Generated Code

The following is c_ida code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

/*
   There are a total of 2 entries in the algebraic variable array.
   There are a total of 1 entries in each of the rate and state variable arrays.
   There are a total of 19 entries in the constant variable array.
 */
/*
 * VOI is time in component environment (minute).
 * CONSTANTS[12] is F16BP in component F16BP (millimolar).
 * STATES[0] is G3P in component G3P (millimolar).
 * ALGEBRAIC[0] is V_Gpd_p in component V_Gpd_p (flux).
 * ALGEBRAIC[1] is V_Gpp_p in component V_Gpp_p (flux).
 * CONSTANTS[13] is DHAP in component DHAP (millimolar).
 * CONSTANTS[14] is ATP in component ATP (millimolar).
 * CONSTANTS[15] is ADP in component ADP (millimolar).
 * CONSTANTS[16] is NADH in component NADH (millimolar).
 * CONSTANTS[17] is NAD in component NAD (millimolar).
 * CONSTANTS[18] is Pi_ in component Pi (millimolar).
 * CONSTANTS[0] is K_F16BP in component V_Gpd_p (millimolar).
 * CONSTANTS[1] is K_ATP in component V_Gpd_p (millimolar).
 * CONSTANTS[2] is K_ADP in component V_Gpd_p (millimolar).
 * CONSTANTS[3] is K_NAD in component V_Gpd_p (millimolar).
 * CONSTANTS[4] is K_NADH in component V_Gpd_p (millimolar).
 * CONSTANTS[5] is K_G3P in component V_Gpd_p (millimolar).
 * CONSTANTS[6] is K_DHAP in component V_Gpd_p (millimolar).
 * CONSTANTS[7] is K_eq in component V_Gpd_p (dimensionless).
 * CONSTANTS[8] is Vf in component V_Gpd_p (flux).
 * CONSTANTS[9] is K_G3P in component V_Gpp_p (millimolar).
 * CONSTANTS[10] is K_Pi in component V_Gpp_p (millimolar).
 * CONSTANTS[11] is V in component V_Gpp_p (flux).
 * RATES[0] is d/dt G3P in component G3P (millimolar).
 * There are a total of 0 condition variables.
 */
void
initConsts(double* CONSTANTS, double* RATES, double *STATES)
{
STATES[0] = 24;
CONSTANTS[0] = 4.8;
CONSTANTS[1] = 0.73;
CONSTANTS[2] = 2;
CONSTANTS[3] = 0.93;
CONSTANTS[4] = 0.023;
CONSTANTS[5] = 1.2;
CONSTANTS[6] = 0.54;
CONSTANTS[7] = 1e4;
CONSTANTS[8] = 36;
CONSTANTS[9] = 3.5;
CONSTANTS[10] = 1;
CONSTANTS[11] = 18;
CONSTANTS[12] = 0.00000;
CONSTANTS[13] = 0.590000;
CONSTANTS[14] = 2.37000;
CONSTANTS[15] = 2.17000;
CONSTANTS[16] = 1.87000;
CONSTANTS[17] = 1.45000;
CONSTANTS[18] = 2.17000;
RATES[0] = 0.1001;
}
void
computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
                 double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
resid[0] = RATES[0] - - ALGEBRAIC[1]+ALGEBRAIC[0];
}
void
computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
}
void
computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[0] = ( (CONSTANTS[8]/( CONSTANTS[4]*CONSTANTS[6]))*( CONSTANTS[16]*CONSTANTS[13] - ( CONSTANTS[17]*STATES[0])/CONSTANTS[7]))/( (1.00000+CONSTANTS[12]/CONSTANTS[0]+CONSTANTS[14]/CONSTANTS[1]+CONSTANTS[15]/CONSTANTS[2])*(1.00000+CONSTANTS[16]/CONSTANTS[4]+CONSTANTS[17]/CONSTANTS[3])*(1.00000+CONSTANTS[13]/CONSTANTS[6]+STATES[0]/CONSTANTS[5]));
ALGEBRAIC[1] = (( CONSTANTS[11]*STATES[0])/CONSTANTS[9])/( (1.00000+STATES[0]/CONSTANTS[9])*(1.00000+CONSTANTS[18]/CONSTANTS[10]));
}
void
getStateInformation(double* SI)
{
SI[0] = 1.0;
}
void
computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
             double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
}