
1 

Tutorial for the CellML Metabolic Component Library (MCL) 

Introduction 

Metabolic networks often reuse kinetic equations from a standard set of defined reaction mechanisms. 

Consequently, a library of these standard components in a standard format could facilitate the 

development of metabolic models. Reuse of annotated components could support the identification of 

common patterns and provide an additional meta-level for the understanding of kinetic metabolic 

modeling. A standard metabolic component library was developed in CellML, a standard XML based 

language for the encoding of kinetic models, and usage examples are provided. The current version of 

the library is available via  

http://models.cellml.org/w/matthiaskoenig/MetabolicComponentLibrary 

http://www.charite.de/sysbio/people/koenig/software/cellml-mcl/ 

Examples 

The usage of MCL components in models via the import statement of CellML is demonstrated in the 

following examples. All examples are provided with the library and are found in the examples folder 

MassAction 1 

Example MassAction1 is a simple reaction network consisting of one reaction (v1) of the the type 

MassActionUniUni. The example shows the basic use of components via the import function in 

CellML 1.1. 

 

v1 (A ↔ B) [MassActionUniUniRev] 

 

 

The MassActionUniUniRev component as well as the units of the MCL are imported. 

<model xmlns="http://www.cellml.org/cellml/1.1#" 
xmlns:cmeta="http://www.cellml.org/metadata/1.1#" cmeta:id="Example_MassAction_1" 
name="Example_MassAction_1"> 
 
<import xmlns:xlink="http://www.w3.org/1999/xlink" 
xlink:href="MetabolicComponentLibrary-v0.1.cellml"> 
 <component component_ref="MassActionUniUniRev" name="R1_MassActionUniUniRev"/> 
 <units name="mM" units_ref="mM"/> 
 <units name="per_second" units_ref="per_second"/> 
 <units name="mM_per_second" units_ref="mM_per_second"/> 
 <units name="per_mM_per_second" units_ref="per_mM_per_second"/> 
 <units name="per_mM" units_ref="per_mM"/> 
</import> 
... 
</model> 

 

The ODEs are defined in the top component Network. The component Reaction_1 is the reaction which 

calculates the flux v1. The actual implementation of the flux calculation is performed in the MCL 

component MassActionUniUniRev. 

http://models.cellml.org/w/matthiaskoenig/MetabolicComponentLibrary
http://www.charite.de/sysbio/people/koenig/software/cellml-mcl/


2 

def comp Network as 
 var t: second; 
 var v1: mM_per_second {pub: in}; 
 var A: mM {init: 1, pub: out}; 
 var B: mM {init: 0, pub: out}; 
 
 ode(A, t) = -v1; 
 ode(B, t) = v1; 
enddef; 
 
def comp Reaction_1 as 
 var v1: mM_per_second {pub: out, priv: in}; 
 var A: mM {pub: in, priv: out}; 
 var B: mM {pub: in, priv: out}; 
 var k_f: per_second {priv: out}; 
 var k_b: per_second {priv: out}; 
 
 k_f = 10{per_second}; 
 k_b = 3{per_second}; 
enddef; 
 
def map between Network and Reaction_1 for 
 vars v1 and v1; 
 vars A and A; 
 vars B and B; 
enddef; 
 
def group as encapsulation for 
 comp Reaction_1 incl 
  comp R1_MassActionUniUniRev; 
 endcomp; 
enddef; 
 
def map between Reaction_1 and 
R1_MassActionUniUniRev for 
 vars v1 and J; 
 vars A and S; 
 vars B and P; 
 vars k_f and k_f; 
 vars k_b and k_b; 
enddef; 

 

Simulation results from OpenCOR: 



3 

 
 



4 

Mass Action 2 

Example MassAction2 is a simple reaction network consisting of two reactions (v1, v2) of the type 

MassActionUniUniRev. This example demonstrates the multiple reuse of a component from the MCL. 

 

v1 (A ↔ B) [MassActionUniUniRev] 

v2 (A ↔ B) [MassActionUniUniRev] 

 

 

 



5 

Mass Action 3 

Example MassAction3 is a simple reaction demonstrates the use of multiple different components from 

the MCL. 

 

v1 (A_ex ↔ A) [MassActionUniUniRev] 

v2 (A+D ↔ C) [MassAction] 

v3 (C ↔ B+D) [MassAction] 

v4 (B ↔ B_ex) [MassAction] 

 

 



6 

Example Full 1 

More complex real world example. 

 

 



7 

Wolf and Heinrich (2000) 

Real World example. 

 



8 

Nazareth et al. (2009) 

Real World example. 

 

 

 

 

Koenig et al. (2012) 

Real World example. 



9 

Using Library Components in CellML 

Best practice for model encoding & structuring of component libraries 

Currently information is lacking on how to best code a model in CellML. Furthermore, no information 

is available how libraries of components should be structured and used. A standard document should be 

provided with examples to provide guidelines (start with an electro-physiological library). How should 

libraries be documented and be made accessible? How to handle changes in versions? Notifications? 

Tests of the single components? Provide backwards compatibility? 

Lack of tools for reuse of components & the editing with imports 

Tools are missing which support the rapid model encoding with the use of imports of predefined 

components 

 COR and OpenCell are not solving these issues and result often non-functioning models. COR 

is always overwriting the CellML header comments and converts files from CellML 1.1 to 1.0, 

thereby breaking the imports. 

 JSim is not supporting imports 

 COR is not supporting imports 

 VCell did not work at all with CellML 

 OpenCOR does currently not have a working editor 

To create the examples XML parts had to be written from scratch. The infrastructure supporting 

imports and a component library is currently not fully available! Nobody will reuse the components if 

the software is not supporting it! 

There is no working CellML editor supporting imports! 

pub:in / pub:out / priv:in /priv:out & encapsulation nightmare 

The connecting of the components via mappings is too difficult and not very intuitive. Especially the 

necessity to encapsulate if variables are passed through an intermediate layer is very annoying. 

This has to be solved automatically by the CellML-API and a modeler should not worry about the 

priv/pub definitions. With additional encapsulation layer the priv/pub definitions have to be changed 

again and again. 

How to best encode metabolic networks? 

With the removal of the reaction component it is completely unclear how to encode metabolic networks 

in CellML (problem related to best practice guidelines). A mayor problem is the lack of the 

stoichiometric matrix (which comes in SBML naturally from the species/reaction model. How can I 

best obtain the stoichiometric matrix from a CellML model not encoded with the ‘reaction’ component. 

Especially for visualization this is a critical issue. 

Annotation standard & annotation tools ? 

“…model authors are strongly encouraged to appropriately and comprehensively annotate their 

models, as well as reuse their models or those of others as often as possible.” (Garny, 2008) 

 



10 

CellML API functions are necessary to write and read annotations in a standard way, namely MIRIAM 

annotations. Currently, this is not possible from the available standard editors and the API. 

Outlook 

 Provide simple example files and the implementation of 2-3 standard models 

 SBO annotations of reaction mechanisms 

 LinLog kinetics, generalized kinetics, power law based kinetics 

 Mass-Action & Power-Law example generator from stoichiometric matrix and given 

reversibility/irreversibility 


