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Equations have been developed to describe cardiac action potentials and pacemaker
activity. The model takes account of extensive developments in experimental work
since the formulation of the M.N.T. (R. E. McAllister, D. Noble and R. W. Tsien,
J. Physiol., Lond. 251, 1-59 (1975)) and B.R. (G. W. Beeler and H. Reuter, J. Physiol.,
Lond. 268, 177-210 (1977)) equations.

The current mechanism iy, has been replaced by the hyperpolarizing-activated
current, &;,. Depletion and accumulation of potassium ions in the extracellular space
are represented either by partial differential equations for diffusion in cylindrical or
spherical preparations or, when such accuracy is not essential, by a three-compartment
model in which the extracellular concentration in the intercellular space is uniform.
The description of the delayed K current, ik, remains based on the work of D. Noble
and R. W. Tsien (J. Physiol., Lond. 200, 205-231 (1969a)). The instantaneous
inward-rectifier, ix,, is based on S. Hagiwara and K. Takahashi’s equation (J.
Membrane Biol. 18, 61-80 (1974)) and on the patch clamp studies of B. Sakmann and
G. Trube (J. Physiol., Lond. 347, 641-658 (1984)) and of Y. Momose, G. Szabo and
W. R. Giles (Biophys. J. 41, 311a (1983)). The equations successfully account for all
the properties formerly attributed to ig,, as well as giving more complete descriptions
of ig, and ix.

The sodium current equations are based on experimental data of T. J. Colatsky
(J. Physiol., Lond. 305, 215-234 (1980)) and A. M. Brown, K. S. Lee and T. Powell
(J. Physiol., Lond. 318, 479-500 (1981)). The equations correctly reproduce the range
and magnitude of the sodium ‘window’ current.

The second inward current is based in part on the data of H. Reuter and H. Scholz
(J. Physiol., Lond. 264, 17-47 (1977)) and K. S. Lee and R. W. Tsien (Nature, Lond.
297,498-501 (1982)) so far as the ion selectivity is concerned. However, the activation
and inactivation gating kinetics have been greatly speeded up to reproduce the very
much faster currents recorded in recent work, A major consequence of this change
is that Ca current inactivation mostly occurs very early in the action potential plateau.

The sodium—potassium exchange pump equations are based on data reported by
D. C. Gadsby (Proc. natn. Acad. Sci. U.S.A.77,4035-4039 (1980)) and by D. A. Eisner
and W. J. Lederer (J. Physiol., Lond. 303, 441-474 (1980)). The sodium—calcium
exchange current is based on L. J. Mullins’ equations (J. gen. Physiol. 70, 681-695
(1977)). Intracellular calcium sequestration is represented by simple equations for
uptake into a reticulum store which then reprimes a release store. The repriming
equations use the data of W. R. Gibbons & H. A. Fozzard (J. gen. Physiol. 65, 367-384
(1975b)). Following Fabiato & Fabiato’s work (J. Physiol., Lond. 249, 469-495
(1975)), Ca release is assumed to be triggered by intracellular free calcium. The
equations reproduce the essential features of intracellular free calcium transients as
measured with aequorin.

The explanatory range of the model entirely includes and greatly extends that of
the M.N.T. equations. Despite the major changes made, the overall time-course of
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the conductance changes to potassium ions strongly resembles that of the M.N.T.
model. There are however important differences in the time courses of Na and Ca
conductance changes. The Na conductance now includes a component due to the
hyperpolarizing-activated current, i;, which slowly increases during the pacemaker
depolarization. The Ca conductance changes are very much faster than in the M.N.T.
model so that in action potentials longer than about 50 ms the primary contribution
of the fast gated calcium channel to the plateau is due to a steady-state ‘window’
current or non-inactivated component. Slower calcium or Ca-activated currents, such
as the Na—Ca exchange current, or Ca-gated currents, or a much slower Ca channel
must then play the dynamic role previously attributed to the kinetics of a single type
of calcium channel. This feature of the model in turn means that the repolarization
process should be related to the inotropic state, as indicated by experimental work.

The model successfully reproduces intracellular sodium concentration changes
produced by variations in [Na],, or Na—K pump block. The sodium dependence of
the overshoot potential is well reproduced despite the fact thatsteady state intracellular
Na is proportional to extracellular Na, as in the experimental results of D. Ellis
J. Physiol., Lond. 274, 211-240 (1977)).

The model reproduces the responses to current pulses applied during the plateau
and pacemaker phases. In particular, a substantial net decrease in conductance is
predicted during the pacemaker depolarization despite the fact that the controlling
process is an increase in conductance for the hyperpolarizing-activated current.

The immediate effects of changing extracellular [K] are reproduced, including: (i)
the shortening of action potential duration and suppression of pacemaker activity at
high [K]; (ii) the increased automaticity at moderately low [K]; and (iii) the
depolarization to the plateau range with premature depolarizations and low voltage
oscillations at very low [K].

The ionic currents attributed to changes in Na—K pump activity are well
reproduced. It is shown that the apparent K, for K activation of the pump depends
strongly on the size of the restricted extracellular space. With a 309, space (as in
canine Purkinje fibres) the apparent K, is close to the assumed real value of 1 mm.
When the extracellular space is reduced to below 59%,, the apparent K, increases by
up to an order of magnitude. A substantial part of the pump is then not available
for inhibition by low [K];,. These results can explain the apparent discrepancies in
the literature concerning the K, for pump activation.

DEFINITION OF SYMBOLS

355

Voltages are in millivolts, concentrations in millimoles per litre, currents

in nanoamperes.

time (seconds)

membrane potential

sodium equilibrium potential
calcium equilibrium potential
potassium equilibrium potential
total membrane ionic current flow
membrane capacitance (microfarads)
radius of preparation (micrometres)
length of preparation (micrometres)
radial distance (micrometres)

K™ ion diffusion constant

23-2
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vV total volume of preparation (microlitres)

V total intracellular volume (microlitres)

A total extracellular volume (microlitres)

Vap volume of sarcoplasmic reticulum (s.r.) uptake store
Vel volume of store of releasable calcium (note: no assumptions are made on

whether these stores are physically distinct)

Vees fraction occupied by extracellular space

F Féraday constant

[Na],, [Na]; extra- and intracellular Na concentrations (millimoles per litre)
[K]y, [K]e, [K];  bulk, cleft and intracellular K concentrations

[Ca],, [Ca]; extra- and intracellular Ca concentrations

[Ca]yp, [Calpe Ca concentrations in s.r. uptake and release stores
[Calyp maximum concentration in s.r. uptake store

b, Na sodium background current

&b, Na sodium background conductance

i sodium—potassium exchange pump current

iy maximum value of 7,

Ky x K, for K activation of Na—K pump

Ky, Na K, for Na activation of Na-K pump

INaCa Na—-Ca exchange current

kxaca scaling factor for iy,c,

Eyaca reversal potential for iy,c,

MNaca stoichiometry of Na—Ca exchange (Na:Ca)

YNacCa position of energy barrier controlling voltage-dependence of iy, ¢,
dxaca denominator constant for iy, ¢,

b, Ca calcium background current

&b, Ca calcium background conductance

INa TTX sensitive fast sodium current

gNa conductance of iy, channels

m, &y o activation gate and rate coeflicients

h, a,, B, inactivation gate and rate coefficients

E. .. Reversal potential for sodium channel

ig total TTX-insensitive inward current (the ‘second inward current’)
lca,t fast calcium current (first component of ;)

ica,t fully-activated value of i, ;

ica,s slow calcium current (third component of ;)

isi, cas Isi, Na» si,k  Ca, Na and K components of g, ¢

d, ag, B4 activation gating and rate coefficients for i, ;

Sy o By inactivation gating and rate coefficients for ig, ¢
Jo» %o Bra Ca; dependent inactivation of ig, ¢

tm, Na» 'm, K> im, ca D€t membrane fluxes expressed as currents

E.., ‘reversal potential’ for iy,

Ky, ca K,, for Ca binding to release site

r number of Ca ions required to bind to activate release

tup Ca uptake into s.r. expressed as a current
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lp Ca transferred into releasable form
lrel Ca release
p variable controlling transfer of Ca to release sites
Tup time constant for s.r. uptake of calcium.
Trep time constant for repriming release store
Trel time constant for Ca release (note: these time constants are not necessarily

the overall time constants: see equations (42) to (51) for more details)
i hyperpolarizing-activated Na—K current

(nearest equivalent to ix, in M.N.T. model)
iy fully-activated value of 7
Ky ¢ K, for extracellular K activation of
&K - K conductance of i; channels
8. Na Na conductance of 7; channels
Y, Ay Py gating variable and rate coefficients for ¢
g delayed K current

(equivalent of 7, in M.N.T. model)
g fully activated value of ix
K, max maximum outward current carried by i (at [K], = 140 mm)
X, 0y By gating variable and rate coefficients for ix
iK1 background K current (inward rectifier)
Ky x1 K, for K activation of i,
lo transient outward current
K to K, for [Ca]; activation of i,

INTRODUCTION

In 1975, McAllister ¢t al. published a model of Purkinje fibre electrical activity. This model
(which in the present paper we shall refer to as the M.N.T. model) represented the ionic currents
using gating equations of the Hodgkin-Huxley form, and was based on Noble & Tsien’s (1968,
1969a, b) experimental analysis of slow ionic current mechanisms together with Beeler &
Reuter’s (19704, b) work on the second inward current. Beeler & Reuter (1977) subsequently
developed a similar model for ventricular activity.

The very substantial delay between the experimental and theoretical papers reflects, in part,
the difficulties involved. Detailed experimental information on some of the important currents
(inq In particular) was scanty, and it was a matter for judgement to decide when a worthwhile
model had been developed. That was bound to be a difficult judgement given the nature of
the arguments on the use of voltage clamp techniques in the heart ( Johnson & Lieberman 1971
Attwell & Cohen 1977; Beeler & McGuigan 1978).

However useful the M.N.T. model may have been, it has now outlived that usefulness, and
for a variety of reasons. First, one of the major elements of the model, that is, the i, system,
has recently been radically re-interpreted (DiFrancesco 1981 a, b; DiFrancesco & Noble 19804,
1981, 1982). Secondly, much better experimental information on the sodium current in the
heart (Lee et al. 1979; Ebihara et al. 1980; Brown et al. 1981) and in Purkinje fibres in particular
(Colatsky 1980) is now available. Thirdly, it has become increasingly important to take account
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of intracellular and extracellular ion concentration changes and, therefore, of the influence of
ionic pumps, exchange mechanisms and of restricted diffusion. Good experimental information
is also now available on the sodium pump in Purkinje fibres (Isenberg & Trautwein 1974 ; Ellis
1977; Deitmer & Ellis 1978; Gadsby 1980; Eisner & Lederer 1980) and on the influence of
extracellular potassium ions on potassium and potassium-dependent currents (DiFrancesco &
McNaughton 1979; DiFrancesco ¢t al. 1979b; Brown et al. 1980).

Some information is also available on the sodium—calcium exchange process (Horackova &
Vassort 1979; Chapman & Tunstall 1980; Coraboeufez al. 1981 ; Fischmeister & Vassort 1981;
Sheu & Fozzard 1982; Mentrard & Vassort 1982), and the possible equations for an
electrogenic Na—Ca exchange have recently been reviewed by Mullins (1977, 1981). We have
incorporated this information together with modelling of the Ca sequestration and release
mechanisms based on the data given by Chapman (1979) and on the calcium-induced calcium
release hypothesis of Fabiato & Fabiato (1975). Important changes have also occurred in the
description and analysis of the second inward current (see review by Noble 1984).

Initially, our work was directed towards the question whether all the properties of ‘ig,” and
of the pacemaker potential that had led, apparently so conclusively, to the i, hypothesis were
compatible with the new interpretation of this mechanism as an inward, largely sodium, current
i; that is activated by hyperpolarization. The answer to that question is that these properties,
including the ‘Nernstian’ behaviour of the reversal potential (Eg,) (DiFrancesco & Noble
19804), inward-going rectification, the ‘cross-over’ phenomenon, and the slope conductance
changes are indeed fully compatible with the new interpretation, and that some other
properties, such as the disappearance of ‘ig,’ in sodium-free solutions (McAllister & Noble
1966; DiFrancesco & Noble 19804) and the otherwise anomalous conductance measurements
reported by DiFrancesco (19814), now receive natural explanations that were not within the
scope of the iy, hypothesis or the M.N.T. model. A full account of this work has recently
appeared in the Amsterdam symposium on cardiac rate and rhythm (DiFrancesco & Noble
1982). In the present paper we shall refer only fairly briefly to the relevant results presented
in that paper using an earlier and much simpler version of the equations.

The work for the Amsterdam paper was limited to answering a particular and pressing
question, but it clearly formed the basis for the more ambitious undertaking to develop a model
that incorporates the full explanatory range of the M.N.T. equations and the greatly extended
range that is now possible with the newer results referred to above. It is this development that
we report in this paper and in a subsequent paper (DiFrancesco et al. 1985). Accompanying
papers (Noble & Noble 1984; Brown et al. 1984a;"b) describe the extension of the model to
the mammalian s.a. node and its application to experimental results in that tissue.

DESCRIPTION OF EQUATIONS

We have chosen to use absolute units of current (in nanoamperes) scaled to give currents
similar to those recorded experimentally in a Purkinje strand of length 2 mm and radius 50 um.
The reason for choosing this convention rather than using current density is that in many of
the calculations current density varies as a function of position in the preparation (to take
account of concentration profiles in the extracellular space). With regard to K-dependent
currents therefore a single current density might be a misleading parameter. The magnitudes
were sometimes scaled up or down to give currents for larger or smaller preparations. The
surface area of our standard fibre is 0.0063 cm?. Assuming that the total cell membrane area
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is ten times larger than the cylinder surface (Mobley & Page 1972), the total cell surface would
be 0.063 cm?. Thus, to convert our figures to nanoamperes per square centimetre the currents
should be multiplied by a factor of about 15. We have assumed a membrane capacitance of
12 uF cm™2 of cylinder surface (Weidmann 1952) or 1.2 uF cm™2 of cell surface, which gives
a value of 0.0756 pF for our standard preparation.

The differential equation for the variation of membrane potential, £, is

dE, /dt = —i4,/C (1)
where C is the membrane capacitance and ¢, is the total current:
thot = 4t ix +ik1 ot i, NaT i, catip T inacatinatica, 1t ica, s Fipuse: (2)

Each of these current components will now be explained in turn.

(a) Hyperpolarizing-activated current, i

The experimental evidence (DiFrancesco 19814) shows that the fully activated current—
voltage relation for this channel is nearly linear. Some of the deviation from linearity, particu-
larly at extreme negative potentials, might be attributed to residual K ion depletion in the
extracellular space, although the presence of outward-going rectification at high K* concen-
trations (DiFrancesco 1982) argues in favour of it being in part a genuine channel property.
Nevertheless, a linear ¢, function is a good approximation in the pacemaker range of potentials
where ¢ has its most important functional role. The behaviour of the reversal potential is
consistent with the view that the total current is composed of relatively independent Na* and
K* components and that, at normal K* and Na™* concentrations, the contributions of these
two ions to the total conductance are approximately equal. The net reversal potential in normal
physiological solutions is then around — 20 mV. At high values of external bulk potassium [K],,
the current is greatly increased (DiFrancesco 19814). This property suggests that the channel
is activated by external potassium. We have assumed a simple first-order binding process for
this activation. The experimental value for K,,, ; (that is, the value of [K],, for half activation)
is 45 mm (DiFrancesco 1982). In Na-free solutions, only the K* component is present. This
then shows a reversal potential close to the expected value for £ (Hart ¢t al. 1980).

The equation we shall use for the fully activated current, i, is therefore:

iy = ([Kle/([Kle+Km, 1)) {8, x (E—Ex) +8, wa (E—Ena)}- (3)

Suitable experimental values for the constants in this equation are g; x, = 3 1S, g x = 3 pS,
K., ; = 45 mm (DiFrancesco 19814, 1982).

The gating mechanism controlling ¢; is the s process described by Noble & Tsien (1968),
except that activation occurs on hyperpolarization, not depolarization. The fully activated state
in our model therefore corresponds to the fully deactivated state in Noble & Tsien’s analysis.
We have chosen the variable y to represent the degree of activation of ¢. So, y = 1 —s. The
equations for a, and g, are those in the M.N.T. model for §; and a, respectively:

dy/d = a, (1—4)—f, ¥ (4)

where: a, = 0.025 exp (—0.067(E+52)), (5)
By =0.5 (E+52)/(1—exp (0.2(E+52))), (6)

(By) g —mss = 2.5. (6a)
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The net current is then given by: —— 1)

It should be noted that, while these equations assume first-order voltage-dependent kinetics
for the gating parameter, y, the most recent experimental data (DiFrancesco & Ferroni 1983;
Hart 1983; DiFrancesco 1984) shows that the onset of ¢ is in fact sigmoid: there is a delay
in the time course which can be removed by conditioning hyperpolarizations. This property,
which is of course important for detailed modelling of channel properties, does not have much
importance in reconstructing the pacemaker potential since in the relevant voltage range the
current is very slow and an initial small delay not too important. For simplicity we have retained
the M.N.T. first-order kinetics, though these could readily be substituted in the program by
more complex equations without significant change in the results computed here.

(b) Time-dependent (delayed) K* current, iy

A considerable amount of new experimental information has appeared on this current since
the M.N.T. equations were formulated. First, it has been shown in a variety of preparations
(Purkinje fibres: DiFrancesco & McNaughton 1979; frog atrium: Brown et al. 1980; ventricle:
McDonald & Trautwein 1978; Rabbit s.a. node: DiFrancesco e al. 1979) that, while the
instantaneous current-voltage relation shows inward-going rectification without a negative slope
conductance region (as first shown by Noble & Tsien 1969a), it does not show the cross-over
phenomenon, that is, at all potentials, the current is a monotonic function of [K],. In this
respect, the current differs quite markedly from iy,. The absence of the cross-over effect allows
us to use a very simple formulation both for the rectification property and for the K* dependence
of the current. This is based on using rate theory, assuming that the major energy barrier for
ion movement in the electric field is situated at the inner surface of the membrane (Noble 1972;
Jack et al. 1975). This gives the equation:

ik = I, max {[K]i—[K], exp (—£/25)}/140. (8)

The usual value used for the ‘maximum’ current (actually the maximum outward current at
positive potentials when [K]; = 140 mm) is 180 nA. [K]; was usually set to 140 mm (Lee &
Fozzard 1975; Miura et al. 1977). These parameters give outward currents similar to the
delayed outward current recorded by Noble & Tsien (1969a).

Notice that, following McDonald & Trautwein:(1978), we have chosen the symbol iy for
this current rather than the symbol i, used by Noble & Tsien (1969a). The justification for
this change is that, in the M.N.T. model, Ey, is ré?garded as the true value of Ex. Since this
was considerably negative to the reversal potential for the delayed current activated in the plateau
range of potentials, it was concluded that the latter was a less specific channel. The new
interpretation of Ey, as a mixed ‘reversal’ potential means that the true value of Ex is almost
certainly 10-20 mV positive to Ey, (see DiFrancesco & Noble (1982) for an equation relating
Ey, to the true value of Ey ), so that the reversal potential for the plateau-activated current
is much closer to Ey than in the M.N.T. equations. We have therefore regarded it as a specific
K* current for which it is more natural to use the symbol i;;. While this current should clearly
not be confused with iy, in the M.N.T. model, it does correspond to the g, system first described
by Hall et al. (1973) which was used in the 1962 model (Nobel 1962). In several respects, our
formulation of the equations for K* currents closely resembles the 1962 model and its
development (Noble 1965) to account for extracellular K* effects.

The second aspect of this system that has been investigated further experimentally is the fact,
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also first observed by Noble & Tsien (1969a), that at least two and sometimes three exponential
terms are required fully to describe the time course of the current following voltage step changes.
This feature has been confirmed in all the multicellular preparations investigated so far with
a wide variety of different voltage clamp techniques, though the detailed kinetics sometimes
differ from those of Noble & Tsien (see, for example, Brown et al. 1972) even in Purkinje fibres
(R. H. Brown and D. Noble, unpublished). The question that arises is whether this reflects a
genuine property of the gating process or whether it is produced partly or even wholly by
perturbations due to ion concentration changes. The most complete analysis of this problem
(Brown et al. 1980; DiFrancesco & Noble 19804) shows that the slowest exponential term, when
present, is indeed due to a K* accumulation process but that, although this necessarily perturbs
the time course of i (Attwell ¢t al. 19795), this perturbation does not account for the
biexponential time course of the remaining components, whose time constants are not seriously
perturbed. We are therefore left with the problem faced by Noble & Tsien (1969a) that a single
Hodgkin—Huxley type gating reaction does not account for the current time course. We will
adopt the same solution as Noble & Tsien (1969a) that is, to note, like them, that only one
of the components is of significant importance during repolarization (Noble & Tsien 19695).
For simplicity, we shall drop subscripts and use the gating symbol x for the controlling reaction:

dx/dt = o, (1 —x)— B %, 9)
a, = 0.5 exp (0.0826 (E+50))/(1+exp (0.057 (E+50))), (10)
Br=13exp (—0.06 (E+20))/(1+exp (—0.04 (E+20))) (11)

where the equations for o, and g, are those used in the M.N.T. model. The total current is
given by g = Xig. (12)

(¢) Time-independent (background) K* current, iy,

The M.N.T. model represented this current by a purely empirical function describing
inward-going rectification with a negative slope over a range of potentials positive to the resting
potential. Since this current is obtained by measuring the current that remains when other
identifiable components have been subtracted (in this respect it is exactly analogous to the leak
current in the original Hodgkin—-Huxley (1952) analysis), it has always been evident that it
must include currents other than the true ig,, such as the pump and exchange currents. In
the new model we represent these currents by separate equations (see below). This is one reason
why our iy, cannot correspond exactly to that in the M.N.T. model. Furthermore, since the
state ¥ = 0 in our model corresponds to the state s =1 in the M.N.T. model, a term
corresponding to ig, in that model now becomes indistinguishable from ¢g, (for a further
explanation of the mapping between these aspects of the two models see DiFrancesco & Noble
(1982)).

These changes simply add or subtract to the magnitude and slightly change the form of
;- A more radical question is whether the basic form of the i, function is correct or whether
it is possible that features such as inward-going rectification are not properties of a single
mechanism, but reflect rather our ignorance of some unidentified component. This question
acquires added force since we have ourselves shown that the ‘inward-going rectification
displayed by ik, is not a genuine property of a single mechanism (DiFrancesco & Noble 1982,
figure 4).

The most direct way of answering this question is to measure K* fluxes as a function of
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potential. This was first done by Haas & Kern (1966) who showed that the radioactive flux
was consistent with the presence of inward-going rectification. Recently, Vereecke et al. (1980)
have used a much improved technique to show not only that the K* efflux is consistent with
the presence of inward-going rectification but also that the negative slope region is a genuine
characteristic. Clear-cut evidence of the inward-rectifying property comes also from experiments
where the iy, (E) relation is measured by substracting the time-independent curves in the
presence and absence of Ba?* ions (DiFrancesco 1981 ). Finally, recent work with patch-clamp
techniques (Momose ¢t al. 1983; Sakmann & Trube 1984) shows the presence of ik, and has
provided valuable data on its kinetics and [K],-activation at potentials negative to Ex.

In place of the purely empirical formulation of the M.N.T. model we have chosen to use
Hagiwara & Takahashi’s (1974) equation. This is also empirical but it is a simple formulation
which closely resembles the curves generated by the more complex equations for the blocking
particle model of Hille & Schwarz (1978; see their comparison in figure 9 of that paper). We
have also incorporated the fact that the channel is K* activated (cf. the development of the
M.N.T. equations by Cohen ¢t al. (1978) and the patch clamp data of Sakmann & Trube
(1984)). Our equation is:

ixy = g1 ([Kle/ ([Kle+ K, 1)) {(E—Ex )/ (1 +exp ((E—Ex+10) 2F/RT))}.  (13)

K., 1 was set to 210 mm (Sakmann & Trube 1984, figure 5) and the maximum conductance
(which is the maximum conductance reached during strong hyperpolarizations) was set to
920 uS. We shall show later that this reproduces the main experimental features of the
current—voltage relations attributable to ix,.

Carmeliet (1982) has recently raised the question whether iy, is strictly instantaneous. The
patch-clamp work indeed shows that there is time-dependent inactivation (Sakmann & Trube
1984) but since this time-dependence becomes important only at very negative potentials we
have not used equations for this process. If needed, they could easily be incorporated into the
program.

(d) The transient outward current, iy,

It has been known since the first studies of ¢g, that, beyond about —20 mV, the inward
rectifier is either masked by a rapidly activated outward rectifier or that the iy, channel itself
shows outward rectification positive to —20 mV .. The experimental evidence (including the
action of blocking agents like Ba2t and Cs?* on inward but not outward-going rectification)
favours the first interpretation (see Isenberg 1976; Carmeliet 1980) which is why our equation
for ix,, unlike that in the M.N.T. model, describes inward-going rectification only.

Flux measurements by Vereecke ¢t al. (1980) favour the view that the outward-rectification,
instantaneous and transient, is also largely carried by K* ions. The current is very sensitive
to external K*ions (Hartetal. 1982), and is largely, but not entirely, blocked by 4-aminopyridine
(Boyett 1981 b; Coraboeuf & Carmeliet 1982).

Originally, a Hodgkin-Huxley type model was used for this current which was attributed
to Cl1™ ions (see Dudel et al. 1967 a; Fozzard & Hiraoka 1973; McAllister ¢t al. 1975). There
are, however, serious difficulties with this interpretation. The time constants are in fact
relatively independent of voltage and ‘envelope’ tests (cf. Noble & Tsien 1968) do not work
(Hart et al. 1982). Moreover, Siegelbaum & Tsien (1980) have shown that the activation is
[Ca];-dependent.
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We have therefore represented i;, as an outward rectifier that is [Ca];-activated and which
depends on [K],. As McAllister, Noble & Tsien (1975) have shown, the precise inactivation
process for 7, is not important during a single action potential, though repriming of the process
is important during repetitive firing (for example, Hauswirth ¢t al. 1972 ; Boyett 1981 4; Boyett
& Jewell 1980). Moreover, the inactivation process is not well understood.

Our equation for the K* activation, Ca?* activation and rectification properties of 7,, is

o = 0.28((0.2+[K].)/(Ky ; +[K].)) ([Caly/ (Kp, 1o+ [Cal;))
X {(E+10)/(1—exp (—0.2 (E+10))}{([K]; exp (0.02 E)— [K], exp (—0.02 E)}. (14)

The first term in this equation represents activation by external [K*] which saturates at about
30 mm (Hart et al. 1982). The second term represents [Ca]; activation. We usually set K, 4,
to 1 pM, which allows the normal [Ca]; transient to activate the current with the correct
magnitude and speed to reproduce Siegelbaum & Tsien’s (1980) experimental results. The third
term represents the voltage dependence (this term could be replaced by a gating process if
desired). This term was set to 5 at £ = —10. The final term is obtained from rate theory
assuming that the energy barrier is placed at the centre of the membrane, which generates a
moderate degree of outward rectification.

The inactivation process was described by a first order equation fitted to Fozzard & Hiraoka’s
(1973) data: a, = 0.033 exp (—E/17) (15
B, =33/(1+exp (— (E+10)/8)) (1
(

dr/dt = a,(1—1)—p,r 17

=)

)
)
)
lho = Tigo- (18)

(It should be noted that these equations represent the main features of i,, but they do not fully
represent the multicomponent nature of ;. This will be dealt with by DiFrancesco ¢t al. (1985).)

(e) Background sodium current, i, .

As in the M.N.T. model, the resting sodium flux is represented by a linear relation:

ib,Na=gb,Na(E_:ENa>' (19)

Setting gy, n, €qual to 0.18 uS gives a resting sodium influx that is both sufficient to account
for the deviation of £ from Ey and for the rate of increase in intracellular sodium when the
sodium pump is blocked (Ellis 1977).

When varying [Na], in the computations, we have assumed that the fraction of gy, , that
is carried by sodium is proportional to [Na],. In effect, this assumption allows for the fact that
common Nat substitutes like choline are known to permeate the membrane. The assumption
of a linear dependence of the Na current on [Na], is the simplest we could make but it turns
out to be adequate for the present purposes. Equation (19) then becomes:

i, = ([Na],/[Nal, ) g, va (E—Ena) + b, cn (20)

where [Na], , is the control level of [Na], (usually 140 mm) and 3, , is the background current
due to choline or another Na substitute. This equation assumes that Na and other ions move
independently through the background channel. A further test of the value chosen for g, y,
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is whether it allows accurate prediction of the rate of change of internal sodium following
external sodium concentration changes. This is the case (see figure 9).

During the development of this model, Colquhoun et al. (1981) published patch-clamp
studies of a linear non-specific cation channel activated by Ca®* ions. It was initially tempting
to conclude that this channel might account for the resting background conductance. This
possibility was incorporated into the computer program by allowing an option to use a
background conductance equally permeable to Na* and K* ions and which is Ca®* activated.
There are, however, serious difficulties in using this option (see Conclusions) and we have not
used it in the present paper.

(f) Na—K exchange pump current, 1,

‘The Na—K exchange pump in Purkinje fibres has been extensively studied recently (Ellis
1977; Deitmer & Ellis 1978 ; Gadsby 1980; Gadsby & Cranefield 1979; Eisner & Lederer 1980;
Eisner et al. 1981). The results agree in showing that the pump is directly electrogenic with
a probable stoichiometry of 3:2 (Na:K). At rest, therefore, there must be an outward pump
current, 7, equal to one third of the net sodium influx generated by Na conducting channels
and by the Na—Ca exchange process (see (g) below).

For simplicity, we have assumed that the pump is activated by external K* and by internal
Na' by first-order binding processes:

tp = ip ([Kle/ (K, &+ [K]e)) ([Na]i/ (K, na+ [Na];))- (21)

where i is the maximum pump current, K, x is the value of [K], for half-activation and Ky, x,
is the value of [Na]; for half-activation. The experimental evidence (Eisner et al. 1981) shows
that over the whole range of values so far explored (up to about 20 mm) the pump rate is linearly
dependent on [Na];. This means that K, y, must be considerably larger than 20 mm. We have
chosen to use 40 mm.

At first sight, there is considerable disagreement on the value of K, . Gadsby (1980)
obtained 1 mM in canine Purkinje fibres, whereas Eisner & Lederer (1980) obtained 4-5 mm
in the sheep. Deitmer & Ellis (1978) obtained an even higher value (around 10 mm). We shall
show in this paper that this variation is in fact compatible with a single value of K,,, ¢ provided
that effects due to the restricted extracellular space are taken into account. On this view, the
best value for K,  is the lowest one obtained in the species with the largest extracellular space.
We shall therefore use 1 mu for this parameter. This does in fact correspond well with the values
in other tissues. With these values for the activation'parameters, a maximum current of 125 nA
gives a resting pump current of about 20 nA when [K], = 4 mm and [Na]; = 9 mm. This
current is similar to that estimated by extrapolating the i, ([Na];) function of Eisner etal. (1981).

(g) Na—Ca exchange current, iy,

The evidence that this exchange mechanism is directly electrogenic has recently been
reviewed by Mullins (1981) who has also proposed that the current generated, which we will
call iy, c,, may replace some of the currents already identified in cardiac electrophysiology.
We will discuss elsewhere the extent to which our results support this suggestion (see
DiFrancesco ¢t al. 1985 and also Brown et al. 19844, b). Fischmeister & Vassort (1981) have
recently incorporated the Na—Ca exchange current into the M.N.T. model (for a comparison,
see DiFrancesco et al. 1985).
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The equations for ¢y,c, are based on the assumption that the only energy available to the
process is that of the Na and Ca ion gradients and the membrane potential. Two alternative
expressions have been used in our work. The simplest assumes that the current is a hyperbolic
sine function of the energy gradient expressed in millivolts:

iNaca = Fnaca {€XP ((E— Enaca) F/RT) —exp ((— (E—Eyyca ) F/RT}/2 (22)

where
Exaca = ("NacaExa—2Eca)/ (Naca—2) (23)
Ey, = (RT/F) In ([Na],/[Na];), (24)
Eca = (RT/2F) In ([Ca],/[Ca];) (25)

and ny,q, is the stoichiometry of the exchange. We have used either 3:1, as suggested by some
of the experimental literature in the heart, or 4:1 as suggested by work on squid nerve (Mullins
(1981) figure 4.3). Most of the results in this paper use 3:1 and the question whether 4:1 would
equally well fit the results will be treated by DiFrancesco et al. (1985).

Equation (22) is given by Mullins (19777, 1981) as a simplification for his more general model.
It may apply moderately well for sudden small voltage changes at fixed ion concentrations.
There is however no reason to suppose that it will be at all accurate when large ion
concentration changes are involved. In fact, the variations in [Ca]; may be one or two orders
of magnitude during normal electrical activity and it is then important to use a more realistic
function that reproduces the expected [Ca]; dependence of the exchange process. The full
equations for the Mullins model are however very complex and many of the rate coefficients
are unknown. We have therefore used an intermediate version based on the fact that sodium
concentration changes are fairly small, at least during a few action potentials. Some of the terms
in Mullins full equations are then constant and we obtain (26):

INaca = FNaca (€XP (¥ (twaca—2) EF/(2RT))[Na]; *[Ca],
—exp (— (1—=¥)(nxaca—2) EF/(2RT))[Na], "[Cal];)/
(1+dyqca ([Ca];[Na], "+ [Ca], [Na]; ") (26)

This equation would require further refinement (replacing 1 in the denominator by a
function of the sodium concentrations) to take proper account of [Na]; and [Na], changes.
The variable y was set to 0.5 in the standard model. This parameter represents the shape or
position of the energy barrier in the electrical field and is exactly analogous to similar
parameters used in rate theory to describe current-voltage relations (see, for example, Noble
1972). Some of the computations were run with values of y set to the extreme values of 0 or 1.
It was found that this produces some quantitativ&changes in the precise time course of iy, ,
during an action potential, but does not seriously change the qualitative aspects of the results.

Some of the variables in these equations are either fixed (for example, [Na], is usually 140 mwm,
[Ca], is usually 2 mm), or can be computed from the model (for example, [Na]; and [Ca];),
or can be determined once other model parameters are fixed). Thus, ky,c,, which scales the
exchange current for a given energy gradient, can be determined as the value required to ensure
that, in the steady state, all the calcium entering the cells is eventually pumped out. A suitable
value for ky,c, when [Na]; is in the range 5-10 mm and [Ca]; is in the range 0.05-0.1 pM is
20, when (22) is used. For (26) appropriate values are ky,c, = 0.02 and dy,c, = 0.001.
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Finally, to keep the resting calcium in this range (as suggested by experimental results with
aequorin and Ca electrodes —see Marban et al. 1980; Sheu & Fozzard 1982), we require a
resting Ca®* leak (cf. Fischmeister & Vassort 1981):

ib, ca = &b, ca (E—Eq,)- (27)

A value of g, ¢, that satisfies the above conditions is 0.02 uS.

(k) The fast sodium current, iy,

Major experimental advances have been made recently in measuring this current, the most
important being the use small synthetic ventricular strands (Ebihara et al. 1980), rabbit
Purkinje fibres (Colatsky & Tsien 1979; Colatsky 1980) and of single ventricular cells (Brown
et al. 1981). These studies have provided more reliable information on the kinetics which are
significantly different from those used in the M.N.T. model. Another approach has been to
measure the steady-state properties by determining the TTX-sensitive steady state (‘window’)
current (Attwell et al. 1979a).

The data that is most relevant for our purposes is that obtained on Purkinje fibres by Colatsky
(1980). The major disadvantage of this data is that it was obtained in cooled fibres, which means
that the speeds of the gating reactions must be adjusted to 37 °C. It is also possible that the
inactivation curve shifts in a negative direction on the voltage axis at low temperature, which
would reduce the overlap of the activation and inactivation curves. The single cell data at 37 °C
does indeed show more overlap. Colatsky (1980) even concluded that there was no overlap
in his experiments. We shall show that this is too strong a conclusion. Even with his data, we
can reconstruct fairly easily the observed ‘window’ current (see below).

The equations we have used are:

iNa = m°h {gNa, (E_Emh)}a (28)
Eyn = (RT/F) In (([Na],+0.12 [K], )/([Na]; +0.12 [K];)) (29)

that is, the sodium channel is assumed to show a 129, permeability to K* ions (Chandler &
Meves 1965)

dm/dt = a,, (1—m)—p,, m, (30)
dh/dt = a, (1—h) =By h, (31)
a,, = 200(E+41)/(1—exp (0.1 (E+41)), (32)
UmyE——gr = 2000, (33)
B = 8000 exp (—0.056(E+ 66)), (34)

ay, = 20 exp (—0.125 (E+75)), (35)

By = 2000/{320 exp (—0.1(E+175))}. (36)

The value we have used for gy, is 750 pS. This generates a maximum depolarization rate
similar to that recorded experimentally. The maximum inward current on depolarizing to 0 mV
is then about 3000 nA which, using the scaling factor of 15 for conversion to current density
(see above) gives about 500 pA cm™2, that is, the value recorded experimentally (Colatsky
1980).

The m equations used here are in fact that of Hodgkin & Huxley (1952) shifted on the voltage
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axis to give a steady state value of 0.5 for m® at —30 mV, which fits Colatsky’s data — see below.
The rate constants were then scaled to give a time constant, 7,,, of about 100 ps at £ = 0 mV
(Brown et al. 1981). It can be seen (see figure 4) that this gives an activation curve that is
somewhat less steep than that obtained in Colatsky’s experiments. Our reason for choosing a
less steep function is that this fits better the experimental data of Brown et al. (1981) which
was obtained in more favourable conditions. The greater steepness of Colatsky’s curve could
be due to a small degree of voltage non-uniformity in a multicellular preparation which would
be minimized in a single cell clamp.

The % equations were fitted to Colatsky’s data to give k= 0.5 at E=—70 mV. This in
fact corresponds well to one of Colatsky’s published curves but it is worth noting that his
half-inactivation potential is usually nearer —75 mV, which may well be due to cooling the
fibres. The absolute values for the rate constants were adjusted to give 7, values of about 50 ms
at —80 mV, decreasing to 0.7 ms at 0 mV. Brown et al. (1981) also found a steep voltage
dependence for 7, between the resting potential, where 7, is very large, and 0 mV, where it
becomes very small. This means that, during a normal action potential, the inactivation is
considerably faster than in the M.N.T. model.

These equations do not reproduce slower components of Na inactivation and recovery.
Gintant e al. (1984) and E. Carmeliet (personal communication) have very recently shown
that such a process does exist and that the ‘window’ current is considerably larger at the
beginning of the plateau than at its end, that is, a small but significant component of Na current
inactivates with a time course of several hundred milliseconds. In this connection it is worth
noting that a persistent problem in our computations has been the presence (though not in
the particular computations illustrated in this paper) of a small bump on the repolarization
process which is due to the ‘window’ current. Introducing slow inactivation would be one
way of eliminating this problem.

(1) The second inward current, iy, and its components

Considerable advances have been made in studying this current since the formulation of the
M.N.T. and B.R. equations.

First, Reuter & Scholz (1977) showed that the reversal potential for iy; requires that some
K* ions should cross the channel in addition to Ca?* ions. This view, has been confirmed in
the work of Lee & Tsien (1982) using a perfusion electrode clamp of single guinea-pig
ventricular cells. Reuter & Scholz also concluded that Na* ions cross the channel. This
conclusion is now doubtful (see Mitchell ezal. 1983 ; Noble 1984). Our computer program allows
for this possibility but we have not used this facility in most of our computations.

Second, the work with isolated cells shows that the kinetics of the largest component of ¢y
are very much faster than in the M.N.T. and B.R. models. Activation peaks occur within 2-3 ms
and the inactivation time constant lies in the range 10-20 ms (see review by Noble 1984). These
figures are at least an order of magnitude faster than previously supposed.

Third, the peak amplitude of the calcium current is considerably greater than the multi-
cellular work suggested (see discussion in Mitchell ¢z al. 1983).

Finally, there is evidence for two or three different components of ii;. In addition to the fast
component, which we will call ¢, ;, a Cd*" and Mn?* resistant channel has been found in
single guinea-pig ventricular cells (Lee ¢t al. 19844) and in single frog atrial cells (Hume
& Giles 1983). This component is very slowly and, at some voltages, only partly inactivated.
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In some ways, therefore, it may play a role similar to the non-inactivated component of iy; in
the M.N.T. equations for which experimental evidence was recently presented by Kass &
Wiegers (1982).

However, there is also another component that may play this role. This is strongly correlated
with contraction and may, therefore, be [Ca];-activated. It has been found and called ¢; , in
the mammalian s.a. node (Brown et al. 1983, 19844) and in single guinea-pig ventricular cells
(Lee et al. 1983, 19845). One interpretation of this is that it is carried by the Na—Ca exchange
process for which we have given equations in a previous section. One of the purposes of our
model is to explore the extent to which these equations reproduce the properties of i , in
Purkinje fibres, the s.a. node and in single ventricular cells.

For the fast component, ¢, ;, we have followed Reuter & Scholz (1977) in using a constant
field type formulation for the individual ion movements (though see Attwell & Jack 1978) for
an important critique of this approach).

ica,t = dff 2 (51, ca t %1, %) (37)
igt,ca = 4 By (E—50) (F?/RT)/(1—exp (—(E—50) 2F/RT))
x {[Cal, exp (100F/RT)—[Cal, exp (—2(E—50) F/RT)}, (38)
i,k = 0.01 B (E—50) (F?/RT)/(1—exp (— (E—50) F/RT))
x {[K], exp (50F/RT)—[K], exp (— (E—50) F/RT)}. (39)

If required, an equation similar to (39) was used for describing a sodium component.

Note that, in these equations, we do not use an explicit equation for the reversal potential.
When required (for example, for calculations of conductance), this was computed either by
an iterative procedure or by solving the quadratic equation given by Attwell & Jack (1978).

We now require a description of the gating kinetics (4 and f). The original Beeler & Reuter
(1977) equations used in the M.N.T. model describe an activation gate, 4, with a time constant
of about 22 ms at about 0 mV and an inactivation gate with a very long time constant (about
300 ms). This was a very important feature of the M.N.T. and Beeler-Reuter models since the
process of iy; inactivation is then strongly implicated in controlling the duration of the action
potential plateau. More recent work shows that both activation and inactivation occur very
much more quickly than in the M.N.T. model. In Purkinje fibres, the most direct evidence
on this question comes from the experiments of Siegelbaum & Tsien (1980) who injected EGTA
to abolish the internal [Ca]; transient and so record i; in the absence of currents (such as iy,cq
and a component of ¢,,) dependent on [Ca];. The time constants for ig; in single ventricular
cells have also been found to be very short, typical values being about 2-5 ms for activation
and 10-20 ms for inactivation (Powell et al. 1981; Isenberg & Klockner 1982; Lee & Tsien
1982; Mitchell et al. 1982; Mitchell ef al. 1983). The equations we have used are:

dd/dt = ay(1—d)—p, d, (40)
ag; = 30(E+24)/(1—exp (— (E+24)/4)), (41)
(0tg) pe—sg = 120, (41a)
B, = 12(E+24)/(exp ((E+24)/10)—1), (42)
(B2) Be—sga = 120. (424)
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These equations describe an activation process that has a ‘threshold’ near —35 mV, half
activation at —24 mV and a peak time constant of about 5 ms.

df/dt = ap(1—f) — B4, (43)
ap=6.25 (E+34)/(exp ((E+34)/4)—1), (44)

() pe—gs = 25, (44a)
B;=50/(1+exp (—(E+34)/4)). (45)

These equations describe an inactivation process that is half-maximal at —34 mV (cf. Reuter
et al. 1982) and has a peak time constant of about 20 ms. With these kinetics, ¢; reaches a peak
in less than 5 ms and is largely inactivated by 50 ms.

- For the description of the Ca-dependent inactivation (see Brown et al. 19844) we have used
a formulation similar to that used recently by Standen & Stanfield (1982):

dfy/dt = ap (1—f,) = Br[Cali f; (46)

which represents Ca-inactivation as occurring via a first-order binding reaction to the channel.
In this equation, the speed of recovery from inactivation is determined by a,, its reciprocal
being the time constant of recovery, which we usually set to 0.1 s. At the steady-state the degree
of inactivation (that is, 1 —f,) is given by:

1—/f, = [Ca];/([Cal;+ Kpn, 12) (47)
where Ky s = “fz/ﬂﬂ'

The value usually used for K., s, was 1 um which gives negligible inactivation at resting levels
of [Ca]; but appreciable inactivation during the [Ca]; transient, as required if the experimental
results are to be reproduced. An important result that is reproduced by this formulation is that
icq inactivation and recovery have quite different time constants even when measured at the
same potential (see Brown et al. 19844, figure 3).

We will show that, together with the equations for the exchange current, iy, ,, the equations
reproduce the fast and slow components of i;; in Purkinje fibres (see figure 5 below) and in
the s.a. node (see Brown et al. 1984a).

The question, though, remains whether there exists also a component corresponding to i¢, ¢
in Purkinje fibres. This question will be explored in another paper (DiFrancesco et al. 1984).

k2

(j) Intracellular sodium concentration

If we assume negligible binding of Na* ions the change in [Na]; will be given by:
d[Na];/dt = — (iNa + ib, Nat if, Nat isi, Na T3 ip + (nNaCa/ (nNa.Ca,v_ 2)) iNaCa )/ VF (48)

where V] is the intracellular fluid volume.

Note that, strictly speaking, iy, is not pure Na movement since we have assumed a 129,
permeability to K* for the Na channel. The error this introduces is however very small. It would
make a difference of less than 4 9, to the overall Na flux during an action potential. The reason
for this is that the Na—Ca exchange process is at least as much involved in sodium entry as
is the sodium current (DiFrancesco et al. 1985).

24 Vol. 307. B


http://rstb.royalsocietypublishing.org/

Downloaded from http://rstb.royalsocietypublishing.org/ on November 17, 2014

370 D. DiIFRANCESCO AND D. NOBLE

(k) Intracellular calcium concentration

Here we encounter the major difficulty in developing the model. It is clearly incorrect to
assume that intracellular calcium is not bound. In fact, most of it is sequestered and the processes
of sequestration are both complex and not very well understood. The approach we have
adopted is to use the simplest possible equations to represent the essential features of the uptake
and release processes from an electrophysiological point of view. Our aim has been to produce
computed [Ca]; transients that show a time course similar to that recorded in recent
experiments (Allen & Kurihara 1980). Our assumptions are (see figure 1):

(i) The main sequestration store (which we shall refer to as the uptake store) is the
sarcoplasmic reticulum. It is assumed that this occupies about 5%, of the intracellular fluid
volume and can sequester Ca®* up to a concentration of 5 mm (Chapman 1979).

(ii) A fraction of the stored calcium is either transferred to a separate release store or is
converted into a releasable form by a repriming process (cf. Hodgkin & Horowitz 1960). This
process may be voltage dependent with a time constant of the order of a second or more at
—80 mV (Gibbons & Fozzard 19754a,b).

(iii) Release of Ca?* from the release store is induced by calcium (Fabiato & Fabiato 1975).

With these assumptions, the equations are:

iup = %yp [Ca]i ([G]up - [Ca]up) _ﬂup [Ca]up> (49>
itr = Ay p([Ca]up - [C‘a]rel )a (50)
irel = O‘rel [C‘a]rel ([Ca]ir/([ca]ir + Km, Ca )) (51)

where [Ca],, is the maximum value of [Ca],, 7 is the number of Ca?* ions assumed to bind
to the release site (usually set to 2) and

dp/dt = o, (1=p)=pp p- (52)

This equation represents the time- and voltage-dependence of the exchange between storage
and release sites. For the rate coefficients we used the same equations as for f slowed by a factor
of 10. This gives the required steady state voltage dependence for the repriming process, which
is similar to that for Ca current inactivation and reavailability. Then:

d[ca]up/dt = (iup_itr)/zl/;p F> (53)

d[Ca)ye)/dt = (i —trey )/2 Vet F, (54)
d[ca]i/dt =—- (isi, Ca + ib, Ca {2iNaCa,/(nNa,Ca. - 2)} + iup - irel )/2 VI F> (55)

where 1, and V,,, are the volumes of the uptake and release stores respectively. The general
features of this model are represented in figure 1.

The usual values used for the constants in these equations were as follows:

[Ca],, = 5 mm. This corresponds to the known Ca?* sequestering ability of the sarcoplasmic
reticulum (Chapman 1979).

Vap = 0.05 1, the reticulum is assumed to occupy 5%, of the intracellular volume
(Chapman 1979). Chapman’s figure is for ventricular muscle. We have used the same
parameter for the Purkinje model but it would clearly be desirable to replace this with an
experimental value for Purkinje fibres.
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Ficure 1. Diagram summarizing the processes assumed to control Ca** movements within the cell and across the
cell membrane. An energy-consuming pump is assumed to transport calcium into the sarcoplasmic reticulum
uptake store which then reprimes a release store. This may either be a physically distinct store or a releasable
state of calcium within the same store. Release is assumed to be activated by cytoplasmic calcium ions. Ca%*
ions enter the cell through a background leak channel and through a gated channel. Ca leaves the cell through
the Na—Ca exchange. Rarely it may enter through the exchange (for example, when [Ca]; is very low and
the voltage very positive). These are the minimum assumptions required to model the [Ca]; transient. The
model would need further development if it were thought necessary to add voltage-dependent Ca release, energy
consuming surface membrane calcium pump, other calcium sequestration processes (such as binding to the
contractile proteins), or further compartmentation of intracellular calcium.

Vo1 = 0.02 V. This figure is arbitrary and was chosen to give roughly the correct quantity
of releasable calcium.
K

m, Ca
Clearly, it cannot be as low as 0.0001 since resting calcium levels do not trigger release. 0.001

= 0.001 mM when r = 1, 0.0012 when r = 2. This figure is also somewhat arbitrary.

is sufficient to allow the quantity of calcium entering during an action potential to release stored
calcium. The precise value of K, ¢, was not found to be important in the computations
described in this paper.

The value of  was set to 1 or 2. The standard value was 2 since this gave oscillatory release
(see DiFrancesco ef al. 1983) more readily.

The rate coefficients were computed by the program from values set to the time constants
of the processes involved. The release time constant, 7., was set to 50 ms to enable [Ca]; to
rise to a peak within 50 to 100 ms (Wier & Isenberg 1982; Allen & Kurihara 1980). The
repriming time constant, 7,.,, was set to 2 s at —80 mV (Gibbons & Fozzard 19754, b). The

uptake time constant, T,,, was set to 25 ms to alloW“uptake to occur sufficiently rapidly to

up>
reproduce the falling ph;)se of the measured [Ca]; transients. This value also allows the s.r.
to accumulate Ca®* ions up to a concentration (about 2 mM) near half the maximum value
(assumed to be 5 mm). These conditions are appropriate for a situation where the larger part
of the [Ca?"]; transient is due to internal cycling.

The values for the time constants were then used by the computer program to compute the

rate coefficients using the relations:

ayp = 2FV;/ (T [Calyp), (56)
Ayp = 2FVrel/Trep? (87)
Apel = 2FVrel/Trel' (58)

24-2
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We should emphasize that this part of the modelling is not thought to be very secure. There
are too many arbitrary factors and, in any case, the major issue of whether Ca?* release is
Ca?*-induced or voltage-induced (or, perhaps, both) is still controversial. Our purpose here
is therefore largely limited to reproducing the known [Ca]; transient time course. We have
succeeded in doing this reasonably well, although we have not found it possible to reproduce
the biphasic feature found by Wier & Isenberg (1982). We suspect that this would require
further or different assumptions about intracellular calcium location and diffusion.

Despite the very tentative nature of the modelling of the [Ca]; transient, this feature of the
model greatly extends its explanatory range since it is essential to model the [Ca]; transient
in equations for Ca-dependent currents, like iy, a5 ica, f 20d ig,. Even a primitive model, here,
is much better than no model at all. An important consequence is that activity computed in
this model is dependent on the inotropic state. This will be explored more fully in a subsequent
paper (DiFrancesco et al. 1985).

(1) Extracellular potassium concentration

We assume that K* ions diffuse freely in the extracellular space so that we may use the free
solution diffusion constant. In some calculations we have also assumed that there is a restriction
factor that determines the degree to which free diffusion may be impeded.

The equation for diffusion in a cylinder where, at any point, ions may also cross the cell
membrane, is

0[K],/0t = D{@*[K]./0x"+ (1/x) O[K]c/Ox} +im &/ Ve F (59)
Whel‘e im,K = ZK,l+lK+lf,K+ZS1,K+lb,K_2Zp (60)
and V is the extracellular space volume. For a cylinder this would be:

V.=

e

Vies @20 and, similarly, V= (1—V,) Ve (61)

where V. is the fractional extracellular space (usually set to 5%), a is the radius and / the
length of the preparation.

These are the equations we have used for calculations of [K], in a Purkinje preparation when
it has seemed important to represent the non-uniform distribution of extracellular K*.

For a spherical preparation we have used the equation:

O[K]./0 = D{0*[K]./0x"+ (2/x) O[K]c/0x} +im x/ Ve F (62)
in place of (59).
Finally, for many purposes, we have found that the results are little affected by assuming
a homogeneous K* concentration in a three-compartment model:

d[K]o/dt = = P([K].—[K]y) +im;x/V F (63)

(cf. Attwell et al. 1979b), where [K], is the bulk extracellular K* concentration and P is the
rate constant for exchange between the bulk and cleft space. For most calculations we used
values for P between 0.2 and 1.0 s*. This range of values was determined using a comparison
between calculations using the cylindrical and three-compartment equations.
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(m) Intracellular potassium concentration
This was computed by using:

d[K];/dt = i &/ V F. (64)

Finally, it should be noted that we have used concentrations as synonymous with activities.
This assumes that the intracellular and extracellular activity coefficients are very similar.

METHODS

The set of equations (1-64) is extremely stiff since the range of time constants is exceedingly
large. The sodium activation equation time constant is only of the order of 0.1 ms, whereas
the equation for [Na]; has a time constant of the order of 5 min, a ratio of over a million. It
is not therefore practical to use exactly the same numerical approach for all computations. With
this and other requirements in mind a very general computer program, HEART, has been written
which varies the computation methods to suit a wide variety of possible experimental situations.
The ordinary differential equations were integrated using the methods described by Plant
(1979). The partial differential equations, when used, were integrated separately using a
method for inverting a band matrix of width three (see Modern computing methods 1961).
Figure 2 shows a flow diagram of the main part of the program. The original programming
language used for development was a version of Algol60 suitable for running on small machines.
The program has subsequently been translated into Pascal. These languages were chosen for
their superior logical structure compared with the Fortran I'V available on PDP11 computers.
The advantages that this gives in very large programs with extensive use of nested control loops
were found to be very important in building-in the extreme flexibility which is one of the major
features of the program. This readily permits new versions of the model (for example, for
preparations other than the Purkinje fibre) to be incorporated as parameter procedures that
set the constants and determine the pathway through the nested control loops. New control
loops can also be added with ease since they do not refer to fixed labels. We have successfully
run the Pascal version of the program using the RT11S] monitor on PDP11/34 and PDP11/23
computers and the VMS monitor on a VAX computer. The program is extensively docu-
mented and no knowledge of Algol or Pascal is required unless substantial developments are
envisaged, in which case an appropriate compiler will be required. A Pascal compiler for RT11
and other DEC systems is available from Oregon Software. The Pascal used is very close
to the international standard, so that the program should easily transfer to other computers.
Enquiries about the availability and use of the software should be addressed to Dr Noble.

RESULTS AND DISCUSSION
(a) Current—voltage relations

The steady state current-—voltage relations given by the model can be analysed in the same
way as those in the M.N.T. model (see McAllister ¢t al. 1975, figures 2 and 3). The results
obtained are not in general very different and will not be repeated here. Instead we shall
describe new features that were not within the scope of the M.N.T. model.

First, we may now correctly describe the influence of extracellular potassium ions on the
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START INPUT

DESOL FNT

three
compartment | cylinder or sphere
model models

MATRIX

CHANGE

t< tend

t> tend

TERM

F1cure 2. Flow diagram of the main features of the program. A procedure sTART either calls specific INpUT procedures
containing parameters relevant to each preparation or version of the model, or reads a separate INPUT file. START
then computes a variety of parameters that are used repeatedly in the computations and organizes output files.
Each integration step then involves a call of the integration control procedure pEsoL (see Plant 1979) which
calls a number of other procedures, including FNT. The latter contains all the model equations and can readily
be modified to produce new versions of the model. On exit from DEsoL, procedure MATRIX is called to solve
the diffusion equations when these are used. The three-compartment model bypasses this procedure. Procedure
CHANGE controls the time changes of concentrations, currents, voltage clamp protocols etc. When f,;4 is
reached, procedure TERM terminates the computation and tidies up the output files. This diagram shows only
the main overall features. The program also contains about 20 other procedures not shown here which control
an almost infinitely large number of modes of operation that can be tailored to the requirements of particular
problems. The program is extensively annotated to enable these facilities to be operated without requiring any
significant understanding of the program language.

current-voltage relations since all the known K*-dependent processes are represented. Figure
3 shows the results of computing the quasi-instantaneous current—voltage relations at values
of [K], between 1 mm and 40 mm. It can be seen that the major features of the experimental
results (see, for example, Dudel et al. 19675; Sakmann & Trube 1984) are reproduced,
including: (i) the presence of inward-going rectification with a negative slope region; (ii) the
crossover of current-voltage relations at different values of [K],; (iii) the fact that at very low
[K]y, the net current-voltage relation becomes almost flat over a wide range of potentials; (iv)
the presence of a net inward current region at low values of [K],.

The last feature was an important part of Noble & Tsien’s (1969a) results and of their
reconstruction of the plateau (Noble & Tsien 1969 5).

The relations shown in figure 3 do not include the steady-state sodium current since the
experiments of Dudel et al. (1967a,b) were performed in sodium-free (choline-substituted)
solutions. It is however of interest to compare the results obtained including the steady-state
sodium current since this has recently been measured experimentally by substrating current—
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Ficure 3. Steady-state current—voltage relations computed at various values of extracellular potassium concentration,
[K]y, from 1 to 40 mm. At each value of [K],, the model was clamped at —50 mV. Current—voltage relations
were then computed assuming that the gating mechanisms m, /, d and f are held at their steady-state values
at each potential, and that there are no significant variations in the Na—Ca exchange current. The last
assumption is justified by our finding that the exchange system only carries large currents transiently and that
these transients are quite fast when [Ca]; is in the diastolic range. This kind of result has been partly
reconstructed by previous models (Noble 1965; Cohen ¢t al. 1978). This is the first, though, to incorporate all
the known [K],-dependent processes (ix;, i, and, to a lesser extent, ix and i) with detailed experimental
parameters.

voltage relations in the presence and absence of TTX (Attwell et al. 1979a; Colatsky & Gadsby
1980). Figure 4 (bottom) shows the ‘window’ current obtained from the model. This curve
reproduces the experimental results fairly well. Attwell et al. (1979a) obtained a mean peak
current value of —20 nA. The model gives —23 nA. The ‘range’ of the ‘window’ is about — 60
to —20 mV which is closer to the experimental results than was the M.N.T. model. It is
important to note that the ‘window’ current is well-reproduced even though our #y, equations
are based on Colatsky’s (1980) results. The top part of figure 4 shows how our equations for
h and m?® fit Colatsky’s data. There is only very little overlap between m?® and % but this is
sufficient to generate a ‘window’ current that only needs to be less than 19, of the peak #yj,.

(b) Reconstruction of voltage clamp currents

Figure 5 shows the extent to which the equations can reproduce the voltage clamp results
obtained in Purkinje fibres with regard to the fast calcium current, slower inward current and
the transient outward current. Traces (a) to (f) show currents computed on voltage clamping
from —80 mV to the potentials shown. In each case the current was computed for the standard
case with gy, set to zero (that is, TTX block of gy, is assumed), and then with 7, and i,c,
set to zero to eliminate the current dependent on the [Ca]; transient. This was done to mimic
the situation in Siegelbaum & Tsien’s (1980) experiments where the [Ca]; transient was
eliminated by EGTA injection. Record (/) shows the computed [Ca]; transient corresponding
to (f). Record (a’) shows the result of changing from —50 mV to —40 mV. The reason for
this additional record will become clear later. Finally, records (g) and (%) show experimental
records chosen for comparison with computed records (a) and (e), (f).

First, it is worth noting that the amplitudes and speeds of i; and ¢, at potentials near 0 mV
correspond well with those in Siegelbaum & Tsien’s (1980) results. Moreover, when i, is
blocked the peak inward current level is increased and the current record becomes much
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FIGURE 4. (a) Points show experimental data (Colatsky 1980) on the activation () and inactivation ([J) of the
sodium current in Purkinje fibres. The continuous lines show the steady state values of m® and % given by the
model. Note that we have fitted the & data fairly accurately, but have chosen a somewhat less steep function
for m3. In this choice we were influenced by the data on single cells (Brown et al. 1981) showing an activation
curve similar in steepness to our equations. This choice also allows a better reconstruction of the ‘window’
current. (4) ‘Window’ current computed by subtracting current-voltage relations obtained before and after
setting gy, to zero. This curve is similar to that obtained experimentally. The small outward current shift
negative to —75 mV is due to a small change in the Na gradient when gy, is blocked. Note that the ‘overlap’
region shown in (a) appears to be a very small region near —50 mV. The curve in () shows that, when dealing
with very small currents, the overlap is more extensive at values of m® and 4 that are too small to appear
significantly different from zero in the top curves.

simpler. The records before and after removing [ Ca];-dependent currents cross each other as they
do in the experimental results. In the model this is due to the presence of a long-lasting small
inward current caused by Na—Ca exchange. The main difference between the computed and
experimental results here is that the difference persists to much longer time in the experimental
results. This might be due to the presence of a genuine slow Ca current, i, 5, (Lee et al. 1984.a)
if that current is [Ca];-dependent. We will return to these differences later in discussing
figure 6. -

Turning now to the voltages below the range of activation of 7, it is clear that near —40 mV
a very slow inward transient occurs that lasts about 500 ms. Its amplitude and duration are
similar to those of the current recorded at —40 mV by Eisner et al. (1979) — see also Lederer
& Eisner (1982) — which is shown as record (g). Also shown is the effect of caffeine at a level
thought to discharge the s.r. This removes the current, as does removal of transient changes
in iy,cq in the model. Of course, caffeine should first itself induce an inward current while the
stores are being discharged. Clusin et al. (1983) have recently described just this effect in
embryonic heart cells. They also attribute the current to the Na—Ca exchange process.

The main differences between traces 5a and 5g is that the computed response has a sharper
onset compared to its decay. It is worth noting that this may also occur experimentally (see,
for example, Lederer & Eisner 1982, figure 2). In our equations, this feature depends on the
current magnitude: the onset is faster the larger the current (see also Brown et al. 19844).
Another feature worth noting is that Siegelbaum & Tsien’s (1980) results do not show this very
slow current in the region of —40 mV. The reason may be that they used a holding potential
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Ficure 5. Voltage clamp currents computed from the model. In records (a) to (f), the voltage was stepped from
—80 mV to the potentials indicated, first using the full equations (with gy, set to zero) and then with 7,, and
inaca also set to zero to mimic the expected result of eliminating the currents dependent on [Ca];. Record (/")
shows the intracellular Ca transient computed during record (/). Record (a”) shows the effect of changing the
holding potential to —50 mV. The very slow inward current seen on clamping to —40 or —30 from —80 mV
is then no longer seen. Records (%) show superimposed experimental records from Siegelbaum & Tsien (1980).
They clamped from —45 mV to, in this case, +8 mV. Record (g) shows experimental records from Eisner
et al. (1979). Note that the time scales for the experimental records are not the same as those for the computed
records. See text for further description.

around —45 mV. It is important to note (see record (a’)) that in the model also, holding at,
in this case, —50 mV eliminates the slow component. This is because little Ca release occurs
on depolarizing from —50 to —40 mV. ’

In single guinea-pig ventricular cells a similar situation is found to occur. Depolarizations
from —80 mV to —50 mV produce a slow component of current (see Lee ¢f al. 1983) whereas
depolarizations from —50 mV to —40 mV or —30 mV fail to trigger this component.

This is a suitable point at which to comment on the diversity of the experimental information
concerning the slower components of iy; (see also review by Noble 1984). The range is so wide
that, in some experiments, currents like that shown in figure 54 and .5¢ are apparently not
observed at all. It is important to note that this is quite consistent with the system of equations
we have described. To ensure the apparent absence of the slow component, it is sufficient to
reduce a little the sensitivity of the Ca-release mechanism to intracellular calcium (by increasing
K ca)- Transients due to iy,c, are then always greatly masked by the activation of the much
larger ig, ;, combined with the fact that the onset of iy, , is then also much faster. An example
of this behaviour is shown using the sinoatrial node version of the model in Brown et al. (19844,
figure 104), where the computed time course of ¢ decay is clearly monotonic.
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(¢) Standard action and pacemaker potentials

Figure 6 shows the standard action potential and intracellular Ca®* transient computed at
[K], = 4 mM. To induce pacemaker activity the y variable was shifted 10 mV in a positive
direction (cf. Hauswirth ef al. 1968). The intracellular Ca?* transient rises to a peak within
about 50 ms and decays well before the faster phase of repolarization begins. This corresponds
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Ficure 6. Standard action potential, pacemaker potential, intracellular calcium transient, conductances (on a
logarithmic scale) and gating variables computed for [K]},, = 4 muM. Description in text.

well to the experimental results with aequorin, except that we do not find the biphasic response
seen by Wier & Isenberg (1982) in Purkinje fibres. In principle, two peaks are possible in the
model since the Ca?* transient is made up of two components: a smaller one due to the calcium
current and a larger one due to internal release. In practice, these fuse together as they appear
to do experimentally in ventricular musclee. We do not know whether any of the
electrophysiological phenomena dependent on intracellular calcium depend on the biphasic
response, but we suspect that the time course reproduced in figure 6 is a good first
approximation.

The lower part of figure 6 shows the computed conductance changes plotted on a logarithmic
scale. In this diagram ‘g’ includes the conductances (computed as chord conductances) due
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to iy, ig and i g; ‘gn,’° includes the conductances due to iy,, and i n,; ‘g, includes those
due to ig, ¢ and 1, o, while ‘gy’ is the sum of g; n, and g; g. Our reason for using these
combinations is that, apart from g;, they correspond most closely to the equivalent parameters
in the M.N.T. model.

It can be seen that the variations in the equivalent conductances show some resemblance
to those in the M.N.T. model. In particular, the K* conductance time course is almost identical
to that of the M.N.T. model. The other conductances, however, show significant differences.
The main differences are: (i) the decay of g, is very much faster, and (ii) the onset of g; during
the pacemaker depolarization is a new feature that was not present in the M.N.T. model which
represented the equivalent process as the decay of a specific K* conductance. The reason for
the close resemblance for the remaining terms included in ‘g’ is that by far the largest factors
in the time course of ‘g¢ ’ in the M.N.T. model and in the new model are the voltage-dependent
variationsin g , and the time and voltage dependent variations in i (the formulations of which
are very similar in the two models). Another way of demonstrating these features of the model
is to measure ‘slope’ conductance as it would be measured experimentally by applying small
repetitive voltage pulses (as shown in DiFrancesco & Noble 1982). The results reproduce
Weidmann’s (1951) data despite the radical re-interpretation of ¢g, (for further discussion of
this and related results see DiFrancesco & Noble (1982)).

The importance of the hyperpolarizing-activated current, ¢, in the pacemaker depolarization
may be demonstrated by computing the effects of shifting the voltage dependence of the gating
variable to reproduce the effects of adrenaline (Hauswirth et al. 1968; Tsien 1974; Hart et al.
1980). With [K], = 2.7 mm, a 15 mV shift is sufficient to double the firing frequency. A 30 mV
shift leads to substantial depolarizaton. If gg; is increased the result is very rapid pacemaker
activity of the kind seen experimentally after strong doses of adrenaline. The results are so
similar to those illustrated by McAllister ef al. (1975) that we have not shown them as a figure
in this paper.

Figure 7 shows the time courses of the main current components. For clarity, the fast sodium
current has been omitted (its time course can be estimated from the conductance changes
plotted in figure 7).

While ¢ is the main time-dependent gated current that contributes to pacemaker activity,
other currents also contribute substantially. The net increase in ¢ during the pacemaker
depolarization in figure 8 is —14 nA. By comparisdn, ix shows a fall of 5 nA during the
pacemaker potential; &, v, carries a roughly constant, —26 nA, i), ¢, carries about —10 nA,
INaca Carries about —4 nA and the sodium—potassium exchange pump carries about 17 nA.
The difference is made up by ik, which carries about 31 nA.

(d) Influence of external [K] on action potentials and pacemaker activity

Figure 8 shows the influence of varying the bulk extracellular K* concentration. At 12 and
20 mm the action potential is of fairly brief duration and a stable resting potential is established
immediately following repolarization. Decreasing [K], to 8 or 6 mm lengthens the action
potential, hyperpolarizes the membrane and, in consequence, activates ¢ to produce a
pacemaker depolarization, though at these concentrations the depolarization is insufficient to
reach the action potential threshold. At 4 mm slow repetitive firing occurs. Further reduction
to 2.7 mm lengthens the action potential even further and the pacemaker potential becomes
much steeper. These are the well-known effects of external [K] on action potentials and
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Ficure 7. Continuation of figure 6. This shows ionic currents (except for ¢y, which is too large for the current
scale used here).
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Ficure 8. Influence of extracellular [K] on action and pacemaker potentials. Description in text.
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pacemaker activity in Purkinje fibres (Weidmann 1956; Vassalle 1965). At values below
2.7 mum, the behaviour depends critically on the value assumed for the background sodium
conductance gy, y,. With this conductance set at 0.02 pS, the model fails to repolarize at very
low [K] and, after a damped oscillation, the membrane potential settles at —40 mV. This
effect is shown in Noble (1984, figure 4) and corresponds to the well-known depolarizing effect
of very low [K] in Purkinje fibres (Weidmann 1951; Gadsby & Cranefield 1977).

(¢) Influence of external [Na] on action potentials, pacemaker activity and intracellular sodium

In 1951, Draper & Weidmann described the influence of [Na], on the overshoot and
pacemaker activity in Purkinje fibres. The overshoot potential was found to follow closely the
behaviour of a sodium electrode, while the duration of the plateau and the rate of pacemaker
depolarization were both greatly reduced in low [Na],. At the time these results appeared they
were taken at face value as strong support for the application of the Na hypothesis (Hodgkin
& Katz 1949) to the heart, and as support for a role of Na ions in the pacemaker depolarization.

More recent experiments, however, have made Draper & Weidmann’s work seem less simple
than when it first appeared. When [Na], is changed [Na]; changes fairly rapidly, the time
constant of change being about 3 min (Ellis 1977 ; Sheu & Fozzard 1982). Moreover, the change
in [Na]; is almost linearly proportional to the change in [Na], with the consequence that Ey,
changes by very much less than 61 mV per tenfold change in [Na],. In fact a tenfold decrease
in [Na], would be expected to produce less than 30 mV change in Ey,. This raises the question
how Draper & Weidmann could possibly have obtained such an apparently simple result for
the overshoot potential.

The answer may be provided by the second complication, which is that the value of Ey,
predicted from intracellular Na measurements is about 30-40 mV positive to the observed
overshoot potential. Thus, with [Na]; in the range 4-10 mu (which is fairly typical) and [Na],
at 140 mm, Ey, is expected to be about 70-100 mV, whereas the overshoot is only about
30-40 mV.

The explanation for the last result is fairly obvicus: the ‘Na’ channel may not exclude other
ions. Indeed, in our equations, we have allowed for this by using the result obtained in squid
nerve (Chandler & Meves 1965) showing a 129, permeability to K* ions in the ‘Na’ channel.
The reversal potential is then given by equation (29), which since 0.12 [K], is very small
compared to [Na], simplifies to: -

Eyy = (RT/F) In ([Na],/([Nal; +0.12 [K],)) (65)

and, since [K]; > [Na];, E,,;, would be expected to be relatively insensitive to [Na];.

First, we checked whether the equations can reproduce the [Na],-dependence of [Na];. The
results are shown in figure 9. When [Na],, is reduced, [Na]; falls in an almost exponential manner
with a time constant (3.3 min) that is very close to Ellis’s (1977) experimental value (see also
Sheu & Fozzard 1982; Chapman et al. 1983). Moreover, over a wide range of concentrations,
[Na]; is almost linearly proportional to [Na],, as shown in figure 10. We then used these values
of concentrations to investigate the [Na],-dependence of the computed overshoot potential. The
results are shown in figure 11 and clearly closely follow Draper & Weidmann’s results.
Moreover, as found by them, the ‘fibre’ becomes inexcitable below about 15 mm [Na],. We
also found the pacemaker depolarization to be less evident and the action potential duration
reduced (not shown here). The latter effect is in part attributable to the contribution of the
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Ficurk 9. Influence of [Na], on membrane potential and on intracellular [Na];. [Na], was reduced from 140 mm
at time 2 min to 80, 40, 18 or 5 mm at time 2.5 min. There is a transient hyperpolarization similar in amplitude
and duration to that seen experimentally (Ellis 1977). In the model this is attributed to a reduction in ix,c,
while the Na gradient is reduced. Note that this effect is largely transient. The bottom diagram shows the [Na];
changes plotted on a semilogarithmic scale. [Na]; falls exponentially with a mean time constant of 3.3 min.
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Ficure 10. Steady-state variation of ay, ; with [Na],. The open symbols show results replotted from Ellis (1977).
The closed symbols show the model’s predictions using an activity coefficient of 0.75. In both experimental
and computed results there is a roughly linear variation of [Na]; with [Na],. (See also Chapman et al. 1983.)

Na ‘window’ current to the plateau and in part to entry of Na by the Na-Ca exchange
mechanism.

The suppression of pacemaker activity in low [Na], requires further comment. It might be
thought that this represents the contribution of the sodium background current to the
pacemaker depolarization. This is not so since we have assumed (see above) that the Na
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Ficure 11. Variation of overshoot potential with [Na],. The open triangles are results replotted from Draper &
Weidmann (1951). The closed squares show the model’s predictions. The interrupted line shows a 61 mV
variation per decade change in [Na],. Below 15 mm the model, like the real fibres, is inexcitable.

replacement can also pass through the background channel (Na replacement by choline, for
example, does not greatly alter the resting potential in Purkinje fibre — see Hall et al. 1963).
The reduction in the rate of the pacemaker depolarization is in fact attributable to the fact
that, in the pacemaker range of potentials, i, is largely carried by Na ions. Draper & Weidmann
(1951) actually gave as one of their explanations the view that the slow depolarization during
diastole. . .depends on the entry of sodium’. For the Purkinje fibre, on the new interpretation
of ig,, this is entirely correct even during the early phase of the pacemaker depolarization. As
in the M.N.T. model, the later part of the pacemaker depolarization is also dependent on a
small degree of activation of the fast sodium current. All the conclusions drawn by McAllister
et al. (1975) on this point apply equally well to the new model, including their explanation
for the influence of surface charge changes due to calcium ions.

One way of demonstrating the role of the fast sodium current is to compute the effects of
reducing gy,. This is shown in figure 12. As in Coraboeuf & Deroubaix (1978) and Colatsky’s
(1982) recent experimental work, this produces a marked shortening of the action potential
and pacemaker activity is suppressed by reducing the rate of depolarization in the later phase.

(f) lonic current changes due to the Na—K pump
&

The current carried by the Na-K pump has been extensively investigated recently. A
standard method (used both by Gadsby and by Eisner & Lederer) has been to place a
preparation in a K-free solution for several minutes to reduce pump activity and so to increase
[Na];. The preparation is then returned to a K*-containing solution. An outward current
transient is then recorded as the increased internal sodium stimulates the pump. An example
of this kind of experiment and its reconstruction is shown in figure 13. The top records are
reproduced from Gadsby (1980) and show currents in a dog Purkinje fibre following various
periods of K-free superfusion for up to 3 min. The middle record shows the computed result
from the model with the variations in cleft [K] and [Na]; shown below. The computed variation
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Ficure 12. Influence of decreased gy, on action potential and pacemaker activity. gy, was reduced from 2000 pS
to 150 pS. This abolishes the spike of the action potential and eliminates pacemaker activity. The effect on
the action potential duration illustrates the role of the sodium ‘window’ current in the plateau.
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Ficurk 13. (a) Experimental records of changes in ionic currents in response to changes in [K]y, in a canine Purkinje
fibre (from Gadsby 1980). () Computed variations in ionic current and in [K],. (¢) Computed variations in
[Na]; (in millimoles per litre) and in [Ca]; (in micromoles per litre).

in [Na]; corresponds well to Ellis (1977) and Deitmer & Ellis’s (1978) measurements showing
that in K*-free medium [Na]; doubles in a period of about 5 min. The computed increase in
[Ca]; (also shown) corresponds well to the fact that tonic tension is known to increase over
this period of time, and Sheu & Fozzard (1982) have recently recorded [Ca]; with a calcium
electrode showing changes comparable to those computed here.

We think, therefore, that we can have some confidence in the model’s predictions concerning
the intracellular concentration changes during K-free inhibition of the pump.

We turn now to the reconstruction of Gadsby’s ionic current measurements. It can be seen
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that the computed results show a very similar pattern. Not only does the model correctly
reproduce the outward current transients on return to K*-containing solution; it also
reproduces the slow upward current creep that occurs while the preparation stays in the K*-free
medium. The model provides a possible explanation for this phenomenon, which is that,
although we have assumed a large extracellular cleft space (309, in this case) the cleft K+
concentration does not fall to the bulk K* concentration since it takes time for diffusion to occur.

This allows a residual degree of K* activation of the pump, which is then further activated
as [Na]; increases, so producing the upward current drift.

Mullins (1981) has proposed an alternative explanation in terms of the Na—Ca exchange
current. We can exclude this explanation since on the time scale of this kind of experiment
the Na—Ca exchange system will be close to its steady-state activity at nearly all times. If the
background Ca influx remains constant and small, there is no reason why the Na—Ca exchange
current should vary greatly.

This is perhaps a suitable point at which to emphasize a general result we have found with
the model: this is that the Na—Ca exchange current is nearly always very small (about 4-5 nA,
that is, much smaller than the Na—K pump current) in the steady-state. Large currents are
carried by the exchange process only as transients. When [Ca]; is very low (less than 0.1 um)
these transients are very rapid (a few milliseconds); when [Cal]; is large (for example, 5 pum)
the transients can last several hundred milliseconds (as during a computed action potential — see
figure 7).

The magnitude of the upward current drift is somewhat larger in the model than in Gadsby’s
result. This amplitude is strongly dependent on the size of the extracellular space and on the
time constant for cleft-bulk space diffusion. A shorter time constant for the diffusion process
would give a smaller current creep.

We conclude that the model does accurately reproduce current changes due to Na-K pump
activity. We will now use the model to investigate two other kinds of experiment in which the
influence of pump changes has been measured.

Figure 14 shows the influence of the Na—K pump activity on the duration of the action
potential. This computation is designed to reproduce Gadsby’s (1982) measurements of the
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Ficure 14. Action potentials computed at various values of [Na]; between 8 and 20 mm.
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shortening of the action potential on return to K* containing solutions after a period of several
minutes in K*-free solution. We computed the standard action potential in 6 mm K* at various
values of [Na]; between the normal level of 8 mm and up to 20 mm. This is the range of [Na];
increase expected during several minutes exposure to K*-free solution. The shortening of the
action potential is similar to that recorded experimentally. Notice also the small hyperpolar-
ization in the resting state, which is also seen experimentally.

The computations on the influence of the Na—K pump described so far were done with large
extracellular space volumes appropriate to the known structure of canine Purkinje fibres. We
now turn to the possible effects of more restricted spaces such as are found in sheep Purkinje
fibres.

Figure 15 shows the results computed on return to a range of external activator cation
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Figure 15. (a) Computed ionic currents following reactivation of the Na—K pump by various concentrations of
external activator cation (1-15mm) after allowing [Na]; to rise to 25 mM blocking Na—K pump. (b)
Corresponding variation in [Na];: (¢) Corresponding variations in [K],.

concentrations between 1 and 15 mm after a period of K-free superfusion leading to an increase
in [Na]; to 25 mm. For these computations we useda cleft space volume of 59, and a diffusion
time constant of 5 s. These parameters are interrelated. A smaller cleft volume together with
a shorter diffusion time constant would give similar results. We have also run some
computations using the full diffusion equations for a two-dimensional cylindrical space. The
results are similar to those shown in figure 16, but each case takes much longer (several hours
instead of a few minutes) to compute. Finally, since these computations were designed to
reproduce the experimental conditions investigated by Eisner & Lederer (1980), in which Rb
was used in place of K as the activator cation to reduce the effects of K depletion by reducing
the inward rectifier current, we reduced gg, to 5%, of its usual value.

The top traces in figure 15 show the net ionic current changes. It can be seen that at 1 mm
Rb (Rb and K are roughly equipotent activators of the Na—K pump) there is virtually no
current transient. Eisner & Lederer (1980) also found only a very small current at 1 mm. A
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comparable computation using a 30 %, cleft volume gave a nearly 50 9, activation of the pump
(as expected since the ‘true’ K assumed in these computations is 1 mum). 2 mM produces a
small slowly declining current transient. As much as 4 mum is required to activate 50 9, of the
maximum current and speed of current change, which is not reached until the activator cation
concentration is increased above 10 mM. This corresponds quite closely to Eisner & Lederer’s
curve for activation of the pump current by external cation, giving an apparent K, in the region
of 4-5 mm, despite the fact that the true value is 1 mm.

We found the apparent K, value to be strongly dependent on the extracellular space size
and the assumed diffusion time constant. It is easy to obtain apparent K, values as high as
10 mM by halving the space size or increasing the diffusion time constant. With cleft spaces
less than about 1-2 9, it becomes almost impossible to deactivate the pump in low [K],. Thus
the high apparent value of K, is attributable to the ‘inertia’ of the cleft system in relation to
bulk [K] changes.

There may appear to be a difficulty, though, with this explanation. This is that Eisner et
al. (1981) were careful in their experiments to check that the pump current change is linearly
dependent on [Na];. This is the result they found over the range of [Na]; values between 8
and 16 mM. As they point out, a large effect of external cation depletion on the pump activity
might upset this linearity.

Nevertheless, we don’t find this effect to be very significant. Figure 16 shows our results
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Fiure 16. The results of figure 15 are replotted as current—[Na]; relations as they change during pump reactivation
at various concentrations of activator cation. When the activator cation is 2 mm there is a nearly linear relation
over the whole range. At 15 mu the result is nearly linear over the range of [Na]; between 8 and 16 mm. The
extrapolated lines show how the current at [Na]; = 0 can be estimated, as done by Eisner ¢ al. (1981) to
estimate the resting pump current.

replotted as current-[Na]; curves. With activation by 2 mm external cation, the result is close
to linear over the whole range. With 15 mm external cation concentration the curve is close
to linear over the range 8—16 mum but deviates from linearity above this range. Thus, over the
relevant range of the experiments, a nearly linear relation is obtained. Furthermore, the
computed deviation from linearity above 16 mm is almost entirely attributable to the arbitrary
value of 40 mum assumed for the K, for internal Na activation of the pump. If this is increased
to, say, 100 mm the results are linear up to much larger Na* concentrations.

25-2
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Further results related to i, and consequential changes in [Na];, [K]; and in current—voltage
relations have already been published by Hart et al. (1983).

(g) Current changes formerly attributed to ix,

We have already given a fairly complete treatment of this question using an earlier, and much
simpler, version of the model (DiFrancesco & Noble 1982). Here we will restrict ourselves to
showing that essentially the same results are obtained with the more complete version described
in the present paper.

Figure 17 shows ionic currents and mean cleft K* concentrations computed using the
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Ficurke 17. Examples of currents computed in response to hyperpolarizations from —50 mV to various potenti.als
in the activation range for 4. The extracellular cleft space was set to 109, and the full cylindrical diffusion
equations were used to estimate the K concentration profiles as a function of radial distance. Below each set
of current records we show the mean values of [K].. At [K], = 2 mu there is a reversal of total time-dependent
current between — 125 and — 130 mV. At [K],, = 4 mm the reversal occurs at about —110 mV. Similar results
have been obtained for extracellular space volumes between 0.5 and 30 %,. For further analysis of the influence
of extracellular space volume, see DiFrancesco & Noble (1982).

diffusion equations for a cylindrical space. The space volume was set to 109, and step
hyperpolarizations were imposed from —50 mV to the potentials indicated. A variety of bulk
extracellular K* concentrations was used. The results for 2 mm and 4 mm are illustrated. Note
that at each value of [K], there exists a potential at which the net time-dependent current
change changes direction. As shown in our previous work (DiFrancesco & Noble 1980¢, 1982)
this reversal, although it often gives the appearance of a simple single component (which is
what led to its identification in experimental work as a true ionic channel reversal potential)
is in fact attributable to a balance between an inward current change due to the activation
of 4 during hyperpolarizations and an outward current change due to a decrease in
inward-flowing iy, during depletion of K* ions from the cleft space. The time constants for
these two processes are sufficiently close under most circumstances to produce the impression
that a single component (perhaps slightly perturbed by depletion) is responsible. It is
noteworthy that the amounts of K* depletion required to produce this effect are very small.
Typically a reduction of only 0.5 mm in the mean [K], is sufficient to generate a change in
ik, sufficient to mask the opposite change in . This decrease in mean [K], only represents
a change of 109, at [K], = 5 mm. The reduction in the total i conductance — which is
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K-activated (see DiFrancesco 1982) — during large hyperpolarizations may further contribute
to the observed reversal effect.

There is some argument about the precise size of the extracellular space (see, for example,
Cohen et al. 1983). We have therefore repeated these computations over the range 0.5-309%,.
The same kind of result is obtained in all cases. The influence of space size on E,, is treated
fully in DiFrancesco & Noble (1982). '

Figure 18 shows the variation in reversal potential as a function of external [K] on a
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FiGure 18. Variation of E,,, for ‘ix,’ with [K], given by the model and by various experimental results. We also
show the results on measurements of resting potentials and the predictions of the Nernst equation for potassium
(interrupted line) and of (66) (solid lines) for two values of AE. @ Model 1; Ml model 2; [] Noble & Tsien
1968; A Peper & Trautwein 1969; O Cohen et al. 1976; x DiFrancesco et al. 19795; A resting potential
(Gadsby & Cranefield 1977).

logarithmic scale. The filled square symbols show the results for the present model, while the
filled round symbols show the results for the earlier version (DiFrancesco & Noble 1982).
The open symbols show the results of various experiments, while the filled triangles show the
variation in resting potential obtained by Gadsby & Cranefield (1977). The interrupted line
shows the value for Ey computed by assuming that [K]; = 140 mm. This is clearly a good fit
to the resting potential results for values of [K], above about 8 mum. Equally clearly, all the
reversal potential estimates, experimental and theoretical lie significantly negative to the
estimated values of Ex. To a first approximation, the results fit an equation of the form:

E,o, = Ex—AE (66)

where AE is nearly a constant. For the early version of the model the best value of AE is 18 mV.
For the present version it lies at about 14 mV. The theoretical derivation of and justification
for this surprisingly simple equation has been given already in DiFrancesco & Noble (1982).
All we need to add to what was shown in that paper is that we have now checked this result
with numerical computations in about eight different versions of the same basic model with
various formulations of iy, and ¢. Any lingering suspicion that the result is fortuitous can now
be laid firmly to rest. Given the properties of i, and its strong K-dependence at negative
potentials and the similar time constants for the y gating reaction and the K+ depletion process
an approximate equation of the form of (59) is far from fortuitous: it is rather a necessary
consequence of the given properties of the ionic currents and geometries involved.
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Nevertheless, there are some significant variations. First, as shown by the comparison
between the two versions of our model, the best value for AE can vary. Among the variables
concerned in determining this parameter is the size of the extracellular cleft space (DiFrancesco
& Noble 1982). Secondly, it is worth noting that the precise shape of the ionic current record
near the reversal potential varies with the detailed characteristics assumed. Sometimes the
current record remains virtually monotonic (cf. Noble & Tsien 1968, figure 5, and the results
plotted in figure 18). Sometimes, it is clearly biphasic (cf. Cohen et al. (1976), figure 2B, and
the computed results shown in DiFrancesco & Noble (1980¢)). It is even sometimes impossible
to obtain a reversal potential (see, for example, Cohen et al. (1976), figure 2 C). This is of course
the natural situation in the mammalian s.a. node where iy, is too weak to produce sufficient
depletion dependent current change to mask . It is therefore significant that the case showing
absence of reversal published by Cohen et al. (1976) is from a Purkinje fibre in which the
instantaneous current jumps attributable primarily to i, were very small indeed. It is easy
to produce this behaviour in the model by reducing ik, (DiFrancesco & Noble 1982).

Recently, Clay & Shrier (19814, ) have recorded an ionic current change in spherical
aggregates of embryonic ventricular cells which strongly resembles 4 or iy,. In their analysis
they use the Noble & Tsien (1968) iy, hypothesis. We therefore thought it important to check
the extent to which their results are also compatible with an ¢ hypothesis. To reproduce their
experimental situation we made the following modifications to the model: (i) the equations
for K* diffusion in a spherical space were used instead of the cylindrical equations; (ii) the
sphere was assumed to have a radius of 100 pm with an extracellular space volume of 49, (the
values given by Clay & Shrier (19814, 4)); (iii) the ionic currents were all scaled down by a
factor of 10 to give absolute values similar to those recorded in Clay & Shrier’s experiments.
We have in fact repeated the computations for a variety of other parameter sets (see, for
example, DiFrancesco & Noble (1981) for an example that uses Clay & Shrier’s kinetics). The
results all resemble those shown in figure 19 which shows currents computed in response to
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Ficure 19. Computed variations in ionic current in a spherical model in response to various hyperpolarizations
from —50 mV to the potentials shown. The extracellular cleft space was set to 4 %,. The full diffusion equations
for a three-dimensional spherical space were used. The mean values of [K], are plotted below. [K]; was set
to 110 mm. This gives a reversal potential at —98 mV.
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hyperpolarizations from —50 mV with the bulk [K] set at 4 mm. To obtain a ‘reversal’
potential at about —98 mV (near the value found by Clay & Shrier) we used a value of 110 mm
for [K];. The results clearly closely resemble those of Clay & Shrier. A feature of their results
which they feel strongly supports the i, hypothesis is that the current records at the reversal
potential are very flat. The result computed in figure 19 shows only 29, variation in current
level at the reversal potential. This figure depends naturally on the precise parameters assumed.
With other possible parameters consistent with the experimental data, this figure for the current
variation at £, could be higher or lower. Our own view is that this is not the crucial argument
for distinguishing between the hypothesis. The more important one is to ask, first, what is the
minimum plausible magnitude of the depletion process during hyperpolarization to £, and,
second, would the change in i, expected from such a change in [K], be within, say, less than
1 or 29, of the total current. The answer to the first question is already provided in figure 19.
It should be noted that in our computations using the full diffusion equations (in this case for
a three-dimensional spherical space) we have used the free diffusion coefficient either with no
restriction factor, or with a restriction factor of 0.5 to represent possible slowing of diffusion
in the extracellular space either by the cells or by the external matrix. The computations were
very similar for both situations since only the K concentration very near the surface was found
to depend strongly on the diffusion coefficient. For a 49, space this gives a mean depletion
of about 0.5 mm at the reversal potential (in the region of —98 mV). Now in this range of
potentials the observed variation of ionic current with external K* is very large: from Clay
& Shrier (19814, figure 2) we estimate of the order of 5-7 nA mm™!, or about 2.5-3.5 nA for
0.5 mm change in [K],. Clearly such a current change is much larger than 1-2 9, of the total
current; it is more like 20-30 9%,. On this argument, a truly flat current record at about —95 mV
requires that some other process (such as a slow activation of an inward current) should also
occur, rather than being evidence for a single component. Put another way, to reduce the
predicted cleft K* depletion to values (say less than 0.025 mm) sufficiently small to produce
a less than 1-2 9 variation in ionic current we would have to increase the cleft space volume
by at least a factor of 10 to about 40—-50 %,. This is far from the value given by Clay & Shrier
and, we suspect, much larger than an extracellular space size could possibly be in a tight-fitting
cell aggregate. Our conclusion here, therefore, is that it is quantitatively implausible to hold
that depletion is negligible in a 100 pm radius sphere conducting strongly K*-dependent ionic
currents of the magnitudes recorded by Clay & Shrier.

CONCLUSIONS

We have discussed most of our results together with their presentation since it is not possible
in a paper of this kind to defer all the discussion to a separate section. In this concluding section
we shall therefore restrict ourselves to discussion of a more general nature.

In one sense, our model is conceived in a manner similar to previous ones. In other ways
it is a radical departure from them. The sense in which it resembles previous cardiac models
is that it uses the experimental data on individual ionic current mechanisms to construct a
mathematical description that acts as a convenient quantitative catalogue of the relevant results.
While being primarily descriptive, this function of a model is nevertheless important and its
importance grows as the number of separate mechanisms increases. Cardiac electrophysiology
has long ago passed the stage at which numerical predictions on the basis of known experimental
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data are sufficiently obvious not to require a proper overall formulation. Even from this point
of view our model is a major advance on the previous ones, and on the M.N.T. model in
particular, since we have taken the opportunity to incorporate a very large range of new
experimental information. Moreover, even at this simply descriptive level, it has already proved
very useful in, for example, exploring the consequences of the very much faster kinetics
determined for the calcium channel for the role of this channel in the action potential plateau,
in reassessing the variations in ionic conductances during the action potential and pacemaker
potential, and in reconstructing the influence of extracellular potassium ions on electrical
activity. Viewed simply as an up-dating of the numerical catalogue, the model clearly replaces
the M.N.T. model for the kinds of purpose for which that model was constructed.
Nevertheless, up-dating the M.N.T. model was not our initial or even primary aim. This
was, rather, to begin to construct a model that, for the first time, fully integrates the
electrophysiological description of gated channels in the heart with a description of the ionic
pump and sequestering processes. The present state of development of the field clearly requires
a model of this kind since it is no longer plausible to ignore either the direct contributions of
ionic pumps and exchange mechanisms or the indirect effects arising from ion concentration
changes. Doubtless, these underlie the well-known fact that cardiac muscle electrical activity
changes in quite complex ways with time, and over a time scale that must involve changes in
intracellular and extracellular ion concentrations. In addition to the examples provided by the
computations described in the present paper, good examples of uses of the model that exploit
this integration are the complete ‘mapping’ of the old ¢k, hypothesis onto the new ¢ hypothesis
which we described in a previous paper (DiFrancesco & Noble 1982) and the use by Hart et
al. (1983) to account for the transient nature of some of the electrical correlates of perturbation
of the Na—K pump by low concentrations of cardiotonic steroids. Further examples are also
provided by the extensive use of the mammalian s.a. node version of the model (Noble & Noble
1984) to provide plausible explanations for a variety of otherwise puzzling results obtained
recently in experiments on this tissue (Brown et al. 19844, b). We shall give further examples
in DiFrancesco et al. (1985) which relate to longer-term changes and to possible interrelations
between inotropic state and electrical properties. This also is an area that no useful model of
electrical activity could now properly ignore. Our own initial involvement in the need to take
account of ionic concentration changes was of course due to the requirement to investigate the
theoretical consequences of potassium depletion processes in the extracellular spaces; it is an

obvious and logical step to extend this approach to intracellular spaces.

While it was relatively easy to carry out this extension in principle, we have found it difficult
to make some of the choices we found were necessary. It is extremely unlikely that our
representation of the Ca-sequestering processes or of the Na—Ca exchange mechanism or of other
Ca-activated currents (such as ¢,,) will remain among the best available for very long. Yet,
our own experience (like that of McAllister et al. (1975)) is that the development of an overall
model for the heart is a tedious process requiring at least two or three years and indefinite
amounts of computer time. It was largely for this reason that we decided to program the model
in a high structured language (Algol) that readily allows future developments. Many of the
possible future developments are already built-in to the program and, as noted in the Methods
section, we have translated the program into the closely related language, Pascal. Our hope
is that those who wish to build onto the structure we have created will be able to do so relatively
easily.
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Finally, some comments are appropriate on a few choices in the development of the model
that we could have made but didn’t. First of all, we were inclined at an early stage to conclude
that it would be most economical to assume that all or a major part of the background Na
current is carried by non-specific (as between Na and K ions) Ca-activated channels of the
kind described recently by Colqhoun etal. (1981) in the heart and which have also been observed
in a wide variety of other tissues. This facility exists in the program and we spent several months
investigating its consequences. While it is perfectly possible to construct a Purkinje fibre model
in which this assumption is made, the assumption created fairly severe difficulties in extending
the model to other tissues such as the s.a. node (Noble & Noble 1984) and ventricle
(DiFrancesco et al. 1985). The reason is fairly simple. In a tissue in which the plateau potential
is near the reversal potential of the non-specific channel the channel carries little current even
when strongly Ca-activated and so does not greatly influence the action potential shape. By
contrast, in preparations with fairly positive plateau potentials, the channel would carry fairly
substantial outward currents. The result is in all cases to deform the repolarization process so
that it resembles the Purkinje fibre repolarization process. Niedergerke & Page (1982) have
recently shown that incorporating this channel mechanism into the M.N.T. model or the
Beeler—Reuter model produces just this effect and that this may explain the shape of frog action
potentials in high calcium at higher frequencies. This kind of repolarization waveform may
also accompany what is usually called the ‘rested state’ contraction. In both cases, the
contraction, and therefore the [Ca]; transient, are very large. Our results would fully confirm
Niedergerke & Page’s conclusions, but clearly this process cannot be significantly involved in
action potentials from nodal or ventricular tissue when they do not show this particular
repolarization waveform. Our conclusion here is that the full role and significance of this
channel remains to be clarified. It may well be activated during unusually large [Ca];
transients, but it cannot be significantly activated during normal ventricular action potentials
of the type in which the net repolarizing current is at its minimum during the [Ca]; transient.

Another area in which we initially explored some unsatisfactory formulations is the
description of the Na—Ca exchange process. While there is now little doubt that this process
is electrogenic, there are many ways in which its dependence on ionic concentrations and
membrane potential might be formulated. We have satisfied ourselves that the simple
hyperbolic sine function (see Mullins (1981), p. 42) is unsatisfactory except for a very restricted
range of purposes when the only significant variable is' membrane potential. In practice this is
hardly ever the case since calcium concentration changes are nearly always involved. At the
least, therefore, a better description of the Ca-depernidence of the current is required. Yet, a
complete version (whether that of Mullins (1977) or any other plausible model) of the equations
for Na—Ca exchange would be so complex and use so many arbitrary coefficients that it would
be cumbersome to formulate and would be of doubtful validity. We eventually opted for a
compromise: a version that does incorporate a plausible description of the Ca-dependence of
the exchange process but which does not fully represent the Na-dependence. This was achieved
by representing a number of the Na-dependent terms in Mullins’ model by a constant. We draw
attention to this so as to warn other users of the model that, if substantial changes in Na
concentrations are involved and the Na—Ca current is very significant, then they may have
to develop the equations further than we have done in this direction. The possible roles of the
Na—Ca exchange current have been quite extensively discussed recently. Our model may allow
some of the questions raised to be put to some quantitative tests.
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