# Size of variable arrays: sizeAlgebraic = 2 sizeStates = 1 sizeConstants = 19 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (minute)" legend_constants[12] = "F16BP in component F16BP (millimolar)" legend_states[0] = "G3P in component G3P (millimolar)" legend_algebraic[0] = "V_Gpd_p in component V_Gpd_p (flux)" legend_algebraic[1] = "V_Gpp_p in component V_Gpp_p (flux)" legend_constants[13] = "DHAP in component DHAP (millimolar)" legend_constants[14] = "ATP in component ATP (millimolar)" legend_constants[15] = "ADP in component ADP (millimolar)" legend_constants[16] = "NADH in component NADH (millimolar)" legend_constants[17] = "NAD in component NAD (millimolar)" legend_constants[18] = "Pi_ in component Pi (millimolar)" legend_constants[0] = "K_F16BP in component V_Gpd_p (millimolar)" legend_constants[1] = "K_ATP in component V_Gpd_p (millimolar)" legend_constants[2] = "K_ADP in component V_Gpd_p (millimolar)" legend_constants[3] = "K_NAD in component V_Gpd_p (millimolar)" legend_constants[4] = "K_NADH in component V_Gpd_p (millimolar)" legend_constants[5] = "K_G3P in component V_Gpd_p (millimolar)" legend_constants[6] = "K_DHAP in component V_Gpd_p (millimolar)" legend_constants[7] = "K_eq in component V_Gpd_p (dimensionless)" legend_constants[8] = "Vf in component V_Gpd_p (flux)" legend_constants[9] = "K_G3P in component V_Gpp_p (millimolar)" legend_constants[10] = "K_Pi in component V_Gpp_p (millimolar)" legend_constants[11] = "V in component V_Gpp_p (flux)" legend_rates[0] = "d/dt G3P in component G3P (millimolar)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; states[0] = 24 constants[0] = 4.8 constants[1] = 0.73 constants[2] = 2 constants[3] = 0.93 constants[4] = 0.023 constants[5] = 1.2 constants[6] = 0.54 constants[7] = 1e4 constants[8] = 36 constants[9] = 3.5 constants[10] = 1 constants[11] = 18 constants[12] = 0.00000 constants[13] = 0.590000 constants[14] = 2.37000 constants[15] = 2.17000 constants[16] = 1.87000 constants[17] = 1.45000 constants[18] = 2.17000 return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic algebraic[0] = ((constants[8]/(constants[4]*constants[6]))*(constants[16]*constants[13]-(constants[17]*states[0])/constants[7]))/((1.00000+constants[12]/constants[0]+constants[14]/constants[1]+constants[15]/constants[2])*(1.00000+constants[16]/constants[4]+constants[17]/constants[3])*(1.00000+constants[13]/constants[6]+states[0]/constants[5])) algebraic[1] = ((constants[11]*states[0])/constants[9])/((1.00000+states[0]/constants[9])*(1.00000+constants[18]/constants[10])) rates[0] = -algebraic[1]+algebraic[0] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[0] = ((constants[8]/(constants[4]*constants[6]))*(constants[16]*constants[13]-(constants[17]*states[0])/constants[7]))/((1.00000+constants[12]/constants[0]+constants[14]/constants[1]+constants[15]/constants[2])*(1.00000+constants[16]/constants[4]+constants[17]/constants[3])*(1.00000+constants[13]/constants[6]+states[0]/constants[5])) algebraic[1] = ((constants[11]*states[0])/constants[9])/((1.00000+states[0]/constants[9])*(1.00000+constants[18]/constants[10])) return algebraic def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)