Generated Code
The following is python code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
# Size of variable arrays: sizeAlgebraic = 19 sizeStates = 11 sizeConstants = 72 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (minute)" legend_constants[0] = "G_o in component G_o (millimolar)" legend_states[0] = "G in component G (millimolar)" legend_algebraic[3] = "V_IN in component V_IN (flux)" legend_algebraic[4] = "V_HK in component V_HK (flux)" legend_states[1] = "G6P in component G6P (millimolar)" legend_algebraic[5] = "V_PFK in component V_PFK (flux)" legend_algebraic[8] = "V_G6PDH in component V_G6PDH (flux)" legend_states[2] = "FDP in component FDP (millimolar)" legend_algebraic[7] = "V_ALD in component V_ALD (flux)" legend_states[3] = "G3P in component G3P (millimolar)" legend_algebraic[9] = "V_GAPDH in component V_GAPDH (flux)" legend_states[4] = "DPG in component DPG (millimolar)" legend_algebraic[10] = "V_PGK in component V_PGK (flux)" legend_states[5] = "PEP in component PEP (millimolar)" legend_algebraic[15] = "V_PK in component V_PK (flux)" legend_states[6] = "Py in component Py (millimolar)" legend_algebraic[16] = "V_TCA in component V_TCA (flux)" legend_algebraic[17] = "V_ADH in component V_ADH (flux)" legend_states[7] = "ATP in component ATP (millimolar)" legend_constants[1] = "PO in component ATP (dimensionless)" legend_algebraic[18] = "V_ATPase in component V_ATPase (flux)" legend_algebraic[0] = "ADP in component ADP (millimolar)" legend_constants[2] = "Cn in component ADP (millimolar)" legend_constants[3] = "AMP in component AMP (millimolar)" legend_constants[4] = "GTP in component GTP (millimolar)" legend_constants[5] = "GDP in component GDP (millimolar)" legend_constants[6] = "H in component H (millimolar)" legend_constants[7] = "NADP in component NADP (millimolar)" legend_constants[8] = "NADH in component NADH (millimolar)" legend_constants[9] = "NAD in component NAD (millimolar)" legend_algebraic[2] = "CD in component CD (millimolar)" legend_constants[10] = "CMTP in component CD (millimolar)" legend_states[8] = "CT in component CT (millimolar)" legend_states[9] = "CP in component CP (millimolar)" legend_constants[11] = "kpol in component CT (third_order_rate_constant)" legend_constants[12] = "kf in component CT (first_order_rate_constant)" legend_constants[13] = "kb in component CT (second_order_rate_constant)" legend_constants[14] = "kdp in component CP (first_order_rate_constant)" legend_states[10] = "PKp in component PKp (millimolar)" legend_constants[15] = "kp2 in component PKp (second_order_rate_constant)" legend_constants[16] = "kp3 in component PKp (first_order_rate_constant)" legend_constants[17] = "k4 in component PKp (second_order_rate_constant)" legend_algebraic[1] = "PKt in component PKt (millimolar)" legend_constants[18] = "C_PK in component PKt (millimolar)" legend_constants[19] = "Ke_in in component V_IN (millimolar)" legend_constants[20] = "KG_in in component V_IN (millimolar)" legend_constants[21] = "V_IN_max in component V_IN (flux)" legend_constants[22] = "KG_m in component V_HK (millimolar)" legend_constants[23] = "KG_s in component V_HK (millimolar)" legend_constants[24] = "KATP_m in component V_HK (millimolar)" legend_constants[25] = "V_HK_max in component V_HK (flux)" legend_constants[26] = "KG6P_r in component V_PFK (millimolar)" legend_constants[27] = "KATP_r in component V_PFK (millimolar)" legend_constants[28] = "KAMP_r in component V_PFK (millimolar)" legend_constants[29] = "cATP in component V_PFK (dimensionless)" legend_constants[30] = "cAMP in component V_PFK (dimensionless)" legend_constants[31] = "cG6P in component V_PFK (dimensionless)" legend_constants[32] = "Lo in component V_PFK (dimensionless)" legend_constants[33] = "gr in component V_PFK (dimensionless)" legend_constants[34] = "n1 in component V_PFK (dimensionless)" legend_constants[35] = "V_PFK_max in component V_PFK (flux)" legend_algebraic[6] = "TUB in component V_G6PDH (millimolar)" legend_constants[36] = "KG6P in component V_G6PDH (millimolar)" legend_constants[37] = "KNADP in component V_G6PDH (millimolar)" legend_constants[38] = "KNADP_ in component V_G6PDH (millimolar)" legend_constants[39] = "KTUB in component V_G6PDH (millimolar)" legend_constants[40] = "V_G6PDH_max in component V_G6PDH (flux)" legend_constants[41] = "V_G6PDH_max_II in component V_G6PDH (flux)" legend_constants[42] = "KG3P_m in component V_ALD (millimolar)" legend_constants[43] = "KFDP_m in component V_ALD (millimolar)" legend_constants[44] = "V_ALD_max in component V_ALD (flux)" legend_constants[45] = "V_ALD_max_r in component V_ALD (flux)" legend_constants[46] = "K1 in component V_GAPDH (millimolar)" legend_constants[47] = "K2 in component V_GAPDH (millimolar)" legend_constants[48] = "K3 in component V_GAPDH (millimolar)" legend_constants[49] = "KG3P in component V_GAPDH (millimolar)" legend_constants[50] = "KNAD in component V_GAPDH (millimolar)" legend_constants[51] = "KNADH_i in component V_GAPDH (millimolar)" legend_constants[52] = "V_GAPDH_max in component V_GAPDH (flux)" legend_constants[53] = "KDPG_m in component V_PGK (millimolar)" legend_constants[54] = "V_PGK_max in component V_PGK (flux)" legend_algebraic[11] = "R in component V_PK (dimensionless)" legend_algebraic[12] = "T in component V_PK (dimensionless)" legend_constants[55] = "KpH in component V_PK (millimolar)" legend_constants[56] = "KPEP_r in component V_PK (millimolar)" legend_constants[57] = "KADP_r in component V_PK (millimolar)" legend_constants[58] = "KFDP_r in component V_PK (millimolar)" legend_constants[59] = "cADP in component V_PK (dimensionless)" legend_constants[60] = "cFDP in component V_PK (dimensionless)" legend_constants[61] = "cPEP in component V_PK (dimensionless)" legend_constants[62] = "Lo_PK in component V_PK (dimensionless)" legend_constants[63] = "gr_PK in component V_PK (dimensionless)" legend_constants[64] = "gt_PK in component V_PK (dimensionless)" legend_algebraic[14] = "n in component V_PK (dimensionless)" legend_algebraic[13] = "V_PK_max in component V_PK (flux)" legend_constants[65] = "V_PKt_max in component V_PK (flux)" legend_constants[66] = "V_PKp_max in component V_PK (flux)" legend_constants[67] = "KPy_m in component V_TCA (millimolar)" legend_constants[68] = "V_TCA_max in component V_TCA (flux)" legend_constants[69] = "KPy__m in component V_ADH (millimolar)" legend_constants[70] = "V_ADH_max in component V_ADH (flux)" legend_constants[71] = "KATP in component V_ATPase (first_order_rate_constant)" legend_rates[0] = "d/dt G in component G (millimolar)" legend_rates[1] = "d/dt G6P in component G6P (millimolar)" legend_rates[2] = "d/dt FDP in component FDP (millimolar)" legend_rates[3] = "d/dt G3P in component G3P (millimolar)" legend_rates[4] = "d/dt DPG in component DPG (millimolar)" legend_rates[5] = "d/dt PEP in component PEP (millimolar)" legend_rates[6] = "d/dt Py in component Py (millimolar)" legend_rates[7] = "d/dt ATP in component ATP (millimolar)" legend_rates[8] = "d/dt CT in component CT (millimolar)" legend_rates[9] = "d/dt CP in component CP (millimolar)" legend_rates[10] = "d/dt PKp in component PKp (millimolar)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; constants[0] = 1 states[0] = 0.01 states[1] = 0.01 states[2] = 0.01 states[3] = 0.01 states[4] = 0.01 states[5] = 0.01 states[6] = 0.01 states[7] = 1.4 constants[1] = 4 constants[2] = 9 constants[3] = 0.5 constants[4] = 0.95 constants[5] = 0.05 constants[6] = 3.2e-8 constants[7] = 1 constants[8] = 0.01 constants[9] = 1 constants[10] = 0.9 states[8] = 0.2 states[9] = 1.2 constants[11] = 10 constants[12] = 3 constants[13] = 2.5 constants[14] = 0.0025 states[10] = 0.005 constants[15] = 10 constants[16] = 0.05 constants[17] = 0.02 constants[18] = 0.01 constants[19] = 12 constants[20] = 0.001 constants[21] = 10 constants[22] = 0.11 constants[23] = 0.0062 constants[24] = 0.1 constants[25] = 13 constants[26] = 1 constants[27] = 0.06 constants[28] = 0.025 constants[29] = 1 constants[30] = 0.019 constants[31] = 0.0005 constants[32] = 25000 constants[33] = 10 constants[34] = 2 constants[35] = 30 constants[36] = 0.05 constants[37] = 0.05 constants[38] = 0.05 constants[39] = 0.4 constants[40] = 1.6 constants[41] = 1 constants[42] = 20 constants[43] = 0.5 constants[44] = 2.5 constants[45] = 1 constants[46] = 1.1 constants[47] = 1.5 constants[48] = 2.5 constants[49] = 0.0025 constants[50] = 0.18 constants[51] = 0.0003 constants[52] = 10 constants[53] = 0.002 constants[54] = 3 constants[55] = 9.5e-9 constants[56] = 1 constants[57] = 0.06 constants[58] = 0.025 constants[59] = 1 constants[60] = 0.01 constants[61] = 0.02 constants[62] = 1000 constants[63] = 0.1 constants[64] = 1 constants[65] = 25 constants[66] = 50 constants[67] = 0.329 constants[68] = 10 constants[69] = 0.169 constants[70] = 0.5 constants[71] = 5 return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic rates[9] = constants[11]*states[8]*(power(states[9], 2.00000))-constants[14]*states[9] algebraic[1] = constants[18]-states[10] rates[10] = 0.100000*constants[15]*algebraic[1]*states[9]-(constants[16]*states[10]+constants[17]*states[10]*constants[4]) algebraic[2] = constants[10]-(states[8]+states[9]) rates[8] = -(constants[11]*states[8]*(power(states[9], 2.00000))+constants[12]*algebraic[2]+constants[13]*states[8]*constants[5]) algebraic[3] = constants[21]*(constants[0]/((constants[20]+constants[0])*(1.00000+states[1]/constants[19]))-states[0]/((constants[20]+states[0])*(1.00000+states[1]/constants[19]))) algebraic[4] = (constants[25]*1.00000)/(1.00000+(constants[23]*constants[24])/(states[0]*states[7])+constants[22]/states[0]+constants[24]/states[7]) rates[0] = algebraic[3]-algebraic[4] algebraic[5] = (((((constants[35]*constants[33]*states[1])/constants[26])*states[7])/constants[27])*(power(1.00000+states[1]/constants[26]+states[7]/constants[27]+(((constants[33]*states[1])/constants[26])*states[7])/constants[27], constants[34]-1.00000)))/(power(1.00000+states[1]/constants[26]+states[7]/constants[27]+(((constants[33]*states[1])/constants[26])*states[7])/constants[27], constants[34])+constants[32]*(power((1.00000+(constants[30]*constants[3])/constants[28])/(1.00000+constants[3]/constants[28]), constants[34]))*(power(1.00000+(constants[31]*states[1])/constants[26]+(constants[29]*states[7])/constants[27]+(((constants[33]*constants[31]*states[1])/constants[26])*constants[29]*states[7])/constants[27], constants[34]))) algebraic[7] = ((constants[44]*states[2])/constants[43]-(constants[45]*states[3])/constants[42])/(1.00000+states[2]/constants[43]+states[3]/constants[42]) rates[2] = algebraic[5]-algebraic[7] algebraic[6] = states[8]+algebraic[2] algebraic[8] = constants[40]/((constants[36]*constants[37])/(states[1]*constants[7])+constants[36]/states[1]+constants[37]/constants[7]+1.00000)+constants[41]/((constants[36]*constants[38]*constants[39])/(states[1]*constants[7]*algebraic[6])+(constants[36]*constants[38])/(states[1]*constants[7])+(constants[38]*constants[39])/(constants[7]*algebraic[6])+(constants[36]*constants[39])/(states[1]*algebraic[6])+constants[39]/algebraic[6]+constants[36]/states[1]+constants[38]/constants[7]+1.00000) rates[1] = algebraic[4]-(algebraic[5]+algebraic[8]) algebraic[0] = constants[2]-(states[7]+constants[3]) algebraic[9] = constants[52]/(1.00000+constants[49]/states[3]+(constants[50]/constants[9])*(1.00000+constants[3]/constants[46]+algebraic[0]/constants[47]+states[7]/constants[48])+((constants[49]*constants[50])/(states[3]*constants[9]))*(1.00000+constants[8]/constants[51])+1.00000+constants[3]/constants[46]+algebraic[0]/constants[47]+states[7]/constants[48]) rates[3] = 2.00000*algebraic[7]-algebraic[9] algebraic[10] = (constants[54]*states[4])/(constants[53]+states[4]) rates[4] = algebraic[9]-algebraic[10] algebraic[11] = 1.00000+states[5]/constants[56]+algebraic[0]/constants[57]+(((constants[63]*states[5])/constants[56])*algebraic[0])/constants[57] algebraic[12] = 1.00000+(constants[61]*states[5])/constants[56]+(constants[59]*algebraic[0])/constants[57]+(((constants[64]*constants[61]*states[5])/constants[56])*constants[59]*algebraic[0])/constants[57] algebraic[14] = 4.00000+states[10]/constants[18] algebraic[13] = constants[65]+((constants[66]-constants[65])*states[10])/constants[18] algebraic[15] = ((algebraic[13]/(1.00000+constants[55]/constants[6]))*(constants[63]*(states[5]/constants[56])*(algebraic[0]/constants[57])*(power(algebraic[11], algebraic[14]-1.00000))+constants[62]*(power((1.00000+(constants[60]*states[2])/constants[58])/(1.00000+states[2]/constants[58]), algebraic[14]))*(states[2]/constants[58])*constants[64]*((constants[61]*states[5])/constants[56])*((constants[59]*algebraic[0])/constants[57])*(power(algebraic[12], algebraic[14]-1.00000))))/(power(algebraic[11], algebraic[14])+constants[62]*(power((1.00000+(constants[60]*states[2])/constants[58])/(1.00000+states[2]/constants[58]), algebraic[14]))*(power(algebraic[12], algebraic[14]))) rates[5] = algebraic[10]-algebraic[15] algebraic[16] = (constants[68]*(power(states[6], 2.00000)))/(power(constants[67], 2.00000)+power(states[6], 2.00000)) algebraic[17] = (constants[70]*states[6])/(constants[69]+states[6]) rates[6] = algebraic[15]-(algebraic[16]+algebraic[17]) algebraic[18] = constants[71]*states[7] rates[7] = (algebraic[10]+algebraic[15]+constants[1]*algebraic[16])-(algebraic[4]+algebraic[5]+algebraic[18]) return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[1] = constants[18]-states[10] algebraic[2] = constants[10]-(states[8]+states[9]) algebraic[3] = constants[21]*(constants[0]/((constants[20]+constants[0])*(1.00000+states[1]/constants[19]))-states[0]/((constants[20]+states[0])*(1.00000+states[1]/constants[19]))) algebraic[4] = (constants[25]*1.00000)/(1.00000+(constants[23]*constants[24])/(states[0]*states[7])+constants[22]/states[0]+constants[24]/states[7]) algebraic[5] = (((((constants[35]*constants[33]*states[1])/constants[26])*states[7])/constants[27])*(power(1.00000+states[1]/constants[26]+states[7]/constants[27]+(((constants[33]*states[1])/constants[26])*states[7])/constants[27], constants[34]-1.00000)))/(power(1.00000+states[1]/constants[26]+states[7]/constants[27]+(((constants[33]*states[1])/constants[26])*states[7])/constants[27], constants[34])+constants[32]*(power((1.00000+(constants[30]*constants[3])/constants[28])/(1.00000+constants[3]/constants[28]), constants[34]))*(power(1.00000+(constants[31]*states[1])/constants[26]+(constants[29]*states[7])/constants[27]+(((constants[33]*constants[31]*states[1])/constants[26])*constants[29]*states[7])/constants[27], constants[34]))) algebraic[7] = ((constants[44]*states[2])/constants[43]-(constants[45]*states[3])/constants[42])/(1.00000+states[2]/constants[43]+states[3]/constants[42]) algebraic[6] = states[8]+algebraic[2] algebraic[8] = constants[40]/((constants[36]*constants[37])/(states[1]*constants[7])+constants[36]/states[1]+constants[37]/constants[7]+1.00000)+constants[41]/((constants[36]*constants[38]*constants[39])/(states[1]*constants[7]*algebraic[6])+(constants[36]*constants[38])/(states[1]*constants[7])+(constants[38]*constants[39])/(constants[7]*algebraic[6])+(constants[36]*constants[39])/(states[1]*algebraic[6])+constants[39]/algebraic[6]+constants[36]/states[1]+constants[38]/constants[7]+1.00000) algebraic[0] = constants[2]-(states[7]+constants[3]) algebraic[9] = constants[52]/(1.00000+constants[49]/states[3]+(constants[50]/constants[9])*(1.00000+constants[3]/constants[46]+algebraic[0]/constants[47]+states[7]/constants[48])+((constants[49]*constants[50])/(states[3]*constants[9]))*(1.00000+constants[8]/constants[51])+1.00000+constants[3]/constants[46]+algebraic[0]/constants[47]+states[7]/constants[48]) algebraic[10] = (constants[54]*states[4])/(constants[53]+states[4]) algebraic[11] = 1.00000+states[5]/constants[56]+algebraic[0]/constants[57]+(((constants[63]*states[5])/constants[56])*algebraic[0])/constants[57] algebraic[12] = 1.00000+(constants[61]*states[5])/constants[56]+(constants[59]*algebraic[0])/constants[57]+(((constants[64]*constants[61]*states[5])/constants[56])*constants[59]*algebraic[0])/constants[57] algebraic[14] = 4.00000+states[10]/constants[18] algebraic[13] = constants[65]+((constants[66]-constants[65])*states[10])/constants[18] algebraic[15] = ((algebraic[13]/(1.00000+constants[55]/constants[6]))*(constants[63]*(states[5]/constants[56])*(algebraic[0]/constants[57])*(power(algebraic[11], algebraic[14]-1.00000))+constants[62]*(power((1.00000+(constants[60]*states[2])/constants[58])/(1.00000+states[2]/constants[58]), algebraic[14]))*(states[2]/constants[58])*constants[64]*((constants[61]*states[5])/constants[56])*((constants[59]*algebraic[0])/constants[57])*(power(algebraic[12], algebraic[14]-1.00000))))/(power(algebraic[11], algebraic[14])+constants[62]*(power((1.00000+(constants[60]*states[2])/constants[58])/(1.00000+states[2]/constants[58]), algebraic[14]))*(power(algebraic[12], algebraic[14]))) algebraic[16] = (constants[68]*(power(states[6], 2.00000)))/(power(constants[67], 2.00000)+power(states[6], 2.00000)) algebraic[17] = (constants[70]*states[6])/(constants[69]+states[6]) algebraic[18] = constants[71]*states[7] return algebraic def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)