTS[48] = 0.192; CONSTANTS[49] = 0.0301; CONSTANTS[50] = 0.002; CONSTANTS[51] = 1000; STATES[28] = 6.97735089296892e-9; STATES[29] = 0.999999968230738; STATES[30] = 0.926692153319136; STATES[31] = 0.99999996819573; STATES[32] = 0.999999905741936; STATES[33] = 0.999978907334662; STATES[34] = 0.999999968365903; STATES[35] = 0.999999968278239; STATES[36] = 0.00547252500964926; CONSTANTS[52] = 7.7677e-5; CONSTANTS[53] = 0.0754; STATES[37] = 0.000304250912559619; STATES[38] = 0.994214357917907; CONSTANTS[54] = 0.0342; STATES[39] = 0.000331691184084272; STATES[40] = 0.568716473334161; CONSTANTS[55] = 0.0029; STATES[41] = 0.191165248085394; STATES[42] = 0.000222677365291219; CONSTANTS[56] = 0.0116; CONSTANTS[57] = 0.0232; STATES[43] = 0.233119011214908; CONSTANTS[58] = 0.0455; STATES[44] = 0.997084813729909; CONSTANTS[59] = 15; CONSTANTS[60] = 5; CONSTANTS[61] = 88.12; CONSTANTS[62] = 12.5; CONSTANTS[63] = 60000; CONSTANTS[64] = 60000; CONSTANTS[65] = 5000; CONSTANTS[66] = 1500000; CONSTANTS[67] = 5000; CONSTANTS[68] = 0.5224; CONSTANTS[69] = 0.167; CONSTANTS[70] = 0.00015; CONSTANTS[71] = 0.00095709; CONSTANTS[72] = 949.5; CONSTANTS[73] = 182.4; CONSTANTS[74] = 687.2; CONSTANTS[75] = 39.4; CONSTANTS[76] = 1899; CONSTANTS[77] = 79300; CONSTANTS[78] = 639; CONSTANTS[79] = 40; CONSTANTS[80] = 9.073; CONSTANTS[81] = 27.78; CONSTANTS[82] = -0.155; CONSTANTS[83] = 0.5; CONSTANTS[84] = 0.3582; CONSTANTS[85] = 0.05; CONSTANTS[86] = 9.8; CONSTANTS[87] = 1.698e-7; CONSTANTS[88] = 1e-7; CONSTANTS[89] = 4.2; CONSTANTS[90] = 1.698e-7; CONSTANTS[91] = 224; CONSTANTS[92] = 292; CONSTANTS[93] = 32.4872; CONSTANTS[94] = 9.375e-10; CONSTANTS[95] = 2.5e-8; CONSTANTS[96] = 0.0005; CONSTANTS[97] = 0.0005; CONSTANTS[98] = 0.2; CONSTANTS[99] = 12; CONSTANTS[100] = 0.75; CONSTANTS[101] = 0.00017; CONSTANTS[102] = 0.00028; CONSTANTS[103] = 15; CONSTANTS[104] = 0.0001; CONSTANTS[105] = 150000; CONSTANTS[106] = 16.5; CONSTANTS[107] = 96000; CONSTANTS[108] = 9.6; CONSTANTS[109] = 1800; CONSTANTS[110] = 0.21; CONSTANTS[111] = 3.7; STATES[45] = 0.466236137183558; CONSTANTS[112] = 1.00000 - CONSTANTS[44]; CONSTANTS[113] = 3.00000*CONSTANTS[46]; CONSTANTS[114] = 0.600000; CONSTANTS[115] = 1.10000*CONSTANTS[52]; CONSTANTS[116] = 0.00125000*CONSTANTS[52]; CONSTANTS[117] = 0.000357400*CONSTANTS[52]; CONSTANTS[118] = 75.0000; CONSTANTS[119] = 1000.00*3.14159*CONSTANTS[10]*CONSTANTS[10]*CONSTANTS[9]; CONSTANTS[120] = 1.00000 - CONSTANTS[114]; CONSTANTS[121] = 0.00125000*CONSTANTS[115]; CONSTANTS[122] = 0.000357400*CONSTANTS[115]; CONSTANTS[123] = 2.00000*CONSTANTS[11]*CONSTANTS[10]*CONSTANTS[10]+ 2.00000*CONSTANTS[11]*CONSTANTS[10]*CONSTANTS[9]; CONSTANTS[124] = 2.00000*CONSTANTS[123]; CONSTANTS[125] = 0.600000*CONSTANTS[119]; CONSTANTS[126] = 0.0400000*CONSTANTS[119]; CONSTANTS[127] = 0.00200000*CONSTANTS[119]; CONSTANTS[128] = 0.00800000*CONSTANTS[119]; CONSTANTS[129] = 0.0200000*CONSTANTS[119]; CONSTANTS[130] = 0.150000*CONSTANTS[119]; CONSTANTS[131] = CONSTANTS[62]+1.00000+ (CONSTANTS[0]/CONSTANTS[59])*(1.00000+CONSTANTS[0]/CONSTANTS[60]); CONSTANTS[132] = ( CONSTANTS[0]*CONSTANTS[0])/( CONSTANTS[131]*CONSTANTS[59]*CONSTANTS[60]); CONSTANTS[133] = 1.00000/CONSTANTS[131]; CONSTANTS[134] = CONSTANTS[133]*CONSTANTS[1]*CONSTANTS[66]; CONSTANTS[135] = CONSTANTS[67]; CONSTANTS[136] = CONSTANTS[67]; CONSTANTS[137] = CONSTANTS[62]+1.00000+ (CONSTANTS[0]/CONSTANTS[59])*(1.00000+CONSTANTS[0]/CONSTANTS[60]); CONSTANTS[138] = ( CONSTANTS[0]*CONSTANTS[0])/( CONSTANTS[137]*CONSTANTS[59]*CONSTANTS[60]); CONSTANTS[139] = 1.00000/CONSTANTS[137]; CONSTANTS[140] = CONSTANTS[139]*CONSTANTS[1]*CONSTANTS[66]; CONSTANTS[141] = CONSTANTS[67]; CONSTANTS[142] = CONSTANTS[67]; CONSTANTS[143] = CONSTANTS[73]*CONSTANTS[85]; CONSTANTS[144] = CONSTANTS[74]; CONSTANTS[145] = (( CONSTANTS[78]*CONSTANTS[86])/CONSTANTS[87])/(1.00000+CONSTANTS[86]/CONSTANTS[87]); } void computeRates(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { RATES[45] = STATES[2]*CONSTANTS[109]*(1.00000 - STATES[45]) - CONSTANTS[110]*STATES[45]; ALGEBRAIC[2] = 1.00000/(1.00000+exp((STATES[0]+87.6100)/7.48800)); RATES[23] = (ALGEBRAIC[2] - STATES[23])/CONSTANTS[46]; ALGEBRAIC[3] = 1.00000/(1.00000+exp((STATES[0]+93.8100)/7.48800)); RATES[24] = (ALGEBRAIC[3] - STATES[24])/CONSTANTS[113]; ALGEBRAIC[0] = 1.00000/(1.00000+exp(- (STATES[0]+CONSTANTS[34])/CONSTANTS[35])); ALGEBRAIC[16] = 1.00000/( CONSTANTS[38]*exp((STATES[0]+CONSTANTS[36])/CONSTANTS[37])+ CONSTANTS[39]*exp(- (STATES[0]+CONSTANTS[40])/CONSTANTS[41])); RATES[16] = (ALGEBRAIC[0] - STATES[16])/ALGEBRAIC[16]; ALGEBRAIC[1] = 1.00000/(1.00000+exp((STATES[0]+CONSTANTS[42])/CONSTANTS[43])); ALGEBRAIC[17] = 1.00000/( 3.68600e-06*exp(- (STATES[0]+3.88750)/7.85790)+ 16.0000*exp((STATES[0] - 0.496300)/9.18430)); RATES[17] = (ALGEBRAIC[1] - STATES[17])/ALGEBRAIC[17]; ALGEBRAIC[18] = 1.00000/( 0.00979400*exp(- (STATES[0]+17.9500)/28.0500)+ 0.334300*exp((STATES[0]+5.73000)/56.6600)); RATES[18] = (ALGEBRAIC[1] - STATES[18])/ALGEBRAIC[18]; ALGEBRAIC[4] = 1.00000/(1.00000+exp((20.0000 - STATES[0])/13.0000)); ALGEBRAIC[20] = 1.05150/(1.00000/( 1.20890*(1.00000+exp(- (STATES[0] - 18.4099)/29.3814)))+3.50000/(1.00000+exp((STATES[0]+100.000)/29.3814))); RATES[25] = (ALGEBRAIC[4] - STATES[25])/ALGEBRAIC[20]; ALGEBRAIC[5] = 1.00000/(1.00000+exp((27.0000+STATES[0])/13.0000)); ALGEBRAIC[21] = 43.0000+1.00000/( 0.00141600*exp(- (STATES[0]+96.5200)/59.0500)+ 1.78000e-08*exp((STATES[0]+114.100)/8.07900)); RATES[26] = (ALGEBRAIC[5] - STATES[26])/ALGEBRAIC[21]; ALGEBRAIC[22] = 6.16200+1.00000/( 0.393300*exp(- (STATES[0]+100.000)/100.000)+ 0.0800400*exp((STATES[0] - 8.00000)/8.59000)); RATES[27] = (ALGEBRAIC[5] - STATES[27])/ALGEBRAIC[22]; ALGEBRAIC[6] = 1.00000/(1.00000+exp(- (STATES[0]+3.94000+3.30000)/4.23000)); ALGEBRAIC[25] = 0.600000+1.00000/(exp( - 0.0500000*(STATES[0]+6.00000))+exp( 0.0900000*(STATES[0]+14.0000))); RATES[28] = (ALGEBRAIC[6] - STATES[28])/ALGEBRAIC[25]; ALGEBRAIC[7] = 1.00000/(1.00000+exp((STATES[0]+19.5800+3.30000)/3.69600)); ALGEBRAIC[26] = 7.00000+1.00000/( 0.00450000*exp(- (STATES[0]+20.0000+15.1900)/10.0000)+ 0.00450000*exp((STATES[0]+20.0000+15.1900)/10.0000)); RATES[29] = (ALGEBRAIC[7] - STATES[29])/ALGEBRAIC[26]; ALGEBRAIC[27] = 1000.00+1.00000/( 3.50000e-05*exp(- (STATES[0]+5.00000+15.1900)/4.00000)+ 3.50000e-05*exp((STATES[0]+5.00000+15.1900)/6.00000)); RATES[30] = (ALGEBRAIC[7] - STATES[30])/ALGEBRAIC[27]; ALGEBRAIC[23] = ALGEBRAIC[7]; RATES[33] = (ALGEBRAIC[23] - STATES[33])/CONSTANTS[118]; ALGEBRAIC[8] = STATES[33]*1.00000; ALGEBRAIC[24] = 1.00000/(CONSTANTS[51]/ALGEBRAIC[8]+pow(1.00000+CONSTANTS[50]/STATES[2], 4.00000)); RATES[36] = ALGEBRAIC[24]*CONSTANTS[51] - STATES[36]*ALGEBRAIC[8]; ALGEBRAIC[9] = 1.00000/(1.00000+exp(- (STATES[0]+30.0000)/7.00000)); ALGEBRAIC[28] = 1.00000/( 1.06800*exp((STATES[0]+16.3000)/30.0000)+ 1.06800*exp(- (STATES[0]+16.3000)/30.0000)); RATES[37] = (ALGEBRAIC[9] - STATES[37])/ALGEBRAIC[28]; ALGEBRAIC[10] = 1.00000/(1.00000+exp((STATES[0]+61.0000)/5.00000)); ALGEBRAIC[29] = 1.00000/( 0.0150000*exp((STATES[0]+71.7000)/15.4000)+ 0.0150000*exp(- (STATES[0]+71.7000)/83.3000)); RATES[38] = (ALGEBRAIC[10] - STATES[38])/ALGEBRAIC[29]; ALGEBRAIC[11] = 1.00000/(1.00000+exp(- (STATES[0]+8.33700)/6.78900)); ALGEBRAIC[30] = 12.9800+1.00000/( 0.365200*exp(((STATES[0]+17.6000) - 31.6600)/3.86900)+ 4.12300e-05*exp(- ((STATES[0]+17.6000) - 47.7800)/20.3800)); RATES[39] = (ALGEBRAIC[11] - STATES[39])/ALGEBRAIC[30]; ALGEBRAIC[31] = 1.86500+1.00000/( 0.0662900*exp(((STATES[0]+17.2000) - 34.7000)/7.35500)+ 1.12800e-05*exp(- ((STATES[0]+17.2000) - 29.7400)/25.9400)); RATES[40] = (ALGEBRAIC[11] - STATES[40])/ALGEBRAIC[31]; ALGEBRAIC[12] = 1.00000/(1.00000+exp(- (STATES[0]+11.6000)/8.93200)); ALGEBRAIC[33] = 817.300+1.00000/( 0.000232600*exp((STATES[0]+48.2800)/17.8000)+ 0.00129200*exp(- (STATES[0]+210.000)/230.000)); RATES[41] = (ALGEBRAIC[12] - STATES[41])/ALGEBRAIC[33]; ALGEBRAIC[13] = 1.00000/(1.00000+exp((STATES[0]+87.0000)/9.50000)); ALGEBRAIC[34] = 2000.00/(exp((STATES[0]+57.0000)/60.0000)+exp(- (STATES[0]+132.000)/10.0000)); RATES[43] = (ALGEBRAIC[13] - STATES[43])/ALGEBRAIC[34]; ALGEBRAIC[14] = 1.00000/(1.00000+exp(- (STATES[0]+ 2.55380*CONSTANTS[2]+144.590)/( 1.56920*CONSTANTS[2]+3.81150))); ALGEBRAIC[35] = 122.200/(exp(- (STATES[0]+127.200)/20.3600)+exp((STATES[0]+236.800)/69.3300)); RATES[44] = (ALGEBRAIC[14] - STATES[44])/ALGEBRAIC[35]; ALGEBRAIC[19] = ALGEBRAIC[1]; ALGEBRAIC[37] = 4.85900+1.00000/( 0.862800*exp(- (STATES[0]+116.726)/7.60050)+ 1.10960*exp((STATES[0]+6.27190)/9.03580)); RATES[19] = (ALGEBRAIC[19] - STATES[19])/ALGEBRAIC[37]; ALGEBRAIC[40] = 0.720000*(7.00000+1.00000/( 0.0400000*exp(- ((STATES[0]+15.1900) - 4.00000)/7.00000)+ 0.0400000*exp(((STATES[0]+15.1900) - 4.00000)/7.00000))); RATES[31] = (ALGEBRAIC[23] - STATES[31])/ALGEBRAIC[40]; ALGEBRAIC[41] = 0.490000*(100.000+1.00000/( 0.000120000*exp(- (STATES[0]+15.1900)/3.00000)+ 0.000120000*exp((STATES[0]+15.1900)/7.00000))); RATES[32] = (ALGEBRAIC[23] - STATES[32])/ALGEBRAIC[41]; ALGEBRAIC[42] = 2.50000*ALGEBRAIC[26]; RATES[34] = (ALGEBRAIC[7] - STATES[34])/ALGEBRAIC[42]; ALGEBRAIC[32] = ALGEBRAIC[12]; ALGEBRAIC[43] = 1.00000/( 0.0100000*exp((STATES[0] - 50.0000)/20.0000)+ 0.0193000*exp(- (STATES[0]+66.5400)/31.0000)); RATES[42] = (ALGEBRAIC[32] - STATES[42])/ALGEBRAIC[43]; ALGEBRAIC[49] = ( CONSTANTS[17]*(1.00000 - STATES[1]))/(1.00000+CONSTANTS[18]/STATES[2]); RATES[1] = CONSTANTS[15]*ALGEBRAIC[49]*(ALGEBRAIC[49]+STATES[1]) - CONSTANTS[16]*STATES[1]; ALGEBRAIC[38] = 1.00000/(1.00000+exp((STATES[0]+84.7000)/6.22000)); ALGEBRAIC[45] = 3.00000*ALGEBRAIC[18]; RATES[20] = (ALGEBRAIC[38] - STATES[20])/ALGEBRAIC[45]; ALGEBRAIC[46] = 1.46000*ALGEBRAIC[37]; RATES[21] = (ALGEBRAIC[19] - STATES[21])/ALGEBRAIC[46]; ALGEBRAIC[39] = 1.00000/(1.00000+exp(- (STATES[0]+42.8500)/5.26400)); ALGEBRAIC[47] = ALGEBRAIC[16]; RATES[22] = (ALGEBRAIC[39] - STATES[22])/ALGEBRAIC[47]; ALGEBRAIC[48] = 2.50000*ALGEBRAIC[40]; RATES[35] = (ALGEBRAIC[23] - STATES[35])/ALGEBRAIC[48]; ALGEBRAIC[69] = CONSTANTS[114]*STATES[29]+ CONSTANTS[120]*STATES[30]; ALGEBRAIC[70] = 0.300000+0.600000/(1.00000+exp((STATES[0] - 10.0000)/10.0000)); ALGEBRAIC[71] = 1.00000 - ALGEBRAIC[70]; ALGEBRAIC[72] = ALGEBRAIC[70]*STATES[31]+ ALGEBRAIC[71]*STATES[32]; ALGEBRAIC[73] = CONSTANTS[114]*STATES[34]+ CONSTANTS[120]*STATES[30]; ALGEBRAIC[74] = ALGEBRAIC[70]*STATES[35]+ ALGEBRAIC[71]*STATES[32]; ALGEBRAIC[36] = ( STATES[0]*CONSTANTS[5]*CONSTANTS[5])/( CONSTANTS[3]*CONSTANTS[4]); ALGEBRAIC[44] = ( STATES[0]*CONSTANTS[5])/( CONSTANTS[3]*CONSTANTS[4]); ALGEBRAIC[77] = ( 1.00000*ALGEBRAIC[36]*( 0.750000*STATES[7]*exp( 1.00000*ALGEBRAIC[44]) - 0.750000*CONSTANTS[2]))/(exp( 1.00000*ALGEBRAIC[44]) - 1.00000); ALGEBRAIC[50] = ALGEBRAIC[49]+STATES[1]; ALGEBRAIC[78] = 1.00000/(1.00000+CONSTANTS[14]/ALGEBRAIC[50]); ALGEBRAIC[81] = (1.00000 - ALGEBRAIC[78])*CONSTANTS[117]*ALGEBRAIC[77]*STATES[28]*( ALGEBRAIC[69]*(1.00000 - STATES[36])+ STATES[33]*ALGEBRAIC[72]*STATES[36])+ ALGEBRAIC[78]*CONSTANTS[122]*ALGEBRAIC[77]*STATES[28]*( ALGEBRAIC[73]*(1.00000 - STATES[36])+ STATES[33]*ALGEBRAIC[74]*STATES[36]); ALGEBRAIC[177] = (STATES[7] - STATES[8])/CONSTANTS[98]; RATES[7] = ( - ALGEBRAIC[81]*CONSTANTS[32]*CONSTANTS[124])/( CONSTANTS[5]*CONSTANTS[129]) - ALGEBRAIC[177]; ALGEBRAIC[76] = ( 1.00000*ALGEBRAIC[36]*( 0.750000*STATES[5]*exp( 1.00000*ALGEBRAIC[44]) - 0.750000*CONSTANTS[0]))/(exp( 1.00000*ALGEBRAIC[44]) - 1.00000); ALGEBRAIC[80] = (1.00000 - ALGEBRAIC[78])*CONSTANTS[116]*ALGEBRAIC[76]*STATES[28]*( ALGEBRAIC[69]*(1.00000 - STATES[36])+ STATES[33]*ALGEBRAIC[72]*STATES[36])+ ALGEBRAIC[78]*CONSTANTS[121]*ALGEBRAIC[76]*STATES[28]*( ALGEBRAIC[73]*(1.00000 - STATES[36])+ STATES[33]*ALGEBRAIC[74]*STATES[36]); ALGEBRAIC[153] = 1.00000/(1.00000+pow(CONSTANTS[70]/STATES[2], 2.00000)); ALGEBRAIC[96] = exp(( CONSTANTS[68]*STATES[0]*CONSTANTS[5])/( CONSTANTS[3]*CONSTANTS[4])); ALGEBRAIC[133] = 1.00000+ (CONSTANTS[0]/CONSTANTS[61])*(1.00000+1.00000/ALGEBRAIC[96]); ALGEBRAIC[134] = CONSTANTS[0]/( CONSTANTS[61]*ALGEBRAIC[96]*ALGEBRAIC[133]); ALGEBRAIC[137] = ALGEBRAIC[134]*CONSTANTS[65]; ALGEBRAIC[127] = 1.00000+ (STATES[5]/CONSTANTS[61])*(1.00000+ALGEBRAIC[96]); ALGEBRAIC[128] = ( STATES[5]*ALGEBRAIC[96])/( CONSTANTS[61]*ALGEBRAIC[127]); ALGEBRAIC[140] = ALGEBRAIC[128]*CONSTANTS[65]; ALGEBRAIC[130] = 1.00000+ (STATES[5]/CONSTANTS[59])*(1.00000+STATES[5]/CONSTANTS[60]); ALGEBRAIC[131] = ( STATES[5]*STATES[5])/( ALGEBRAIC[130]*CONSTANTS[59]*CONSTANTS[60]); ALGEBRAIC[143] = ALGEBRAIC[131]*ALGEBRAIC[128]*CONSTANTS[63]; ALGEBRAIC[144] = ALGEBRAIC[134]*CONSTANTS[138]*CONSTANTS[63]; ALGEBRAIC[135] = 1.00000/ALGEBRAIC[133]; ALGEBRAIC[136] = ALGEBRAIC[135]*CONSTANTS[64]; ALGEBRAIC[138] = ALGEBRAIC[136]+ALGEBRAIC[137]; ALGEBRAIC[95] = exp(( CONSTANTS[69]*STATES[0]*CONSTANTS[5])/( CONSTANTS[3]*CONSTANTS[4])); ALGEBRAIC[129] = 1.00000/ALGEBRAIC[127]; ALGEBRAIC[139] = ( ALGEBRAIC[129]*CONSTANTS[64])/ALGEBRAIC[95]; ALGEBRAIC[141] = ALGEBRAIC[139]+ALGEBRAIC[140]; ALGEBRAIC[132] = 1.00000/ALGEBRAIC[130]; ALGEBRAIC[142] = ALGEBRAIC[132]*STATES[2]*CONSTANTS[66]; ALGEBRAIC[145] = CONSTANTS[141]*ALGEBRAIC[141]*(ALGEBRAIC[143]+ALGEBRAIC[142])+ CONSTANTS[142]*ALGEBRAIC[143]*(CONSTANTS[141]+ALGEBRAIC[138]); ALGEBRAIC[146] = CONSTANTS[140]*ALGEBRAIC[143]*(ALGEBRAIC[141]+CONSTANTS[142])+ ALGEBRAIC[141]*ALGEBRAIC[142]*(CONSTANTS[140]+ALGEBRAIC[144]); ALGEBRAIC[147] = CONSTANTS[140]*ALGEBRAIC[138]*(ALGEBRAIC[143]+ALGEBRAIC[142])+ ALGEBRAIC[144]*ALGEBRAIC[142]*(CONSTANTS[141]+ALGEBRAIC[138]); ALGEBRAIC[148] = CONSTANTS[141]*ALGEBRAIC[144]*(ALGEBRAIC[141]+CONSTANTS[142])+ ALGEBRAIC[138]*CONSTANTS[142]*(CONSTANTS[140]+ALGEBRAIC[144]); ALGEBRAIC[149] = ALGEBRAIC[145]/(ALGEBRAIC[145]+ALGEBRAIC[146]+ALGEBRAIC[147]+ALGEBRAIC[148]); ALGEBRAIC[150] = ALGEBRAIC[146]/(ALGEBRAIC[145]+ALGEBRAIC[146]+ALGEBRAIC[147]+ALGEBRAIC[148]); ALGEBRAIC[151] = ALGEBRAIC[147]/(ALGEBRAIC[145]+ALGEBRAIC[146]+ALGEBRAIC[147]+ALGEBRAIC[148]); ALGEBRAIC[152] = ALGEBRAIC[148]/(ALGEBRAIC[145]+ALGEBRAIC[146]+ALGEBRAIC[147]+ALGEBRAIC[148]); ALGEBRAIC[154] = ( 3.00000*( ALGEBRAIC[152]*ALGEBRAIC[143] - ALGEBRAIC[149]*ALGEBRAIC[144])+ ALGEBRAIC[151]*ALGEBRAIC[140]) - ALGEBRAIC[150]*ALGEBRAIC[137]; ALGEBRAIC[155] = ALGEBRAIC[150]*CONSTANTS[141] - ALGEBRAIC[149]*CONSTANTS[140]; ALGEBRAIC[156] = 0.200000*CONSTANTS[71]*ALGEBRAIC[153]*( CONSTANTS[6]*ALGEBRAIC[154]+ CONSTANTS[7]*ALGEBRAIC[155]); ALGEBRAIC[178] = (STATES[5] - STATES[4])/CONSTANTS[98]; RATES[5] = ( - (ALGEBRAIC[80]+ 3.00000*ALGEBRAIC[156])*CONSTANTS[32]*CONSTANTS[124])/( CONSTANTS[5]*CONSTANTS[129]) - ALGEBRAIC[178]; ALGEBRAIC[180] = (STATES[8] - STATES[6])/CONSTANTS[99]; RATES[6] = ( ALGEBRAIC[180]*CONSTANTS[130])/CONSTANTS[125]; ALGEBRAIC[57] = (( CONSTANTS[3]*CONSTANTS[4])/CONSTANTS[5])*log(CONSTANTS[2]/STATES[8]); ALGEBRAIC[66] = CONSTANTS[48]*STATES[25]*STATES[26]*STATES[27]*(STATES[0] - ALGEBRAIC[57]); ALGEBRAIC[67] = 1.00000/(1.00000+exp(- (STATES[0] - 12.0000)/16.0000)); ALGEBRAIC[68] = CONSTANTS[49]*ALGEBRAIC[67]*(STATES[0] - ALGEBRAIC[57]); ALGEBRAIC[83] = 1.00000/(1.00000+exp((STATES[0]+54.8100)/38.2100)); ALGEBRAIC[84] = 1.00000 - ALGEBRAIC[83]; ALGEBRAIC[85] = ALGEBRAIC[83]*STATES[39]+ ALGEBRAIC[84]*STATES[40]; ALGEBRAIC[86] = ( (1.00000/(1.00000+exp((STATES[0]+55.0000)/( 0.320000*75.0000))))*1.00000)/(1.00000+exp((STATES[0] - 10.0000)/( 0.320000*30.0000))); ALGEBRAIC[87] = CONSTANTS[54]* pow((CONSTANTS[2]/5.40000), 1.0 / 2)*ALGEBRAIC[85]*ALGEBRAIC[86]*(STATES[0] - ALGEBRAIC[57]); ALGEBRAIC[59] = (( CONSTANTS[3]*CONSTANTS[4])/CONSTANTS[5])*log((CONSTANTS[2]+ CONSTANTS[33]*CONSTANTS[0])/(STATES[8]+ CONSTANTS[33]*STATES[4])); ALGEBRAIC[88] = 1.00000+0.600000/(1.00000+pow(3.80000e-05/STATES[10], 1.40000)); ALGEBRAIC[89] = CONSTANTS[55]*ALGEBRAIC[88]*STATES[41]*STATES[42]*(STATES[0] - ALGEBRAIC[59]); ALGEBRAIC[93] = 1.00000/(1.00000+exp(((STATES[0]+116.000) - 5.50000*CONSTANTS[2])/11.0000)); ALGEBRAIC[94] = CONSTANTS[58]*2.32380* pow((CONSTANTS[2]/5.40000), 1.0 / 2)*ALGEBRAIC[93]*STATES[44]*(STATES[0] - ALGEBRAIC[57]); ALGEBRAIC[158] = CONSTANTS[81]*exp(( (1.00000 - CONSTANTS[82])*STATES[0]*CONSTANTS[5])/( 3.00000*CONSTANTS[3]*CONSTANTS[4])); ALGEBRAIC[162] = ( CONSTANTS[76]*pow(CONSTANTS[2]/CONSTANTS[84], 2.00000))/((pow(1.00000+CONSTANTS[0]/ALGEBRAIC[158], 3.00000)+pow(1.00000+CONSTANTS[2]/CONSTANTS[84], 2.00000)) - 1.00000); ALGEBRAIC[159] = CONSTANTS[89]/(1.00000+CONSTANTS[88]/CONSTANTS[90]+STATES[4]/CONSTANTS[91]+STATES[8]/CONSTANTS[92]); ALGEBRAIC[163] = ( CONSTANTS[77]*ALGEBRAIC[159]*CONSTANTS[88])/(1.00000+CONSTANTS[86]/CONSTANTS[87]); ALGEBRAIC[157] = CONSTANTS[80]*exp(( CONSTANTS[82]*STATES[0]*CONSTANTS[5])/( 3.00000*CONSTANTS[3]*CONSTANTS[4])); ALGEBRAIC[160] = ( CONSTANTS[72]*pow(STATES[4]/ALGEBRAIC[157], 3.00000))/((pow(1.00000+STATES[4]/ALGEBRAIC[157], 3.00000)+pow(1.00000+STATES[8]/CONSTANTS[83], 2.00000)) - 1.00000); ALGEBRAIC[161] = ( CONSTANTS[75]*pow(CONSTANTS[0]/ALGEBRAIC[158], 3.00000))/((pow(1.00000+CONSTANTS[0]/ALGEBRAIC[158], 3.00000)+pow(1.00000+CONSTANTS[2]/CONSTANTS[84], 2.00000)) - 1.00000); ALGEBRAIC[164] = ( CONSTANTS[79]*pow(STATES[8]/CONSTANTS[83], 2.00000))/((pow(1.00000+STATES[4]/ALGEBRAIC[157], 3.00000)+pow(1.00000+STATES[8]/CONSTANTS[83], 2.00000)) - 1.00000); ALGEBRAIC[165] = CONSTANTS[145]*ALGEBRAIC[160]*CONSTANTS[144]+ ALGEBRAIC[161]*ALGEBRAIC[164]*ALGEBRAIC[163]+ CONSTANTS[144]*ALGEBRAIC[164]*ALGEBRAIC[163]+ ALGEBRAIC[163]*ALGEBRAIC[160]*CONSTANTS[144]; ALGEBRAIC[166] = ALGEBRAIC[161]*CONSTANTS[143]*ALGEBRAIC[164]+ ALGEBRAIC[160]*CONSTANTS[144]*ALGEBRAIC[162]+ ALGEBRAIC[162]*CONSTANTS[143]*ALGEBRAIC[164]+ CONSTANTS[144]*ALGEBRAIC[162]*ALGEBRAIC[164]; ALGEBRAIC[167] = CONSTANTS[144]*ALGEBRAIC[162]*CONSTANTS[145]+ ALGEBRAIC[163]*ALGEBRAIC[161]*CONSTANTS[143]+ ALGEBRAIC[161]*CONSTANTS[143]*CONSTANTS[145]+ ALGEBRAIC[162]*CONSTANTS[145]*CONSTANTS[143]; ALGEBRAIC[168] = ALGEBRAIC[164]*ALGEBRAIC[163]*ALGEBRAIC[161]+ ALGEBRAIC[162]*CONSTANTS[145]*ALGEBRAIC[160]+ ALGEBRAIC[161]*CONSTANTS[145]*ALGEBRAIC[160]+ ALGEBRAIC[163]*ALGEBRAIC[161]*ALGEBRAIC[160]; ALGEBRAIC[169] = ALGEBRAIC[165]/(ALGEBRAIC[165]+ALGEBRAIC[166]+ALGEBRAIC[167]+ALGEBRAIC[168]); ALGEBRAIC[170] = ALGEBRAIC[166]/(ALGEBRAIC[165]+ALGEBRAIC[166]+ALGEBRAIC[167]+ALGEBRAIC[168]); ALGEBRAIC[173] = 3.00000*( ALGEBRAIC[169]*ALGEBRAIC[162] - ALGEBRAIC[170]*ALGEBRAIC[163]); ALGEBRAIC[171] = ALGEBRAIC[167]/(ALGEBRAIC[165]+ALGEBRAIC[166]+ALGEBRAIC[167]+ALGEBRAIC[168]); ALGEBRAIC[172] = ALGEBRAIC[168]/(ALGEBRAIC[165]+ALGEBRAIC[166]+ALGEBRAIC[167]+ALGEBRAIC[168]); ALGEBRAIC[174] = 2.00000*( ALGEBRAIC[172]*CONSTANTS[143] - ALGEBRAIC[171]*ALGEBRAIC[160]); ALGEBRAIC[175] = CONSTANTS[93]*( CONSTANTS[6]*ALGEBRAIC[173]+ CONSTANTS[8]*ALGEBRAIC[174]); ALGEBRAIC[15] = (VOI<=CONSTANTS[13] ? CONSTANTS[12] : 0.00000); ALGEBRAIC[91] = CONSTANTS[57]*STATES[43]*STATES[43]*(STATES[0] - ALGEBRAIC[57]); RATES[8] = ( - ((ALGEBRAIC[66]+ALGEBRAIC[68]+ALGEBRAIC[87]+ALGEBRAIC[89]+ALGEBRAIC[91]+ALGEBRAIC[94]+ALGEBRAIC[15]) - 2.00000*ALGEBRAIC[175])*CONSTANTS[32]*CONSTANTS[124])/( CONSTANTS[5]*CONSTANTS[130])+( ALGEBRAIC[177]*CONSTANTS[129])/CONSTANTS[130]+- ALGEBRAIC[180]; ALGEBRAIC[56] = (( CONSTANTS[3]*CONSTANTS[4])/CONSTANTS[5])*log(CONSTANTS[0]/STATES[4]); ALGEBRAIC[60] = CONSTANTS[44]*STATES[17]+ CONSTANTS[112]*STATES[18]; ALGEBRAIC[61] = CONSTANTS[44]*STATES[17]+ CONSTANTS[112]*STATES[20]; ALGEBRAIC[62] = 1.00000/(1.00000+CONSTANTS[14]/ALGEBRAIC[50]); ALGEBRAIC[63] = CONSTANTS[45]*(STATES[0] - ALGEBRAIC[56])*pow(STATES[16], 3.00000)*( (1.00000 - ALGEBRAIC[62])*ALGEBRAIC[60]*STATES[19]+ ALGEBRAIC[62]*ALGEBRAIC[61]*STATES[21]); ALGEBRAIC[64] = 1.00000/(1.00000+CONSTANTS[14]/ALGEBRAIC[50]); ALGEBRAIC[65] = CONSTANTS[47]*(STATES[0] - ALGEBRAIC[56])*STATES[22]*( (1.00000 - ALGEBRAIC[64])*STATES[23]+ ALGEBRAIC[64]*STATES[24]); ALGEBRAIC[75] = ( 4.00000*ALGEBRAIC[36]*( STATES[2]*exp( 2.00000*ALGEBRAIC[44]) - 0.341000*CONSTANTS[1]))/(exp( 2.00000*ALGEBRAIC[44]) - 1.00000); ALGEBRAIC[79] = (1.00000 - ALGEBRAIC[78])*CONSTANTS[52]*ALGEBRAIC[75]*STATES[28]*( ALGEBRAIC[69]*(1.00000 - STATES[36])+ STATES[33]*ALGEBRAIC[72]*STATES[36])+ ALGEBRAIC[78]*CONSTANTS[115]*ALGEBRAIC[75]*STATES[28]*( ALGEBRAIC[73]*(1.00000 - STATES[36])+ STATES[33]*ALGEBRAIC[74]*STATES[36]); ALGEBRAIC[58] = (( CONSTANTS[3]*CONSTANTS[4])/( 2.00000*CONSTANTS[5]))*log(CONSTANTS[1]/STATES[10]); ALGEBRAIC[82] = CONSTANTS[53]*STATES[37]*STATES[38]*(STATES[0] - ALGEBRAIC[58]); ALGEBRAIC[90] = CONSTANTS[56]*STATES[43]*STATES[43]*(STATES[0] - ALGEBRAIC[56]); ALGEBRAIC[92] = ALGEBRAIC[90]+ALGEBRAIC[91]; ALGEBRAIC[123] = 1.00000/(1.00000+pow(CONSTANTS[70]/STATES[10], 2.00000)); ALGEBRAIC[103] = 1.00000+ (CONSTANTS[0]/CONSTANTS[61])*(1.00000+1.00000/ALGEBRAIC[96]); ALGEBRAIC[104] = CONSTANTS[0]/( CONSTANTS[61]*ALGEBRAIC[96]*ALGEBRAIC[103]); ALGEBRAIC[107] = ALGEBRAIC[104]*CONSTANTS[65]; ALGEBRAIC[97] = 1.00000+ (STATES[4]/CONSTANTS[61])*(1.00000+ALGEBRAIC[96]); ALGEBRAIC[98] = ( STATES[4]*ALGEBRAIC[96])/( CONSTANTS[61]*ALGEBRAIC[97]); ALGEBRAIC[110] = ALGEBRAIC[98]*CONSTANTS[65]; ALGEBRAIC[100] = 1.00000+ (STATES[4]/CONSTANTS[59])*(1.00000+STATES[4]/CONSTANTS[60]); ALGEBRAIC[101] = ( STATES[4]*STATES[4])/( ALGEBRAIC[100]*CONSTANTS[59]*CONSTANTS[60]); ALGEBRAIC[113] = ALGEBRAIC[101]*ALGEBRAIC[98]*CONSTANTS[63]; ALGEBRAIC[114] = ALGEBRAIC[104]*CONSTANTS[132]*CONSTANTS[63]; ALGEBRAIC[105] = 1.00000/ALGEBRAIC[103]; ALGEBRAIC[106] = ALGEBRAIC[105]*CONSTANTS[64]; ALGEBRAIC[108] = ALGEBRAIC[106]+ALGEBRAIC[107]; ALGEBRAIC[99] = 1.00000/ALGEBRAIC[97]; ALGEBRAIC[109] = ( ALGEBRAIC[99]*CONSTANTS[64])/ALGEBRAIC[95]; ALGEBRAIC[111] = ALGEBRAIC[109]+ALGEBRAIC[110]; ALGEBRAIC[102] = 1.00000/ALGEBRAIC[100]; ALGEBRAIC[112] = ALGEBRAIC[102]*STATES[10]*CONSTANTS[66]; ALGEBRAIC[115] = CONSTANTS[135]*ALGEBRAIC[111]*(ALGEBRAIC[113]+ALGEBRAIC[112])+ CONSTANTS[136]*ALGEBRAIC[113]*(CONSTANTS[135]+ALGEBRAIC[108]); ALGEBRAIC[116] = CONSTANTS[134]*ALGEBRAIC[113]*(ALGEBRAIC[111]+CONSTANTS[136])+ ALGEBRAIC[111]*ALGEBRAIC[112]*(CONSTANTS[134]+ALGEBRAIC[114]); ALGEBRAIC[117] = CONSTANTS[134]*ALGEBRAIC[108]*(ALGEBRAIC[113]+ALGEBRAIC[112])+ ALGEBRAIC[114]*ALGEBRAIC[112]*(CONSTANTS[135]+ALGEBRAIC[108]); ALGEBRAIC[118] = CONSTANTS[135]*ALGEBRAIC[114]*(ALGEBRAIC[111]+CONSTANTS[136])+ ALGEBRAIC[108]*CONSTANTS[136]*(CONSTANTS[134]+ALGEBRAIC[114]); ALGEBRAIC[119] = ALGEBRAIC[115]/(ALGEBRAIC[115]+ALGEBRAIC[116]+ALGEBRAIC[117]+ALGEBRAIC[118]); ALGEBRAIC[120] = ALGEBRAIC[116]/(ALGEBRAIC[115]+ALGEBRAIC[116]+ALGEBRAIC[117]+ALGEBRAIC[118]); ALGEBRAIC[121] = ALGEBRAIC[117]/(ALGEBRAIC[115]+ALGEBRAIC[116]+ALGEBRAIC[117]+ALGEBRAIC[118]); ALGEBRAIC[122] = ALGEBRAIC[118]/(ALGEBRAIC[115]+ALGEBRAIC[116]+ALGEBRAIC[117]+ALGEBRAIC[118]); ALGEBRAIC[124] = ( 3.00000*( ALGEBRAIC[122]*ALGEBRAIC[113] - ALGEBRAIC[119]*ALGEBRAIC[114])+ ALGEBRAIC[121]*ALGEBRAIC[110]) - ALGEBRAIC[120]*ALGEBRAIC[107]; ALGEBRAIC[125] = ALGEBRAIC[120]*CONSTANTS[135] - ALGEBRAIC[119]*CONSTANTS[134]; ALGEBRAIC[126] = 0.800000*CONSTANTS[71]*ALGEBRAIC[123]*( CONSTANTS[6]*ALGEBRAIC[124]+ CONSTANTS[7]*ALGEBRAIC[125]); ALGEBRAIC[176] = ( CONSTANTS[94]*ALGEBRAIC[36]*( STATES[4]*exp(ALGEBRAIC[44]) - CONSTANTS[0]))/(exp(ALGEBRAIC[44]) - 1.00000); ALGEBRAIC[182] = ( CONSTANTS[96]*STATES[10])/(CONSTANTS[97]+STATES[10]); ALGEBRAIC[179] = ( CONSTANTS[95]*4.00000*ALGEBRAIC[36]*( STATES[10]*exp( 2.00000*ALGEBRAIC[44]) - 0.341000*CONSTANTS[1]))/(exp( 2.00000*ALGEBRAIC[44]) - 1.00000); RATES[0] = - (ALGEBRAIC[63]+ALGEBRAIC[65]+ALGEBRAIC[66]+ALGEBRAIC[68]+ALGEBRAIC[79]+ALGEBRAIC[82]+ALGEBRAIC[80]+ALGEBRAIC[81]+ALGEBRAIC[87]+ALGEBRAIC[89]+ALGEBRAIC[92]+ALGEBRAIC[94]+ALGEBRAIC[126]+ALGEBRAIC[156]+ALGEBRAIC[175]+ALGEBRAIC[176]+ALGEBRAIC[182]+ALGEBRAIC[179]+ALGEBRAIC[15]); ALGEBRAIC[181] = (STATES[4] - STATES[3])/CONSTANTS[99]; RATES[3] = ( ALGEBRAIC[181]*CONSTANTS[130])/CONSTANTS[125]; RATES[4] = ( - (ALGEBRAIC[63]+ALGEBRAIC[65]+ 3.00000*ALGEBRAIC[126]+ 3.00000*ALGEBRAIC[175]+ALGEBRAIC[90]+ALGEBRAIC[176])*CONSTANTS[124]*CONSTANTS[32])/( CONSTANTS[5]*CONSTANTS[130])+( ALGEBRAIC[178]*CONSTANTS[129])/CONSTANTS[130]+- ALGEBRAIC[181]; ALGEBRAIC[183] = (STATES[2] - STATES[10])/CONSTANTS[98]; ALGEBRAIC[184] = (STATES[10] - STATES[9])/CONSTANTS[99]; ALGEBRAIC[187] = ( CONSTANTS[101]*ALGEBRAIC[50])/(ALGEBRAIC[50]+CONSTANTS[14]); ALGEBRAIC[188] = ( CONSTANTS[100]*ALGEBRAIC[50])/(ALGEBRAIC[50]+CONSTANTS[14]); ALGEBRAIC[189] = ( 0.000200000*(ALGEBRAIC[188]+1.00000))/(1.00000+(CONSTANTS[102] - ALGEBRAIC[187])/STATES[10]) - ( 0.00105000*STATES[11])/CONSTANTS[103]; ALGEBRAIC[53] = 1.00000/(1.00000+( CONSTANTS[28]*CONSTANTS[27])/pow(CONSTANTS[27]+STATES[10], 2.00000)+( CONSTANTS[31]*CONSTANTS[30])/pow(CONSTANTS[30]+STATES[10], 2.00000)); RATES[10] = ALGEBRAIC[53]*((( - ((ALGEBRAIC[182]+ALGEBRAIC[179]+ALGEBRAIC[82]) - 2.00000*ALGEBRAIC[126])*CONSTANTS[32]*CONSTANTS[124])/( 2.00000*CONSTANTS[5]*CONSTANTS[130]) - ( ALGEBRAIC[189]*CONSTANTS[126])/CONSTANTS[130])+- ALGEBRAIC[184]+( ALGEBRAIC[183]*CONSTANTS[129])/CONSTANTS[130]); ALGEBRAIC[190] = ( 0.00260000*(ALGEBRAIC[188]+1.00000))/(1.00000+(CONSTANTS[102] - ALGEBRAIC[187])/STATES[9]) - ( 0.00420000*STATES[11])/CONSTANTS[103]; ALGEBRAIC[51] = 1.00000/(1.00000+( CONSTANTS[26]*CONSTANTS[27])/pow(CONSTANTS[27]+STATES[9], 2.00000)+( CONSTANTS[29]*CONSTANTS[30])/pow(CONSTANTS[30]+STATES[9], 2.00000)); RATES[9] = ALGEBRAIC[51]*((( ALGEBRAIC[184]*CONSTANTS[130])/CONSTANTS[125]+( STATES[15]*CONSTANTS[128])/CONSTANTS[125]) - ( ALGEBRAIC[190]*CONSTANTS[126])/CONSTANTS[125]); ALGEBRAIC[191] = ( CONSTANTS[111]*CONSTANTS[104]*STATES[2]*(1.00000 - STATES[45]))/( (1.00000+( CONSTANTS[104]*CONSTANTS[107])/CONSTANTS[108])*(1.00000+( STATES[2]*CONSTANTS[105])/CONSTANTS[106])); ALGEBRAIC[193] = 10.9200*ALGEBRAIC[191]*(STATES[12] - STATES[2]); ALGEBRAIC[52] = 1.00000/(1.00000+( CONSTANTS[19]*CONSTANTS[20])/pow(CONSTANTS[20]+STATES[2], 2.00000)+( CONSTANTS[21]*CONSTANTS[22])/pow(CONSTANTS[22]+STATES[2], 2.00000)); RATES[2] = ALGEBRAIC[52]*((( - (ALGEBRAIC[79] - 2.00000*ALGEBRAIC[156])*CONSTANTS[32]*CONSTANTS[124])/( 2.00000*CONSTANTS[5]*CONSTANTS[129])+( (STATES[14]+ALGEBRAIC[193])*CONSTANTS[127])/CONSTANTS[129]) - ALGEBRAIC[183]); ALGEBRAIC[192] = ( ALGEBRAIC[184]*CONSTANTS[130])/CONSTANTS[125]+( - ALGEBRAIC[190]*CONSTANTS[126])/CONSTANTS[125]+( STATES[15]*CONSTANTS[128])/CONSTANTS[125]; ALGEBRAIC[194] = (ALGEBRAIC[192]>0.00000 ? ( 91.0000*(1.00000+( 1.00000*1.00000)/(1.00000+pow(0.280000/ALGEBRAIC[50], 8.00000)))*ALGEBRAIC[192])/(1.00000+pow(1.00000/STATES[13], 8.00000)) : 0.00000); ALGEBRAIC[186] = ( 6.00000*(1.00000+( 1.00000*1.00000)/(1.00000+pow(0.280000/ALGEBRAIC[50], 8.00000))))/(1.00000+0.0123000/STATES[13]); RATES[15] = (ALGEBRAIC[194] - STATES[15])/ALGEBRAIC[186]; ALGEBRAIC[195] = (STATES[11] - STATES[12])/120.000; ALGEBRAIC[54] = 1.00000/(1.00000+( CONSTANTS[25]*CONSTANTS[24])/pow(CONSTANTS[24]+STATES[12], 2.00000)); RATES[12] = ALGEBRAIC[54]*(ALGEBRAIC[195] - (STATES[14]+ALGEBRAIC[193])); ALGEBRAIC[197] = (STATES[11] - STATES[13])/120.000; RATES[11] = (ALGEBRAIC[189]+ALGEBRAIC[190]) - (( ALGEBRAIC[195]*CONSTANTS[127])/CONSTANTS[126]+( ALGEBRAIC[197]*CONSTANTS[128])/CONSTANTS[126]); ALGEBRAIC[55] = 1.00000/(1.00000+( CONSTANTS[23]*CONSTANTS[24])/pow(CONSTANTS[24]+STATES[13], 2.00000)); RATES[13] = ALGEBRAIC[55]*(ALGEBRAIC[197] - STATES[15]); ALGEBRAIC[196] = - (( ALGEBRAIC[79]*CONSTANTS[124])/( CONSTANTS[129]*CONSTANTS[5]*2.00000)+( - (STATES[14]+ALGEBRAIC[193])*CONSTANTS[127])/CONSTANTS[129]+ALGEBRAIC[183]); ALGEBRAIC[198] = (ALGEBRAIC[196]>0.00000 ? ( 15.0000*(1.00000+( 1.00000*1.00000)/(1.00000+pow(0.280000/ALGEBRAIC[50], 8.00000)))*ALGEBRAIC[196])/(1.00000+pow(1.00000/STATES[12], 8.00000)) : 0.00000); ALGEBRAIC[185] = ( 2.00000*(1.00000+( 1.00000*1.00000)/(1.00000+pow(0.280000/ALGEBRAIC[50], 8.00000))))/(1.00000+0.0123000/STATES[12]); RATES[14] = (ALGEBRAIC[198] - STATES[14])/ALGEBRAIC[185]; } void computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[2] = 1.00000/(1.00000+exp((STATES[0]+87.6100)/7.48800)); ALGEBRAIC[3] = 1.00000/(1.00000+exp((STATES[0]+93.8100)/7.48800)); ALGEBRAIC[0] = 1.00000/(1.00000+exp(- (STATES[0]+CONSTANTS[34])/CONSTANTS[35])); ALGEBRAIC[16] = 1.00000/( CONSTANTS[38]*exp((STATES[0]+CONSTANTS[36])/CONSTANTS[37])+ CONSTANTS[39]*exp(- (STATES[0]+CONSTANTS[40])/CONSTANTS[41])); ALGEBRAIC[1] = 1.00000/(1.00000+exp((STATES[0]+CONSTANTS[42])/CONSTANTS[43])); ALGEBRAIC[17] = 1.00000/( 3.68600e-06*exp(- (STATES[0]+3.88750)/7.85790)+ 16.0000*exp((STATES[0] - 0.496300)/9.18430)); ALGEBRAIC[18] = 1.00000/( 0.00979400*exp(- (STATES[0]+17.9500)/28.0500)+ 0.334300*exp((STATES[0]+5.73000)/56.6600)); ALGEBRAIC[4] = 1.00000/(1.00000+exp((20.0000 - STATES[0])/13.0000)); ALGEBRAIC[20] = 1.05150/(1.00000/( 1.20890*(1.00000+exp(- (STATES[0] - 18.4099)/29.3814)))+3.50000/(1.00000+exp((STATES[0]+100.000)/29.3814))); ALGEBRAIC[5] = 1.00000/(1.00000+exp((27.0000+STATES[0])/13.0000)); ALGEBRAIC[21] = 43.0000+1.00000/( 0.00141600*exp(- (STATES[0]+96.5200)/59.0500)+ 1.78000e-08*exp((STATES[0]+114.100)/8.07900)); ALGEBRAIC[22] = 6.16200+1.00000/( 0.393300*exp(- (STATES[0]+100.000)/100.000)+ 0.0800400*exp((STATES[0] - 8.00000)/8.59000)); ALGEBRAIC[6] = 1.00000/(1.00000+exp(- (STATES[0]+3.94000+3.30000)/4.23000)); ALGEBRAIC[25] = 0.600000+1.00000/(exp( - 0.0500000*(STATES[0]+6.00000))+exp( 0.0900000*(STATES[0]+14.0000))); ALGEBRAIC[7] = 1.00000/(1.00000+exp((STATES[0]+19.5800+3.30000)/3.69600)); ALGEBRAIC[26] = 7.00000+1.00000/( 0.00450000*exp(- (STATES[0]+20.0000+15.1900)/10.0000)+ 0.00450000*exp((STATES[0]+20.0000+15.1900)/10.0000)); ALGEBRAIC[27] = 1000.00+1.00000/( 3.50000e-05*exp(- (STATES[0]+5.00000+15.1900)/4.00000)+ 3.50000e-05*exp((STATES[0]+5.00000+15.1900)/6.00000)); ALGEBRAIC[23] = ALGEBRAIC[7]; ALGEBRAIC[8] = STATES[33]*1.00000; ALGEBRAIC[24] = 1.00000/(CONSTANTS[51]/ALGEBRAIC[8]+pow(1.00000+CONSTANTS[50]/STATES[2], 4.00000)); ALGEBRAIC[9] = 1.00000/(1.00000+exp(- (STATES[0]+30.0000)/7.00000)); ALGEBRAIC[28] = 1.00000/( 1.06800*exp((STATES[0]+16.3000)/30.0000)+ 1.06800*exp(- (STATES[0]+16.3000)/30.0000)); ALGEBRAIC[10] = 1.00000/(1.00000+exp((STATES[0]+61.0000)/5.00000)); ALGEBRAIC[29] = 1.00000/( 0.0150000*exp((STATES[0]+71.7000)/15.4000)+ 0.0150000*exp(- (STATES[0]+71.7000)/83.3000)); ALGEBRAIC[11] = 1.00000/(1.00000+exp(- (STATES[0]+8.33700)/6.78900)); ALGEBRAIC[30] = 12.9800+1.00000/( 0.365200*exp(((STATES[0]+17.6000) - 31.6600)/3.86900)+ 4.12300e-05*exp(- ((STATES[0]+17.6000) - 47.7800)/20.3800)); ALGEBRAIC[31] = 1.86500+1.00000/( 0.0662900*exp(((STATES[0]+17.2000) - 34.7000)/7.35500)+ 1.12800e-05*exp(- ((STATES[0]+17.2000) - 29.7400)/25.9400)); ALGEBRAIC[12] = 1.00000/(1.00000+exp(- (STATES[0]+11.6000)/8.93200)); ALGEBRAIC[33] = 817.300+1.00000/( 0.000232600*exp((STATES[0]+48.2800)/17.8000)+ 0.00129200*exp(- (STATES[0]+210.000)/230.000)); ALGEBRAIC[13] = 1.00000/(1.00000+exp((STATES[0]+87.0000)/9.50000)); ALGEBRAIC[34] = 2000.00/(exp((STATES[0]+57.0000)/60.0000)+exp(- (STATES[0]+132.000)/10.0000)); ALGEBRAIC[14] = 1.00000/(1.00000+exp(- (STATES[0]+ 2.55380*CONSTANTS[2]+144.590)/( 1.56920*CONSTANTS[2]+3.81150))); ALGEBRAIC[35] = 122.200/(exp(- (STATES[0]+127.200)/20.3600)+exp((STATES[0]+236.800)/69.3300)); ALGEBRAIC[19] = ALGEBRAIC[1]; ALGEBRAIC[37] = 4.85900+1.00000/( 0.862800*exp(- (STATES[0]+116.726)/7.60050)+ 1.10960*exp((STATES[0]+6.27190)/9.03580)); ALGEBRAIC[40] = 0.720000*(7.00000+1.00000/( 0.0400000*exp(- ((STATES[0]+15.1900) - 4.00000)/7.00000)+ 0.0400000*exp(((STATES[0]+15.1900) - 4.00000)/7.00000))); ALGEBRAIC[41] = 0.490000*(100.000+1.00000/( 0.000120000*exp(- (STATES[0]+15.1900)/3.00000)+ 0.000120000*exp((STATES[0]+15.1900)/7.00000))); ALGEBRAIC[42] = 2.50000*ALGEBRAIC[26]; ALGEBRAIC[32] = ALGEBRAIC[12]; ALGEBRAIC[43] = 1.00000/( 0.0100000*exp((STATES[0] - 50.0000)/20.0000)+ 0.0193000*exp(- (STATES[0]+66.5400)/31.0000)); ALGEBRAIC[49] = ( CONSTANTS[17]*(1.00000 - STATES[1]))/(1.00000+CONSTANTS[18]/STATES[2]); ALGEBRAIC[38] = 1.00000/(1.00000+exp((STATES[0]+84.7000)/6.22000)); ALGEBRAIC[45] = 3.00000*ALGEBRAIC[18]; ALGEBRAIC[46] = 1.46000*ALGEBRAIC[37]; ALGEBRAIC[39] = 1.00000/(1.00000+exp(- (STATES[0]+42.8500)/5.26400)); ALGEBRAIC[47] = ALGEBRAIC[16]; ALGEBRAIC[48] = 2.50000*ALGEBRAIC[40]; ALGEBRAIC[69] = CONSTANTS[114]*STATES[29]+ CONSTANTS[120]*STATES[30]; ALGEBRAIC[70] = 0.300000+0.600000/(1.00000+exp((STATES[0] - 10.0000)/10.0000)); ALGEBRAIC[71] = 1.00000 - ALGEBRAIC[70]; ALGEBRAIC[72] = ALGEBRAIC[70]*STATES[31]+ ALGEBRAIC[71]*STATES[32]; ALGEBRAIC[73] = CONSTANTS[114]*STATES[34]+ CONSTANTS[120]*STATES[30]; ALGEBRAIC[74] = ALGEBRAIC[70]*STATES[35]+ ALGEBRAIC[71]*STATES[32]; ALGEBRAIC[36] = ( STATES[0]*CONSTANTS[5]*CONSTANTS[5])/( CONSTANTS[3]*CONSTANTS[4]); ALGEBRAIC[44] = ( STATES[0]*CONSTANTS[5])/( CONSTANTS[3]*CONSTANTS[4]); ALGEBRAIC[77] = ( 1.00000*ALGEBRAIC[36]*( 0.750000*STATES[7]*exp( 1.00000*ALGEBRAIC[44]) - 0.750000*CONSTANTS[2]))/(exp( 1.00000*ALGEBRAIC[44]) - 1.00000); ALGEBRAIC[50] = ALGEBRAIC[49]+STATES[1]; ALGEBRAIC[78] = 1.00000/(1.00000+CONSTANTS[14]/ALGEBRAIC[50]); ALGEBRAIC[81] = (1.00000 - ALGEBRAIC[78])*CONSTANTS[117]*ALGEBRAIC[77]*STATES[28]*( ALGEBRAIC[69]*(1.00000 - STATES[36])+ STATES[33]*ALGEBRAIC[72]*STATES[36])+ ALGEBRAIC[78]*CONSTANTS[122]*ALGEBRAIC[77]*STATES[28]*( ALGEBRAIC[73]*(1.00000 - STATES[36])+ STATES[33]*ALGEBRAIC[74]*STATES[36]); ALGEBRAIC[177] = (STATES[7] - STATES[8])/CONSTANTS[98]; ALGEBRAIC[76] = ( 1.00000*ALGEBRAIC[36]*( 0.750000*STATES[5]*exp( 1.00000*ALGEBRAIC[44]) - 0.750000*CONSTANTS[0]))/(exp( 1.00000*ALGEBRAIC[44]) - 1.00000); ALGEBRAIC[80] = (1.00000 - ALGEBRAIC[78])*CONSTANTS[116]*ALGEBRAIC[76]*STATES[28]*( ALGEBRAIC[69]*(1.00000 - STATES[36])+ STATES[33]*ALGEBRAIC[72]*STATES[36])+ ALGEBRAIC[78]*CONSTANTS[121]*ALGEBRAIC[76]*STATES[28]*( ALGEBRAIC[73]*(1.00000 - STATES[36])+ STATES[33]*ALGEBRAIC[74]*STATES[36]); ALGEBRAIC[153] = 1.00000/(1.00000+pow(CONSTANTS[70]/STATES[2], 2.00000)); ALGEBRAIC[96] = exp(( CONSTANTS[68]*STATES[0]*CONSTANTS[5])/( CONSTANTS[3]*CONSTANTS[4])); ALGEBRAIC[133] = 1.00000+ (CONSTANTS[0]/CONSTANTS[61])*(1.00000+1.00000/ALGEBRAIC[96]); ALGEBRAIC[134] = CONSTANTS[0]/( CONSTANTS[61]*ALGEBRAIC[96]*ALGEBRAIC[133]); ALGEBRAIC[137] = ALGEBRAIC[134]*CONSTANTS[65]; ALGEBRAIC[127] = 1.00000+ (STATES[5]/CONSTANTS[61])*(1.00000+ALGEBRAIC[96]); ALGEBRAIC[128] = ( STATES[5]*ALGEBRAIC[96])/( CONSTANTS[61]*ALGEBRAIC[127]); ALGEBRAIC[140] = ALGEBRAIC[128]*CONSTANTS[65]; ALGEBRAIC[130] = 1.00000+ (STATES[5]/CONSTANTS[59])*(1.00000+STATES[5]/CONSTANTS[60]); ALGEBRAIC[131] = ( STATES[5]*STATES[5])/( ALGEBRAIC[130]*CONSTANTS[59]*CONSTANTS[60]); ALGEBRAIC[143] = ALGEBRAIC[131]*ALGEBRAIC[128]*CONSTANTS[63]; ALGEBRAIC[144] = ALGEBRAIC[134]*CONSTANTS[138]*CONSTANTS[63]; ALGEBRAIC[135] = 1.00000/ALGEBRAIC[133]; ALGEBRAIC[136] = ALGEBRAIC[135]*CONSTANTS[64]; ALGEBRAIC[138] = ALGEBRAIC[136]+ALGEBRAIC[137]; ALGEBRAIC[95] = exp(( CONSTANTS[69]*STATES[0]*CONSTANTS[5])/( CONSTANTS[3]*CONSTANTS[4])); ALGEBRAIC[129] = 1.00000/ALGEBRAIC[127]; ALGEBRAIC[139] = ( ALGEBRAIC[129]*CONSTANTS[64])/ALGEBRAIC[95]; ALGEBRAIC[141] = ALGEBRAIC[139]+ALGEBRAIC[140]; ALGEBRAIC[132] = 1.00000/ALGEBRAIC[130]; ALGEBRAIC[142] = ALGEBRAIC[132]*STATES[2]*CONSTANTS[66]; ALGEBRAIC[145] = CONSTANTS[141]*ALGEBRAIC[141]*(ALGEBRAIC[143]+ALGEBRAIC[142])+ CONSTANTS[142]*ALGEBRAIC[143]*(CONSTANTS[141]+ALGEBRAIC[138]); ALGEBRAIC[146] = CONSTANTS[140]*ALGEBRAIC[143]*(ALGEBRAIC[141]+CONSTANTS[142])+ ALGEBRAIC[141]*ALGEBRAIC[142]*(CONSTANTS[140]+ALGEBRAIC[144]); ALGEBRAIC[147] = CONSTANTS[140]*ALGEBRAIC[138]*(ALGEBRAIC[143]+ALGEBRAIC[142])+ ALGEBRAIC[144]*ALGEBRAIC[142]*(CONSTANTS[141]+ALGEBRAIC[138]); ALGEBRAIC[148] = CONSTANTS[141]*ALGEBRAIC[144]*(ALGEBRAIC[141]+CONSTANTS[142])+ ALGEBRAIC[138]*CONSTANTS[142]*(CONSTANTS[140]+ALGEBRAIC[144]); ALGEBRAIC[149] = ALGEBRAIC[145]/(ALGEBRAIC[145]+ALGEBRAIC[146]+ALGEBRAIC[147]+ALGEBRAIC[148]); ALGEBRAIC[150] = ALGEBRAIC[146]/(ALGEBRAIC[145]+ALGEBRAIC[146]+ALGEBRAIC[147]+ALGEBRAIC[148]); ALGEBRAIC[151] = ALGEBRAIC[147]/(ALGEBRAIC[145]+ALGEBRAIC[146]+ALGEBRAIC[147]+ALGEBRAIC[148]); ALGEBRAIC[152] = ALGEBRAIC[148]/(ALGEBRAIC[145]+ALGEBRAIC[146]+ALGEBRAIC[147]+ALGEBRAIC[148]); ALGEBRAIC[154] = ( 3.00000*( ALGEBRAIC[152]*ALGEBRAIC[143] - ALGEBRAIC[149]*ALGEBRAIC[144])+ ALGEBRAIC[151]*ALGEBRAIC[140]) - ALGEBRAIC[150]*ALGEBRAIC[137]; ALGEBRAIC[155] = ALGEBRAIC[150]*CONSTANTS[141] - ALGEBRAIC[149]*CONSTANTS[140]; ALGEBRAIC[156] = 0.200000*CONSTANTS[71]*ALGEBRAIC[153]*( CONSTANTS[6]*ALGEBRAIC[154]+ CONSTANTS[7]*ALGEBRAIC[155]); ALGEBRAIC[178] = (STATES[5] - STATES[4])/CONSTANTS[98]; ALGEBRAIC[180] = (STATES[8] - STATES[6])/CONSTANTS[99]; ALGEBRAIC[57] = (( CONSTANTS[3]*CONSTANTS[4])/CONSTANTS[5])*log(CONSTANTS[2]/STATES[8]); ALGEBRAIC[66] = CONSTANTS[48]*STATES[25]*STATES[26]*STATES[27]*(STATES[0] - ALGEBRAIC[57]); ALGEBRAIC[67] = 1.00000/(1.00000+exp(- (STATES[0] - 12.0000)/16.0000)); ALGEBRAIC[68] = CONSTANTS[49]*ALGEBRAIC[67]*(STATES[0] - ALGEBRAIC[57]); ALGEBRAIC[83] = 1.00000/(1.00000+exp((STATES[0]+54.8100)/38.2100)); ALGEBRAIC[84] = 1.00000 - ALGEBRAIC[83]; ALGEBRAIC[85] = ALGEBRAIC[83]*STATES[39]+ ALGEBRAIC[84]*STATES[40]; ALGEBRAIC[86] = ( (1.00000/(1.00000+exp((STATES[0]+55.0000)/( 0.320000*75.0000))))*1.00000)/(1.00000+exp((STATES[0] - 10.0000)/( 0.320000*30.0000))); ALGEBRAIC[87] = CONSTANTS[54]* pow((CONSTANTS[2]/5.40000), 1.0 / 2)*ALGEBRAIC[85]*ALGEBRAIC[86]*(STATES[0] - ALGEBRAIC[57]); ALGEBRAIC[59] = (( CONSTANTS[3]*CONSTANTS[4])/CONSTANTS[5])*log((CONSTANTS[2]+ CONSTANTS[33]*CONSTANTS[0])/(STATES[8]+ CONSTANTS[33]*STATES[4])); ALGEBRAIC[88] = 1.00000+0.600000/(1.00000+pow(3.80000e-05/STATES[10], 1.40000)); ALGEBRAIC[89] = CONSTANTS[55]*ALGEBRAIC[88]*STATES[41]*STATES[42]*(STATES[0] - ALGEBRAIC[59]); ALGEBRAIC[93] = 1.00000/(1.00000+exp(((STATES[0]+116.000) - 5.50000*CONSTANTS[2])/11.0000)); ALGEBRAIC[94] = CONSTANTS[58]*2.32380* pow((CONSTANTS[2]/5.40000), 1.0 / 2)*ALGEBRAIC[93]*STATES[44]*(STATES[0] - ALGEBRAIC[57]); ALGEBRAIC[158] = CONSTANTS[81]*exp(( (1.00000 - CONSTANTS[82])*STATES[0]*CONSTANTS[5])/( 3.00000*CONSTANTS[3]*CONSTANTS[4])); ALGEBRAIC[162] = ( CONSTANTS[76]*pow(CONSTANTS[2]/CONSTANTS[84], 2.00000))/((pow(1.00000+CONSTANTS[0]/ALGEBRAIC[158], 3.00000)+pow(1.00000+CONSTANTS[2]/CONSTANTS[84], 2.00000)) - 1.00000); ALGEBRAIC[159] = CONSTANTS[89]/(1.00000+CONSTANTS[88]/CONSTANTS[90]+STATES[4]/CONSTANTS[91]+STATES[8]/CONSTANTS[92]); ALGEBRAIC[163] = ( CONSTANTS[77]*ALGEBRAIC[159]*CONSTANTS[88])/(1.00000+CONSTANTS[86]/CONSTANTS[87]); ALGEBRAIC[157] = CONSTANTS[80]*exp(( CONSTANTS[82]*STATES[0]*CONSTANTS[5])/( 3.00000*CONSTANTS[3]*CONSTANTS[4])); ALGEBRAIC[160] = ( CONSTANTS[72]*pow(STATES[4]/ALGEBRAIC[157], 3.00000))/((pow(1.00000+STATES[4]/ALGEBRAIC[157], 3.00000)+pow(1.00000+STATES[8]/CONSTANTS[83], 2.00000)) - 1.00000); ALGEBRAIC[161] = ( CONSTANTS[75]*pow(CONSTANTS[0]/ALGEBRAIC[158], 3.00000))/((pow(1.00000+CONSTANTS[0]/ALGEBRAIC[158], 3.00000)+pow(1.00000+CONSTANTS[2]/CONSTANTS[84], 2.00000)) - 1.00000); ALGEBRAIC[164] = ( CONSTANTS[79]*pow(STATES[8]/CONSTANTS[83], 2.00000))/((pow(1.00000+STATES[4]/ALGEBRAIC[157], 3.00000)+pow(1.00000+STATES[8]/CONSTANTS[83], 2.00000)) - 1.00000); ALGEBRAIC[165] = CONSTANTS[145]*ALGEBRAIC[160]*CONSTANTS[144]+ ALGEBRAIC[161]*ALGEBRAIC[164]*ALGEBRAIC[163]+ CONSTANTS[144]*ALGEBRAIC[164]*ALGEBRAIC[163]+ ALGEBRAIC[163]*ALGEBRAIC[160]*CONSTANTS[144]; ALGEBRAIC[166] = ALGEBRAIC[161]*CONSTANTS[143]*ALGEBRAIC[164]+ ALGEBRAIC[160]*CONSTANTS[144]*ALGEBRAIC[162]+ ALGEBRAIC[162]*CONSTANTS[143]*ALGEBRAIC[164]+ CONSTANTS[144]*ALGEBRAIC[162]*ALGEBRAIC[164]; ALGEBRAIC[167] = CONSTANTS[144]*ALGEBRAIC[162]*CONSTANTS[145]+ ALGEBRAIC[163]*ALGEBRAIC[161]*CONSTANTS[143]+ ALGEBRAIC[161]*CONSTANTS[143]*CONSTANTS[145]+ ALGEBRAIC[162]*CONSTANTS[145]*CONSTANTS[143]; ALGEBRAIC[168] = ALGEBRAIC[164]*ALGEBRAIC[163]*ALGEBRAIC[161]+ ALGEBRAIC[162]*CONSTANTS[145]*ALGEBRAIC[160]+ ALGEBRAIC[161]*CONSTANTS[145]*ALGEBRAIC[160]+ ALGEBRAIC[163]*ALGEBRAIC[161]*ALGEBRAIC[160]; ALGEBRAIC[169] = ALGEBRAIC[165]/(ALGEBRAIC[165]+ALGEBRAIC[166]+ALGEBRAIC[167]+ALGEBRAIC[168]); ALGEBRAIC[170] = ALGEBRAIC[166]/(ALGEBRAIC[165]+ALGEBRAIC[166]+ALGEBRAIC[167]+ALGEBRAIC[168]); ALGEBRAIC[173] = 3.00000*( ALGEBRAIC[169]*ALGEBRAIC[162] - ALGEBRAIC[170]*ALGEBRAIC[163]); ALGEBRAIC[171] = ALGEBRAIC[167]/(ALGEBRAIC[165]+ALGEBRAIC[166]+ALGEBRAIC[167]+ALGEBRAIC[168]); ALGEBRAIC[172] = ALGEBRAIC[168]/(ALGEBRAIC[165]+ALGEBRAIC[166]+ALGEBRAIC[167]+ALGEBRAIC[168]); ALGEBRAIC[174] = 2.00000*( ALGEBRAIC[172]*CONSTANTS[143] - ALGEBRAIC[171]*ALGEBRAIC[160]); ALGEBRAIC[175] = CONSTANTS[93]*( CONSTANTS[6]*ALGEBRAIC[173]+ CONSTANTS[8]*ALGEBRAIC[174]); ALGEBRAIC[15] = (VOI<=CONSTANTS[13] ? CONSTANTS[12] : 0.00000); ALGEBRAIC[91] = CONSTANTS[57]*STATES[43]*STATES[43]*(STATES[0] - ALGEBRAIC[57]); ALGEBRAIC[56] = (( CONSTANTS[3]*CONSTANTS[4])/CONSTANTS[5])*log(CONSTANTS[0]/STATES[4]); ALGEBRAIC[60] = CONSTANTS[44]*STATES[17]+ CONSTANTS[112]*STATES[18]; ALGEBRAIC[61] = CONSTANTS[44]*STATES[17]+ CONSTANTS[112]*STATES[20]; ALGEBRAIC[62] = 1.00000/(1.00000+CONSTANTS[14]/ALGEBRAIC[50]); ALGEBRAIC[63] = CONSTANTS[45]*(STATES[0] - ALGEBRAIC[56])*pow(STATES[16], 3.00000)*( (1.00000 - ALGEBRAIC[62])*ALGEBRAIC[60]*STATES[19]+ ALGEBRAIC[62]*ALGEBRAIC[61]*STATES[21]); ALGEBRAIC[64] = 1.00000/(1.00000+CONSTANTS[14]/ALGEBRAIC[50]); ALGEBRAIC[65] = CONSTANTS[47]*(STATES[0] - ALGEBRAIC[56])*STATES[22]*( (1.00000 - ALGEBRAIC[64])*STATES[23]+ ALGEBRAIC[64]*STATES[24]); ALGEBRAIC[75] = ( 4.00000*ALGEBRAIC[36]*( STATES[2]*exp( 2.00000*ALGEBRAIC[44]) - 0.341000*CONSTANTS[1]))/(exp( 2.00000*ALGEBRAIC[44]) - 1.00000); ALGEBRAIC[79] = (1.00000 - ALGEBRAIC[78])*CONSTANTS[52]*ALGEBRAIC[75]*STATES[28]*( ALGEBRAIC[69]*(1.00000 - STATES[36])+ STATES[33]*ALGEBRAIC[72]*STATES[36])+ ALGEBRAIC[78]*CONSTANTS[115]*ALGEBRAIC[75]*STATES[28]*( ALGEBRAIC[73]*(1.00000 - STATES[36])+ STATES[33]*ALGEBRAIC[74]*STATES[36]); ALGEBRAIC[58] = (( CONSTANTS[3]*CONSTANTS[4])/( 2.00000*CONSTANTS[5]))*log(CONSTANTS[1]/STATES[10]); ALGEBRAIC[82] = CONSTANTS[53]*STATES[37]*STATES[38]*(STATES[0] - ALGEBRAIC[58]); ALGEBRAIC[90] = CONSTANTS[56]*STATES[43]*STATES[43]*(STATES[0] - ALGEBRAIC[56]); ALGEBRAIC[92] = ALGEBRAIC[90]+ALGEBRAIC[91]; ALGEBRAIC[123] = 1.00000/(1.00000+pow(CONSTANTS[70]/STATES[10], 2.00000)); ALGEBRAIC[103] = 1.00000+ (CONSTANTS[0]/CONSTANTS[61])*(1.00000+1.00000/ALGEBRAIC[96]); ALGEBRAIC[104] = CONSTANTS[0]/( CONSTANTS[61]*ALGEBRAIC[96]*ALGEBRAIC[103]); ALGEBRAIC[107] = ALGEBRAIC[104]*CONSTANTS[65]; ALGEBRAIC[97] = 1.00000+ (STATES[4]/CONSTANTS[61])*(1.00000+ALGEBRAIC[96]); ALGEBRAIC[98] = ( STATES[4]*ALGEBRAIC[96])/( CONSTANTS[61]*ALGEBRAIC[97]); ALGEBRAIC[110] = ALGEBRAIC[98]*CONSTANTS[65]; ALGEBRAIC[100] = 1.00000+ (STATES[4]/CONSTANTS[59])*(1.00000+STATES[4]/CONSTANTS[60]); ALGEBRAIC[101] = ( STATES[4]*STATES[4])/( ALGEBRAIC[100]*CONSTANTS[59]*CONSTANTS[60]); ALGEBRAIC[113] = ALGEBRAIC[101]*ALGEBRAIC[98]*CONSTANTS[63]; ALGEBRAIC[114] = ALGEBRAIC[104]*CONSTANTS[132]*CONSTANTS[63]; ALGEBRAIC[105] = 1.00000/ALGEBRAIC[103]; ALGEBRAIC[106] = ALGEBRAIC[105]*CONSTANTS[64]; ALGEBRAIC[108] = ALGEBRAIC[106]+ALGEBRAIC[107]; ALGEBRAIC[99] = 1.00000/ALGEBRAIC[97]; ALGEBRAIC[109] = ( ALGEBRAIC[99]*CONSTANTS[64])/ALGEBRAIC[95]; ALGEBRAIC[111] = ALGEBRAIC[109]+ALGEBRAIC[110]; ALGEBRAIC[102] = 1.00000/ALGEBRAIC[100]; ALGEBRAIC[112] = ALGEBRAIC[102]*STATES[10]*CONSTANTS[66]; ALGEBRAIC[115] = CONSTANTS[135]*ALGEBRAIC[111]*(ALGEBRAIC[113]+ALGEBRAIC[112])+ CONSTANTS[136]*ALGEBRAIC[113]*(CONSTANTS[135]+ALGEBRAIC[108]); ALGEBRAIC[116] = CONSTANTS[134]*ALGEBRAIC[113]*(ALGEBRAIC[111]+CONSTANTS[136])+ ALGEBRAIC[111]*ALGEBRAIC[112]*(CONSTANTS[134]+ALGEBRAIC[114]); ALGEBRAIC[117] = CONSTANTS[134]*ALGEBRAIC[108]*(ALGEBRAIC[113]+ALGEBRAIC[112])+ ALGEBRAIC[114]*ALGEBRAIC[112]*(CONSTANTS[135]+ALGEBRAIC[108]); ALGEBRAIC[118] = CONSTANTS[135]*ALGEBRAIC[114]*(ALGEBRAIC[111]+CONSTANTS[136])+ ALGEBRAIC[108]*CONSTANTS[136]*(CONSTANTS[134]+ALGEBRAIC[114]); ALGEBRAIC[119] = ALGEBRAIC[115]/(ALGEBRAIC[115]+ALGEBRAIC[116]+ALGEBRAIC[117]+ALGEBRAIC[118]); ALGEBRAIC[120] = ALGEBRAIC[116]/(ALGEBRAIC[115]+ALGEBRAIC[116]+ALGEBRAIC[117]+ALGEBRAIC[118]); ALGEBRAIC[121] = ALGEBRAIC[117]/(ALGEBRAIC[115]+ALGEBRAIC[116]+ALGEBRAIC[117]+ALGEBRAIC[118]); ALGEBRAIC[122] = ALGEBRAIC[118]/(ALGEBRAIC[115]+ALGEBRAIC[116]+ALGEBRAIC[117]+ALGEBRAIC[118]); ALGEBRAIC[124] = ( 3.00000*( ALGEBRAIC[122]*ALGEBRAIC[113] - ALGEBRAIC[119]*ALGEBRAIC[114])+ ALGEBRAIC[121]*ALGEBRAIC[110]) - ALGEBRAIC[120]*ALGEBRAIC[107]; ALGEBRAIC[125] = ALGEBRAIC[120]*CONSTANTS[135] - ALGEBRAIC[119]*CONSTANTS[134]; ALGEBRAIC[126] = 0.800000*CONSTANTS[71]*ALGEBRAIC[123]*( CONSTANTS[6]*ALGEBRAIC[124]+ CONSTANTS[7]*ALGEBRAIC[125]); ALGEBRAIC[176] = ( CONSTANTS[94]*ALGEBRAIC[36]*( STATES[4]*exp(ALGEBRAIC[44]) - CONSTANTS[0]))/(exp(ALGEBRAIC[44]) - 1.00000); ALGEBRAIC[182] = ( CONSTANTS[96]*STATES[10])/(CONSTANTS[97]+STATES[10]); ALGEBRAIC[179] = ( CONSTANTS[95]*4.00000*ALGEBRAIC[36]*( STATES[10]*exp( 2.00000*ALGEBRAIC[44]) - 0.341000*CONSTANTS[1]))/(exp( 2.00000*ALGEBRAIC[44]) - 1.00000); ALGEBRAIC[181] = (STATES[4] - STATES[3])/CONSTANTS[99]; ALGEBRAIC[183] = (STATES[2] - STATES[10])/CONSTANTS[98]; ALGEBRAIC[184] = (STATES[10] - STATES[9])/CONSTANTS[99]; ALGEBRAIC[187] = ( CONSTANTS[101]*ALGEBRAIC[50])/(ALGEBRAIC[50]+CONSTANTS[14]); ALGEBRAIC[188] = ( CONSTANTS[100]*ALGEBRAIC[50])/(ALGEBRAIC[50]+CONSTANTS[14]); ALGEBRAIC[189] = ( 0.000200000*(ALGEBRAIC[188]+1.00000))/(1.00000+(CONSTANTS[102] - ALGEBRAIC[187])/STATES[10]) - ( 0.00105000*STATES[11])/CONSTANTS[103]; ALGEBRAIC[53] = 1.00000/(1.00000+( CONSTANTS[28]*CONSTANTS[27])/pow(CONSTANTS[27]+STATES[10], 2.00000)+( CONSTANTS[31]*CONSTANTS[30])/pow(CONSTANTS[30]+STATES[10], 2.00000)); ALGEBRAIC[190] = ( 0.00260000*(ALGEBRAIC[188]+1.00000))/(1.00000+(CONSTANTS[102] - ALGEBRAIC[187])/STATES[9]) - ( 0.00420000*STATES[11])/CONSTANTS[103]; ALGEBRAIC[51] = 1.00000/(1.00000+( CONSTANTS[26]*CONSTANTS[27])/pow(CONSTANTS[27]+STATES[9], 2.00000)+( CONSTANTS[29]*CONSTANTS[30])/pow(CONSTANTS[30]+STATES[9], 2.00000)); ALGEBRAIC[191] = ( CONSTANTS[111]*CONSTANTS[104]*STATES[2]*(1.00000 - STATES[45]))/( (1.00000+( CONSTANTS[104]*CONSTANTS[107])/CONSTANTS[108])*(1.00000+( STATES[2]*CONSTANTS[105])/CONSTANTS[106])); ALGEBRAIC[193] = 10.9200*ALGEBRAIC[191]*(STATES[12] - STATES[2]); ALGEBRAIC[52] = 1.00000/(1.00000+( CONSTANTS[19]*CONSTANTS[20])/pow(CONSTANTS[20]+STATES[2], 2.00000)+( CONSTANTS[21]*CONSTANTS[22])/pow(CONSTANTS[22]+STATES[2], 2.00000)); ALGEBRAIC[192] = ( ALGEBRAIC[184]*CONSTANTS[130])/CONSTANTS[125]+( - ALGEBRAIC[190]*CONSTANTS[126])/CONSTANTS[125]+( STATES[15]*CONSTANTS[128])/CONSTANTS[125]; ALGEBRAIC[194] = (ALGEBRAIC[192]>0.00000 ? ( 91.0000*(1.00000+( 1.00000*1.00000)/(1.00000+pow(0.280000/ALGEBRAIC[50], 8.00000)))*ALGEBRAIC[192])/(1.00000+pow(1.00000/STATES[13], 8.00000)) : 0.00000); ALGEBRAIC[186] = ( 6.00000*(1.00000+( 1.00000*1.00000)/(1.00000+pow(0.280000/ALGEBRAIC[50], 8.00000))))/(1.00000+0.0123000/STATES[13]); ALGEBRAIC[195] = (STATES[11] - STATES[12])/120.000; ALGEBRAIC[54] = 1.00000/(1.00000+( CONSTANTS[25]*CONSTANTS[24])/pow(CONSTANTS[24]+STATES[12], 2.00000)); ALGEBRAIC[197] = (STATES[11] - STATES[13])/120.000; ALGEBRAIC[55] = 1.00000/(1.00000+( CONSTANTS[23]*CONSTANTS[24])/pow(CONSTANTS[24]+STATES[13], 2.00000)); ALGEBRAIC[196] = - (( ALGEBRAIC[79]*CONSTANTS[124])/( CONSTANTS[129]*CONSTANTS[5]*2.00000)+( - (STATES[14]+ALGEBRAIC[193])*CONSTANTS[127])/CONSTANTS[129]+ALGEBRAIC[183]); ALGEBRAIC[198] = (ALGEBRAIC[196]>0.00000 ? ( 15.0000*(1.00000+( 1.00000*1.00000)/(1.00000+pow(0.280000/ALGEBRAIC[50], 8.00000)))*ALGEBRAIC[196])/(1.00000+pow(1.00000/STATES[12], 8.00000)) : 0.00000); ALGEBRAIC[185] = ( 2.00000*(1.00000+( 1.00000*1.00000)/(1.00000+pow(0.280000/ALGEBRAIC[50], 8.00000))))/(1.00000+0.0123000/STATES[12]); }