function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction() % This is the "main function". In Matlab, things work best if you rename this function to match the filename. [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel(); end function [algebraicVariableCount] = getAlgebraicVariableCount() % Used later when setting a global variable with the number of algebraic variables. % Note: This is not the "main method". algebraicVariableCount =4; end % There are a total of 3 entries in each of the rate and state variable arrays. % There are a total of 25 entries in the constant variable array. % function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel() % Create ALGEBRAIC of correct size global algebraicVariableCount; algebraicVariableCount = getAlgebraicVariableCount(); % Initialise constants and state variables [INIT_STATES, CONSTANTS] = initConsts; % Set timespan to solve over tspan = [0, 10]; % Set numerical accuracy options for ODE solver options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1); % Solve model with ODE solver [VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options); % Compute algebraic variables [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS); ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI); % Plot state variables against variable of integration [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends(); figure(); plot(VOI, STATES); xlabel(LEGEND_VOI); l = legend(LEGEND_STATES); set(l,'Interpreter','none'); end function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends() LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = ''; LEGEND_VOI = strpad('time in component environment (second)'); LEGEND_STATES(:,1) = strpad('Vm in component membrane (millivolt)'); LEGEND_CONSTANTS(:,1) = strpad('C in component membrane (picoF)'); LEGEND_ALGEBRAIC(:,3) = strpad('i_K in component potassium_current (picoA)'); LEGEND_ALGEBRAIC(:,4) = strpad('i_R in component repolarising_current (picoA)'); LEGEND_STATES(:,2) = strpad('IP3 in component IP3 (nanomolar)'); LEGEND_CONSTANTS(:,2) = strpad('m3IP3 in component IP3 (dimensionless)'); LEGEND_CONSTANTS(:,3) = strpad('m4IP3 in component IP3 (dimensionless)'); LEGEND_CONSTANTS(:,4) = strpad('kIP3 in component IP3 (first_order_rate_constant)'); LEGEND_CONSTANTS(:,5) = strpad('A in component IP3 (dimensionless)'); LEGEND_STATES(:,3) = strpad('Ca in component Ca (nanomolar)'); LEGEND_CONSTANTS(:,6) = strpad('m3SR in component Ca (dimensionless)'); LEGEND_CONSTANTS(:,7) = strpad('m4SR in component Ca (dimensionless)'); LEGEND_CONSTANTS(:,8) = strpad('m3PMCA in component Ca (dimensionless)'); LEGEND_CONSTANTS(:,9) = strpad('m4PMCA in component Ca (dimensionless)'); LEGEND_CONSTANTS(:,10) = strpad('kSR_rel in component Ca (flux)'); LEGEND_CONSTANTS(:,11) = strpad('kPMCA in component Ca (flux)'); LEGEND_ALGEBRAIC(:,2) = strpad('Jcat in component Jcat (flux)'); LEGEND_CONSTANTS(:,12) = strpad('ECa in component Jcat (millivolt)'); LEGEND_CONSTANTS(:,13) = strpad('Gcat in component Jcat (nanomolar_per_millivolt_second)'); LEGEND_CONSTANTS(:,14) = strpad('m3cat in component Jcat (dimensionless)'); LEGEND_CONSTANTS(:,15) = strpad('m4cat in component Jcat (dimensionless)'); LEGEND_CONSTANTS(:,16) = strpad('Gtot in component potassium_current (picoS)'); LEGEND_ALGEBRAIC(:,1) = strpad('PoBKCa in component potassium_current (dimensionless)'); LEGEND_CONSTANTS(:,17) = strpad('PoSKCa in component potassium_current (dimensionless)'); LEGEND_CONSTANTS(:,18) = strpad('E_K in component potassium_current (millivolt)'); LEGEND_CONSTANTS(:,19) = strpad('a in component potassium_current (dimensionless)'); LEGEND_CONSTANTS(:,20) = strpad('b in component potassium_current (dimensionless)'); LEGEND_CONSTANTS(:,21) = strpad('c in component potassium_current (dimensionless)'); LEGEND_CONSTANTS(:,22) = strpad('m3 in component potassium_current (dimensionless)'); LEGEND_CONSTANTS(:,23) = strpad('m4 in component potassium_current (dimensionless)'); LEGEND_CONSTANTS(:,24) = strpad('GR in component repolarising_current (picoS)'); LEGEND_CONSTANTS(:,25) = strpad('Vrest in component repolarising_current (millivolt)'); LEGEND_RATES(:,1) = strpad('d/dt Vm in component membrane (millivolt)'); LEGEND_RATES(:,2) = strpad('d/dt IP3 in component IP3 (nanomolar)'); LEGEND_RATES(:,3) = strpad('d/dt Ca in component Ca (nanomolar)'); LEGEND_STATES = LEGEND_STATES'; LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC'; LEGEND_RATES = LEGEND_RATES'; LEGEND_CONSTANTS = LEGEND_CONSTANTS'; end function [STATES, CONSTANTS] = initConsts() VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = []; STATES(:,1) = -31.1; CONSTANTS(:,1) = 1.0; STATES(:,2) = 1.0; CONSTANTS(:,2) = 4.0; CONSTANTS(:,3) = 55.0; CONSTANTS(:,4) = 0.1733; CONSTANTS(:,5) = 0.211; STATES(:,3) = 50.0; CONSTANTS(:,6) = 1.1; CONSTANTS(:,7) = 0.3; CONSTANTS(:,8) = -6.19; CONSTANTS(:,9) = 0.39; CONSTANTS(:,10) = 180.0; CONSTANTS(:,11) = 0.679; CONSTANTS(:,12) = 50.0; CONSTANTS(:,13) = 0.66; CONSTANTS(:,14) = -6.18; CONSTANTS(:,15) = 0.37; CONSTANTS(:,16) = 6927; CONSTANTS(:,17) = 0.5; CONSTANTS(:,18) = -80.0; CONSTANTS(:,19) = 53.3; CONSTANTS(:,20) = -80.8; CONSTANTS(:,21) = -6.4; CONSTANTS(:,22) = 1.32E-3; CONSTANTS(:,23) = 0.30; CONSTANTS(:,24) = 955.0; CONSTANTS(:,25) = -31.1; if (isempty(STATES)), warning('Initial values for states not set');, end end function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS) global algebraicVariableCount; statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; ALGEBRAIC = zeros(1, algebraicVariableCount); utilOnes = 1; else statesRowCount = statesSize(1); ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount); RATES = zeros(statesRowCount, statesColumnCount); utilOnes = ones(statesRowCount, 1); end RATES(:,2) = CONSTANTS(:,5).*(1.00000+ tanh((CONSTANTS(:,2) - VOI)./CONSTANTS(:,3))) - CONSTANTS(:,4).*STATES(:,2); RATES(:,3) = (CONSTANTS(:,10)./2.00000).*(1.00000+ tanh((STATES(:,2) - CONSTANTS(:,6))./CONSTANTS(:,7))) - (CONSTANTS(:,11)./2.00000).*(1.00000+ tanh((arbitrary_log(STATES(:,3), 10) - CONSTANTS(:,8))./CONSTANTS(:,9))); ALGEBRAIC(:,1) = 0.500000.*(1.00000+ tanh(( (arbitrary_log(STATES(:,3), 10) - CONSTANTS(:,21)).*(STATES(:,1) - CONSTANTS(:,20)) - CONSTANTS(:,19))./( CONSTANTS(:,22).*power((STATES(:,1)+ CONSTANTS(:,19).*(arbitrary_log(STATES(:,3), 10) - CONSTANTS(:,21))) - CONSTANTS(:,20), 2.00000)+CONSTANTS(:,23)))); ALGEBRAIC(:,3) = CONSTANTS(:,16).*(STATES(:,1) - CONSTANTS(:,18)).*( 0.400000.*ALGEBRAIC(:,1)+ 0.600000.*CONSTANTS(:,17)); ALGEBRAIC(:,4) = CONSTANTS(:,24).*(STATES(:,1) - CONSTANTS(:,25)); RATES(:,1) = - (1.00000./CONSTANTS(:,1)).*(ALGEBRAIC(:,3)+ALGEBRAIC(:,4)); RATES = RATES'; end % Calculate algebraic variables function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI) statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; utilOnes = 1; else statesRowCount = statesSize(1); utilOnes = ones(statesRowCount, 1); end ALGEBRAIC(:,1) = 0.500000.*(1.00000+ tanh(( (arbitrary_log(STATES(:,3), 10) - CONSTANTS(:,21)).*(STATES(:,1) - CONSTANTS(:,20)) - CONSTANTS(:,19))./( CONSTANTS(:,22).*power((STATES(:,1)+ CONSTANTS(:,19).*(arbitrary_log(STATES(:,3), 10) - CONSTANTS(:,21))) - CONSTANTS(:,20), 2.00000)+CONSTANTS(:,23)))); ALGEBRAIC(:,3) = CONSTANTS(:,16).*(STATES(:,1) - CONSTANTS(:,18)).*( 0.400000.*ALGEBRAIC(:,1)+ 0.600000.*CONSTANTS(:,17)); ALGEBRAIC(:,4) = CONSTANTS(:,24).*(STATES(:,1) - CONSTANTS(:,25)); ALGEBRAIC(:,2) = ( CONSTANTS(:,13).*(CONSTANTS(:,12) - STATES(:,1))).*( 0.500000.*(1.00000+ tanh((arbitrary_log(STATES(:,3), 10) - CONSTANTS(:,14))./CONSTANTS(:,15)))); end % Compute a logarithm to any base" + function x = arbitrary_log(a, base) x = log(a) ./ log(base); end % Pad out or shorten strings to a set length function strout = strpad(strin) req_length = 160; insize = size(strin,2); if insize > req_length strout = strin(1:req_length); else strout = [strin, blanks(req_length - insize)]; end end