# Size of variable arrays: sizeAlgebraic = 0 sizeStates = 0 sizeConstants = 21 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_constants[16] = "v_cystathionine in component v_cystathionine (flux)" legend_constants[0] = "Cys in component Cys (micromolar)" legend_constants[1] = "CGS in component CGS (micromolar)" legend_constants[2] = "Pi in component Pi (micromolar)" legend_constants[3] = "Phser in component Phser (micromolar)" legend_constants[15] = "Km_CGS_app_Cys in component v_cystathionine (micromolar)" legend_constants[4] = "Km_CGS_Cys in component v_cystathionine (micromolar)" legend_constants[5] = "kcat_CGS in component v_cystathionine (first_order_rate_constant)" legend_constants[14] = "kcat_CGS_app_Cys in component v_cystathionine (first_order_rate_constant)" legend_constants[6] = "Km_CGS_Phser in component v_cystathionine (micromolar)" legend_constants[7] = "Ki_CGS_Pi in component v_cystathionine (micromolar)" legend_constants[19] = "v_Thr in component v_Thr (flux)" legend_constants[8] = "TS in component TS (micromolar)" legend_constants[9] = "AdoMet in component AdoMet (micromolar)" legend_constants[18] = "Km_TS in component v_Thr (micromolar)" legend_constants[10] = "kcat_TS_noAdoMet in component v_Thr (first_order_rate_constant)" legend_constants[11] = "kcat_TS_AdoMet in component v_Thr (first_order_rate_constant)" legend_constants[17] = "kcat_TS in component v_Thr (first_order_rate_constant)" legend_constants[12] = "K1K2 in component v_Thr (micromolar2)" legend_constants[13] = "Ki_TS_Pi in component v_Thr (micromolar)" legend_constants[20] = "J_Phser in component J_Phser (flux)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; constants[0] = 15.0 constants[1] = 0.7 constants[2] = 10000.0 constants[3] = 500.0 constants[4] = 460.0 constants[5] = 30.0 constants[6] = 2500.0 constants[7] = 2500.0 constants[8] = 5.0 constants[9] = 20.0 constants[10] = 0.42 constants[11] = 3.5 constants[12] = 73.0 constants[13] = 1000.0 constants[14] = constants[5]/(1.00000+(constants[6]/constants[3])*(1.00000+constants[2]/constants[7])) constants[15] = constants[4]/(1.00000+(constants[6]/constants[3])*(1.00000+constants[2]/constants[7])) constants[16] = (constants[14]*constants[1]*constants[0])/(constants[15]+constants[0]) constants[17] = (constants[10]+constants[11]*((power(constants[9], 2.00000))/constants[12]))/(1.00000+(power(constants[9], 2.00000))/constants[12]) constants[18] = ((250.000*((1.00000+constants[9]/0.500000)/(1.00000+constants[9]/1.10000)))/(1.00000+(power(constants[9], 2.00000))/140.000))*(1.00000+constants[2]/constants[13]) constants[19] = (constants[8]*constants[17]*constants[3])/(constants[18]+constants[3]) constants[20] = constants[16]+constants[19] return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) return algebraic def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)