/* There are a total of 60 entries in the algebraic variable array. There are a total of 20 entries in each of the rate and state variable arrays. There are a total of 69 entries in the constant variable array. */ /* * VOI is time in component environment (second). * STATES[0] is V in component membrane (millivolt). * CONSTANTS[0] is R in component membrane (joule_per_kilomole_kelvin). * CONSTANTS[1] is T in component membrane (kelvin). * CONSTANTS[2] is F in component membrane (coulomb_per_mole). * CONSTANTS[3] is Cm in component membrane (microF). * ALGEBRAIC[6] is i_K1 in component time_independent_potassium_current (nanoA). * ALGEBRAIC[34] is i_to in component transient_outward_current (nanoA). * ALGEBRAIC[7] is i_Kr in component rapid_delayed_rectifier_potassium_current (nanoA). * ALGEBRAIC[12] is i_Ks in component slow_delayed_rectifier_potassium_current (nanoA). * ALGEBRAIC[54] is i_Ca_L_K_cyt in component L_type_Ca_channel (nanoA). * ALGEBRAIC[57] is i_Ca_L_K_ds in component L_type_Ca_channel (nanoA). * ALGEBRAIC[37] is i_NaK in component sodium_potassium_pump (nanoA). * ALGEBRAIC[15] is i_Na in component fast_sodium_current (nanoA). * ALGEBRAIC[22] is i_b_Na in component sodium_background_current (nanoA). * ALGEBRAIC[21] is i_p_Na in component persistent_sodium_current (nanoA). * ALGEBRAIC[55] is i_Ca_L_Na_cyt in component L_type_Ca_channel (nanoA). * ALGEBRAIC[58] is i_Ca_L_Na_ds in component L_type_Ca_channel (nanoA). * ALGEBRAIC[38] is i_NaCa_cyt in component sodium_calcium_exchanger (nanoA). * ALGEBRAIC[39] is i_NaCa_ds in component sodium_calcium_exchanger (nanoA). * ALGEBRAIC[53] is i_Ca_L_Ca_cyt in component L_type_Ca_channel (nanoA). * ALGEBRAIC[56] is i_Ca_L_Ca_ds in component L_type_Ca_channel (nanoA). * ALGEBRAIC[33] is i_b_Ca in component calcium_background_current (nanoA). * ALGEBRAIC[0] is i_Stim in component membrane (nanoA). * CONSTANTS[4] is stim_start in component membrane (second). * CONSTANTS[5] is stim_end in component membrane (second). * CONSTANTS[6] is stim_period in component membrane (second). * CONSTANTS[7] is stim_duration in component membrane (second). * CONSTANTS[8] is stim_amplitude in component membrane (nanoA). * ALGEBRAIC[1] is E_Na in component reversal_potentials (millivolt). * ALGEBRAIC[2] is E_K in component reversal_potentials (millivolt). * ALGEBRAIC[3] is E_Ks in component reversal_potentials (millivolt). * ALGEBRAIC[4] is E_Ca in component reversal_potentials (millivolt). * ALGEBRAIC[5] is E_mh in component reversal_potentials (millivolt). * CONSTANTS[9] is P_kna in component reversal_potentials (dimensionless). * CONSTANTS[10] is K_o in component extracellular_potassium_concentration (millimolar). * CONSTANTS[11] is Na_o in component extracellular_sodium_concentration (millimolar). * STATES[1] is K_i in component intracellular_potassium_concentration (millimolar). * STATES[2] is Na_i in component intracellular_sodium_concentration (millimolar). * CONSTANTS[12] is Ca_o in component extracellular_calcium_concentration (millimolar). * STATES[3] is Ca_i in component intracellular_calcium_concentration (millimolar). * CONSTANTS[13] is K_mk1 in component time_independent_potassium_current (millimolar). * CONSTANTS[14] is g_K1 in component time_independent_potassium_current (microS). * CONSTANTS[15] is g_Kr1 in component rapid_delayed_rectifier_potassium_current (microS). * CONSTANTS[16] is g_Kr2 in component rapid_delayed_rectifier_potassium_current (microS). * STATES[4] is xr1 in component rapid_delayed_rectifier_potassium_current_xr1_gate (dimensionless). * STATES[5] is xr2 in component rapid_delayed_rectifier_potassium_current_xr2_gate (dimensionless). * ALGEBRAIC[8] is alpha_xr1 in component rapid_delayed_rectifier_potassium_current_xr1_gate (per_second). * ALGEBRAIC[9] is beta_xr1 in component rapid_delayed_rectifier_potassium_current_xr1_gate (per_second). * ALGEBRAIC[10] is alpha_xr2 in component rapid_delayed_rectifier_potassium_current_xr2_gate (per_second). * ALGEBRAIC[11] is beta_xr2 in component rapid_delayed_rectifier_potassium_current_xr2_gate (per_second). * CONSTANTS[17] is g_Ks in component slow_delayed_rectifier_potassium_current (microS). * STATES[6] is xs in component slow_delayed_rectifier_potassium_current_xs_gate (dimensionless). * ALGEBRAIC[13] is alpha_xs in component slow_delayed_rectifier_potassium_current_xs_gate (per_second). * ALGEBRAIC[14] is beta_xs in component slow_delayed_rectifier_potassium_current_xs_gate (per_second). * CONSTANTS[18] is g_Na in component fast_sodium_current (microS). * STATES[7] is m in component fast_sodium_current_m_gate (dimensionless). * STATES[8] is h in component fast_sodium_current_h_gate (dimensionless). * ALGEBRAIC[17] is alpha_m in component fast_sodium_current_m_gate (per_second). * ALGEBRAIC[18] is beta_m in component fast_sodium_current_m_gate (per_second). * CONSTANTS[19] is delta_m in component fast_sodium_current_m_gate (millivolt). * ALGEBRAIC[16] is E0_m in component fast_sodium_current_m_gate (millivolt). * ALGEBRAIC[19] is alpha_h in component fast_sodium_current_h_gate (per_second). * ALGEBRAIC[20] is beta_h in component fast_sodium_current_h_gate (per_second). * CONSTANTS[20] is shift_h in component fast_sodium_current_h_gate (millivolt). * CONSTANTS[21] is g_pna in component persistent_sodium_current (microS). * CONSTANTS[22] is g_bna in component sodium_background_current (microS). * ALGEBRAIC[59] is i_Ca_L in component L_type_Ca_channel (nanoA). * CONSTANTS[23] is P_Ca_L in component L_type_Ca_channel (nanoA_per_millimolar). * CONSTANTS[24] is P_CaK in component L_type_Ca_channel (dimensionless). * CONSTANTS[25] is P_CaNa in component L_type_Ca_channel (dimensionless). * STATES[9] is Ca_ds in component intracellular_calcium_concentration (millimolar). * STATES[10] is d in component L_type_Ca_channel_d_gate (dimensionless). * ALGEBRAIC[30] is CaChoncyt in component L_type_Ca_channel_f_gate (dimensionless). * ALGEBRAIC[32] is CaChonds in component L_type_Ca_channel_f_gate (dimensionless). * CONSTANTS[26] is KCaChoff in component L_type_Ca_channel (millimolar). * CONSTANTS[27] is Kmdsinact in component L_type_Ca_channel (millimolar). * CONSTANTS[28] is FrICa in component L_type_Ca_channel (dimensionless). * ALGEBRAIC[24] is alpha_d in component L_type_Ca_channel_d_gate (per_second). * ALGEBRAIC[25] is beta_d in component L_type_Ca_channel_d_gate (per_second). * ALGEBRAIC[23] is E0_d in component L_type_Ca_channel_d_gate (millivolt). * CONSTANTS[29] is speed_d in component L_type_Ca_channel_d_gate (dimensionless). * STATES[11] is f in component L_type_Ca_channel_f_gate (dimensionless). * ALGEBRAIC[29] is CaChoffcyt in component L_type_Ca_channel_f_gate (dimensionless). * ALGEBRAIC[31] is CaChoffds in component L_type_Ca_channel_f_gate (dimensionless). * ALGEBRAIC[27] is alpha_f in component L_type_Ca_channel_f_gate (per_second). * ALGEBRAIC[28] is beta_f in component L_type_Ca_channel_f_gate (per_second). * CONSTANTS[30] is speed_f in component L_type_Ca_channel_f_gate (dimensionless). * CONSTANTS[31] is delta_f in component L_type_Ca_channel_f_gate (millivolt). * ALGEBRAIC[26] is E0_f in component L_type_Ca_channel_f_gate (millivolt). * CONSTANTS[32] is g_bca in component calcium_background_current (microS). * CONSTANTS[33] is g_to in component transient_outward_current (microS). * CONSTANTS[34] is g_tos in component transient_outward_current (dimensionless). * STATES[12] is s in component transient_outward_current_s_gate (dimensionless). * STATES[13] is r in component transient_outward_current_r_gate (dimensionless). * ALGEBRAIC[35] is alpha_s in component transient_outward_current_s_gate (per_second). * ALGEBRAIC[36] is beta_s in component transient_outward_current_s_gate (per_second). * CONSTANTS[35] is i_NaK_max in component sodium_potassium_pump (nanoA). * CONSTANTS[36] is K_mK in component sodium_potassium_pump (millimolar). * CONSTANTS[37] is K_mNa in component sodium_potassium_pump (millimolar). * ALGEBRAIC[40] is i_NaCa in component sodium_calcium_exchanger (nanoA). * CONSTANTS[38] is k_NaCa in component sodium_calcium_exchanger (nanoA). * CONSTANTS[39] is n_NaCa in component sodium_calcium_exchanger (dimensionless). * CONSTANTS[40] is d_NaCa in component sodium_calcium_exchanger (dimensionless). * CONSTANTS[41] is gamma in component sodium_calcium_exchanger (dimensionless). * CONSTANTS[42] is FRiNaCa in component sodium_calcium_exchanger (dimensionless). * ALGEBRAIC[42] is i_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second). * CONSTANTS[66] is K_1 in component sarcoplasmic_reticulum_calcium_pump (dimensionless). * ALGEBRAIC[41] is K_2 in component sarcoplasmic_reticulum_calcium_pump (millimolar). * CONSTANTS[43] is K_cyca in component sarcoplasmic_reticulum_calcium_pump (millimolar). * CONSTANTS[44] is K_xcs in component sarcoplasmic_reticulum_calcium_pump (dimensionless). * CONSTANTS[45] is K_srca in component sarcoplasmic_reticulum_calcium_pump (millimolar). * CONSTANTS[46] is alpha_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second). * CONSTANTS[47] is beta_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second). * STATES[14] is Ca_up in component intracellular_calcium_concentration (millimolar). * ALGEBRAIC[43] is i_trans in component calcium_translocation (millimolar_per_second). * STATES[15] is Ca_rel in component intracellular_calcium_concentration (millimolar). * ALGEBRAIC[52] is i_rel in component calcium_release (millimolar_per_second). * ALGEBRAIC[44] is VoltDep in component calcium_release (dimensionless). * ALGEBRAIC[47] is RegBindSite in component calcium_release (dimensionless). * ALGEBRAIC[45] is CaiReg in component calcium_release (dimensionless). * ALGEBRAIC[46] is CadsReg in component calcium_release (dimensionless). * ALGEBRAIC[48] is ActRate in component calcium_release (per_second). * ALGEBRAIC[49] is InactRate in component calcium_release (per_second). * CONSTANTS[48] is K_leak_rate in component calcium_release (per_second). * CONSTANTS[49] is K_m_rel in component calcium_release (per_second). * CONSTANTS[50] is K_m_Ca_cyt in component calcium_release (millimolar). * CONSTANTS[51] is K_m_Ca_ds in component calcium_release (millimolar). * ALGEBRAIC[51] is PrecFrac in component calcium_release (dimensionless). * STATES[16] is ActFrac in component calcium_release (dimensionless). * STATES[17] is ProdFrac in component calcium_release (dimensionless). * ALGEBRAIC[50] is SpeedRel in component calcium_release (dimensionless). * CONSTANTS[68] is V_i in component intracellular_calcium_concentration (micrometre3). * STATES[18] is Ca_Calmod in component intracellular_calcium_concentration (millimolar). * STATES[19] is Ca_Trop in component intracellular_calcium_concentration (millimolar). * CONSTANTS[52] is Calmod in component intracellular_calcium_concentration (millimolar). * CONSTANTS[53] is Trop in component intracellular_calcium_concentration (millimolar). * CONSTANTS[54] is alpha_Calmod in component intracellular_calcium_concentration (per_millimolar_second). * CONSTANTS[55] is beta_Calmod in component intracellular_calcium_concentration (per_second). * CONSTANTS[56] is alpha_Trop in component intracellular_calcium_concentration (per_millimolar_second). * CONSTANTS[57] is beta_Trop in component intracellular_calcium_concentration (per_second). * CONSTANTS[58] is radius in component intracellular_calcium_concentration (micrometre). * CONSTANTS[59] is length in component intracellular_calcium_concentration (micrometre). * CONSTANTS[65] is V_Cell in component intracellular_calcium_concentration (micrometre3). * CONSTANTS[67] is V_i_ratio in component intracellular_calcium_concentration (dimensionless). * CONSTANTS[60] is V_ds_ratio in component intracellular_calcium_concentration (dimensionless). * CONSTANTS[61] is V_rel_ratio in component intracellular_calcium_concentration (dimensionless). * CONSTANTS[62] is V_e_ratio in component intracellular_calcium_concentration (dimensionless). * CONSTANTS[63] is V_up_ratio in component intracellular_calcium_concentration (dimensionless). * CONSTANTS[64] is Kdecay in component intracellular_calcium_concentration (per_second). * RATES[0] is d/dt V in component membrane (millivolt). * RATES[4] is d/dt xr1 in component rapid_delayed_rectifier_potassium_current_xr1_gate (dimensionless). * RATES[5] is d/dt xr2 in component rapid_delayed_rectifier_potassium_current_xr2_gate (dimensionless). * RATES[6] is d/dt xs in component slow_delayed_rectifier_potassium_current_xs_gate (dimensionless). * RATES[7] is d/dt m in component fast_sodium_current_m_gate (dimensionless). * RATES[8] is d/dt h in component fast_sodium_current_h_gate (dimensionless). * RATES[10] is d/dt d in component L_type_Ca_channel_d_gate (dimensionless). * RATES[11] is d/dt f in component L_type_Ca_channel_f_gate (dimensionless). * RATES[12] is d/dt s in component transient_outward_current_s_gate (dimensionless). * RATES[13] is d/dt r in component transient_outward_current_r_gate (dimensionless). * RATES[16] is d/dt ActFrac in component calcium_release (dimensionless). * RATES[17] is d/dt ProdFrac in component calcium_release (dimensionless). * RATES[2] is d/dt Na_i in component intracellular_sodium_concentration (millimolar). * RATES[1] is d/dt K_i in component intracellular_potassium_concentration (millimolar). * RATES[3] is d/dt Ca_i in component intracellular_calcium_concentration (millimolar). * RATES[18] is d/dt Ca_Calmod in component intracellular_calcium_concentration (millimolar). * RATES[19] is d/dt Ca_Trop in component intracellular_calcium_concentration (millimolar). * RATES[9] is d/dt Ca_ds in component intracellular_calcium_concentration (millimolar). * RATES[14] is d/dt Ca_up in component intracellular_calcium_concentration (millimolar). * RATES[15] is d/dt Ca_rel in component intracellular_calcium_concentration (millimolar). * There are a total of 8 condition variables. */ void initConsts(double* CONSTANTS, double* RATES, double *STATES) { STATES[0] = -92.8915042; CONSTANTS[0] = 8314.472; CONSTANTS[1] = 310; CONSTANTS[2] = 96485.3415; CONSTANTS[3] = 9.5e-5; CONSTANTS[4] = 200; CONSTANTS[5] = 600; CONSTANTS[6] = 1; CONSTANTS[7] = 0.002; CONSTANTS[8] = -6; CONSTANTS[9] = 0.03; CONSTANTS[10] = 4; CONSTANTS[11] = 140; STATES[1] = 136.1745362; STATES[2] = 7.6713487; CONSTANTS[12] = 2; STATES[3] = 1.49e-5; CONSTANTS[13] = 10; CONSTANTS[14] = 0.5; CONSTANTS[15] = 0.0028; CONSTANTS[16] = 0.0017; STATES[4] = 1.02e-5; STATES[5] = 2e-7; CONSTANTS[17] = 0.0016; STATES[6] = 0.0006469; CONSTANTS[18] = 0.5; STATES[7] = 0.0016111; STATES[8] = 0.9944559; CONSTANTS[19] = 1e-5; CONSTANTS[20] = 0; CONSTANTS[21] = 0.0027; CONSTANTS[22] = 0.0006; CONSTANTS[23] = 1; CONSTANTS[24] = 0.002; CONSTANTS[25] = 0.01; STATES[9] = 2.7e-6; STATES[10] = 0; CONSTANTS[26] = 0.01; CONSTANTS[27] = 0.001; CONSTANTS[28] = 0.7; CONSTANTS[29] = 3; STATES[11] = 0; CONSTANTS[30] = 0.3; CONSTANTS[31] = 0.0001; CONSTANTS[32] = 0.00025; CONSTANTS[33] = 0.005; CONSTANTS[34] = 0; STATES[12] = 0.9948645; STATES[13] = 0; CONSTANTS[35] = 0.7; CONSTANTS[36] = 1; CONSTANTS[37] = 40; CONSTANTS[38] = 0.0005; CONSTANTS[39] = 3; CONSTANTS[40] = 0; CONSTANTS[41] = 0.2; CONSTANTS[42] = 0.001; CONSTANTS[43] = 0.0003; CONSTANTS[44] = 0.4; CONSTANTS[45] = 0.5; CONSTANTS[46] = 0.4; CONSTANTS[47] = 0.03; STATES[14] = 0.36963; STATES[15] = 0.6460487; CONSTANTS[48] = 0.05; CONSTANTS[49] = 250; CONSTANTS[50] = 0.0005; CONSTANTS[51] = 0.01; STATES[16] = 0.0049039; STATES[17] = 0.6950649; STATES[18] = 0.0005841; STATES[19] = 0.0003732; CONSTANTS[52] = 0.02; CONSTANTS[53] = 0.05; CONSTANTS[54] = 100000; CONSTANTS[55] = 50; CONSTANTS[56] = 100000; CONSTANTS[57] = 200; CONSTANTS[58] = 12; CONSTANTS[59] = 74; CONSTANTS[60] = 0.1; CONSTANTS[61] = 0.1; CONSTANTS[62] = 0.4; CONSTANTS[63] = 0.01; CONSTANTS[64] = 10; CONSTANTS[65] = ( 3.14159*pow(CONSTANTS[58]/1000.00, 2.00000)*CONSTANTS[59])/1000.00; CONSTANTS[66] = ( CONSTANTS[43]*CONSTANTS[44])/CONSTANTS[45]; CONSTANTS[67] = ((1.00000 - CONSTANTS[62]) - CONSTANTS[63]) - CONSTANTS[61]; CONSTANTS[68] = CONSTANTS[65]*CONSTANTS[67]; RATES[0] = 0.1001; RATES[4] = 0.1001; RATES[5] = 0.1001; RATES[6] = 0.1001; RATES[7] = 0.1001; RATES[8] = 0.1001; RATES[10] = 0.1001; RATES[11] = 0.1001; RATES[12] = 0.1001; RATES[13] = 0.1001; RATES[16] = 0.1001; RATES[17] = 0.1001; RATES[2] = 0.1001; RATES[1] = 0.1001; RATES[3] = 0.1001; RATES[18] = 0.1001; RATES[19] = 0.1001; RATES[9] = 0.1001; RATES[14] = 0.1001; RATES[15] = 0.1001; } void computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { resid[0] = RATES[0] - (- 1.00000/CONSTANTS[3])*(ALGEBRAIC[0]+ALGEBRAIC[6]+ALGEBRAIC[34]+ALGEBRAIC[7]+ALGEBRAIC[12]+ALGEBRAIC[37]+ALGEBRAIC[15]+ALGEBRAIC[22]+ALGEBRAIC[21]+ALGEBRAIC[55]+ALGEBRAIC[58]+ALGEBRAIC[38]+ALGEBRAIC[39]+ALGEBRAIC[53]+ALGEBRAIC[56]+ALGEBRAIC[54]+ALGEBRAIC[57]+ALGEBRAIC[33]); resid[1] = RATES[4] - ALGEBRAIC[8]*(1.00000 - STATES[4]) - ALGEBRAIC[9]*STATES[4]; resid[2] = RATES[5] - ALGEBRAIC[10]*(1.00000 - STATES[5]) - ALGEBRAIC[11]*STATES[5]; resid[3] = RATES[6] - ALGEBRAIC[13]*(1.00000 - STATES[6]) - ALGEBRAIC[14]*STATES[6]; resid[4] = RATES[7] - ALGEBRAIC[17]*(1.00000 - STATES[7]) - ALGEBRAIC[18]*STATES[7]; resid[5] = RATES[8] - ALGEBRAIC[19]*(1.00000 - STATES[8]) - ALGEBRAIC[20]*STATES[8]; resid[6] = RATES[10] - CONSTANTS[29]*( ALGEBRAIC[24]*(1.00000 - STATES[10]) - ALGEBRAIC[25]*STATES[10]); resid[7] = RATES[11] - ( 120.000*(1.00000 - STATES[11])*ALGEBRAIC[29]+ (1.00000 - STATES[11])*(1.00000 - ALGEBRAIC[29]))*CONSTANTS[30]*ALGEBRAIC[28] - ALGEBRAIC[27]*STATES[11]; resid[8] = RATES[12] - ALGEBRAIC[35]*(1.00000 - STATES[12]) - ALGEBRAIC[36]*STATES[12]; resid[9] = RATES[13] - 333.000*(1.00000/(1.00000+exp(- (STATES[0]+4.00000)/5.00000)) - STATES[13]); resid[10] = RATES[16] - ALGEBRAIC[51]*ALGEBRAIC[50]*ALGEBRAIC[48] - STATES[16]*ALGEBRAIC[50]*ALGEBRAIC[49]; resid[11] = RATES[17] - STATES[16]*ALGEBRAIC[50]*ALGEBRAIC[49] - ALGEBRAIC[50]*1.00000*STATES[17]; resid[12] = RATES[2] - (- 1.00000/( 1.00000*CONSTANTS[68]*CONSTANTS[2]))*(ALGEBRAIC[15]+ALGEBRAIC[21]+ALGEBRAIC[22]+ 3.00000*ALGEBRAIC[37]+ 3.00000*ALGEBRAIC[38]+ALGEBRAIC[55]+ALGEBRAIC[58]); resid[13] = RATES[1] - (- 1.00000/( 1.00000*CONSTANTS[68]*CONSTANTS[2]))*((ALGEBRAIC[6]+ALGEBRAIC[7]+ALGEBRAIC[12]+ALGEBRAIC[54]+ALGEBRAIC[57]+ALGEBRAIC[34]) - 2.00000*ALGEBRAIC[37]); resid[14] = RATES[3] - ((( (- 1.00000/( 2.00000*1.00000*CONSTANTS[68]*CONSTANTS[2]))*(((ALGEBRAIC[53]+ALGEBRAIC[33]) - 2.00000*ALGEBRAIC[38]) - 2.00000*ALGEBRAIC[39])+ STATES[9]*CONSTANTS[60]*CONSTANTS[64]+( ALGEBRAIC[52]*CONSTANTS[61])/CONSTANTS[67]) - RATES[18]) - RATES[19]) - ALGEBRAIC[42]; resid[15] = RATES[9] - ( - 1.00000*ALGEBRAIC[56])/( 2.00000*1.00000*CONSTANTS[60]*CONSTANTS[68]*CONSTANTS[2]) - STATES[9]*CONSTANTS[64]; resid[16] = RATES[14] - (CONSTANTS[67]/CONSTANTS[63])*ALGEBRAIC[42] - ALGEBRAIC[43]; resid[17] = RATES[15] - (CONSTANTS[63]/CONSTANTS[61])*ALGEBRAIC[43] - ALGEBRAIC[52]; resid[18] = RATES[18] - CONSTANTS[54]*STATES[3]*(CONSTANTS[52] - STATES[18]) - CONSTANTS[55]*STATES[18]; resid[19] = RATES[19] - CONSTANTS[56]*STATES[3]*(CONSTANTS[53] - STATES[19]) - CONSTANTS[57]*STATES[19]; } void computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[40] = ALGEBRAIC[38]+ALGEBRAIC[39]; ALGEBRAIC[59] = ALGEBRAIC[53]+ALGEBRAIC[54]+ALGEBRAIC[55]+ALGEBRAIC[56]+ALGEBRAIC[57]+ALGEBRAIC[58]; } void computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[0] = (CONDVAR[0]>=0.00000&&CONDVAR[1]<=0.00000&&CONDVAR[2]<=0.00000 ? CONSTANTS[8] : 0.00000); ALGEBRAIC[2] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[10]/STATES[1]); ALGEBRAIC[6] = ( (( CONSTANTS[14]*CONSTANTS[10])/(CONSTANTS[10]+CONSTANTS[13]))*(STATES[0] - ALGEBRAIC[2]))/(1.00000+exp(( ((STATES[0] - ALGEBRAIC[2]) - 10.0000)*CONSTANTS[2]*1.25000)/( CONSTANTS[0]*CONSTANTS[1]))); ALGEBRAIC[7] = (( ( CONSTANTS[15]*STATES[4]+ CONSTANTS[16]*STATES[5])*1.00000)/(1.00000+exp((STATES[0]+9.00000)/22.4000)))*(STATES[0] - ALGEBRAIC[2]); ALGEBRAIC[8] = 50.0000/(1.00000+exp(- (STATES[0] - 5.00000)/9.00000)); ALGEBRAIC[9] = 0.0500000*exp(- (STATES[0] - 20.0000)/15.0000); ALGEBRAIC[10] = 50.0000/(1.00000+exp(- (STATES[0] - 5.00000)/9.00000)); ALGEBRAIC[11] = 0.400000*exp(- pow((STATES[0]+30.0000)/30.0000, 3.00000)); ALGEBRAIC[3] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log((CONSTANTS[10]+ CONSTANTS[9]*CONSTANTS[11])/(STATES[1]+ CONSTANTS[9]*STATES[2])); ALGEBRAIC[12] = CONSTANTS[17]*pow(STATES[6], 2.00000)*(STATES[0] - ALGEBRAIC[3]); ALGEBRAIC[13] = 14.0000/(1.00000+exp(- (STATES[0] - 40.0000)/9.00000)); ALGEBRAIC[14] = 1.00000*exp(- STATES[0]/45.0000); ALGEBRAIC[5] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log((CONSTANTS[11]+ 0.120000*CONSTANTS[10])/(STATES[2]+ 0.120000*STATES[1])); ALGEBRAIC[15] = CONSTANTS[18]*pow(STATES[7], 3.00000)*STATES[8]*(STATES[0] - ALGEBRAIC[5]); ALGEBRAIC[16] = STATES[0]+41.0000; ALGEBRAIC[17] = (CONDVAR[3]<0.00000 ? 2000.00 : ( 200.000*ALGEBRAIC[16])/(1.00000 - exp( - 0.100000*ALGEBRAIC[16]))); ALGEBRAIC[18] = 8000.00*exp( - 0.0560000*(STATES[0]+66.0000)); ALGEBRAIC[19] = 20.0000*exp( - 0.125000*((STATES[0]+75.0000) - CONSTANTS[20])); ALGEBRAIC[20] = 2000.00/(1.00000+ 320.000*exp( - 0.100000*((STATES[0]+75.0000) - CONSTANTS[20]))); ALGEBRAIC[1] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[11]/STATES[2]); ALGEBRAIC[21] = (( CONSTANTS[21]*1.00000)/(1.00000+exp(- (STATES[0]+52.0000)/8.00000)))*(STATES[0] - ALGEBRAIC[1]); ALGEBRAIC[22] = CONSTANTS[22]*(STATES[0] - ALGEBRAIC[1]); ALGEBRAIC[23] = (STATES[0]+24.0000) - 5.00000; ALGEBRAIC[24] = (CONDVAR[4]<0.00000 ? 120.000 : ( 30.0000*ALGEBRAIC[23])/(1.00000 - exp(- ALGEBRAIC[23]/4.00000))); ALGEBRAIC[25] = (CONDVAR[5]<0.00000 ? 120.000 : ( 12.0000*ALGEBRAIC[23])/(exp(ALGEBRAIC[23]/10.0000) - 1.00000)); ALGEBRAIC[26] = STATES[0]+34.0000; ALGEBRAIC[27] = (CONDVAR[6]<0.00000 ? 25.0000 : ( 6.25000*ALGEBRAIC[26])/(exp(ALGEBRAIC[26]/4.00000) - 1.00000)); ALGEBRAIC[28] = 12.0000/(1.00000+exp(( - 1.00000*(STATES[0]+34.0000))/4.00000)); ALGEBRAIC[29] = STATES[3]/(CONSTANTS[26]+STATES[3]); ALGEBRAIC[4] = (( 0.500000*CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[12]/STATES[3]); ALGEBRAIC[33] = CONSTANTS[32]*(STATES[0] - ALGEBRAIC[4]); ALGEBRAIC[34] = CONSTANTS[33]*(CONSTANTS[34]+ STATES[12]*(1.00000 - CONSTANTS[34]))*STATES[13]*(STATES[0] - ALGEBRAIC[2]); ALGEBRAIC[35] = 0.0330000*exp(- STATES[0]/17.0000); ALGEBRAIC[36] = 33.0000/(1.00000+exp( - 0.125000*(STATES[0]+10.0000))); ALGEBRAIC[37] = ( (( CONSTANTS[35]*CONSTANTS[10])/(CONSTANTS[36]+CONSTANTS[10]))*STATES[2])/(CONSTANTS[37]+STATES[2]); ALGEBRAIC[38] = ( (1.00000 - CONSTANTS[42])*CONSTANTS[38]*( exp(( CONSTANTS[41]*(CONSTANTS[39] - 2.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(STATES[2], CONSTANTS[39])*CONSTANTS[12] - exp(( (CONSTANTS[41] - 1.00000)*(CONSTANTS[39] - 2.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(CONSTANTS[11], CONSTANTS[39])*STATES[3]))/( (1.00000+ CONSTANTS[40]*( STATES[3]*pow(CONSTANTS[11], CONSTANTS[39])+ CONSTANTS[12]*pow(STATES[2], CONSTANTS[39])))*(1.00000+STATES[3]/0.00690000)); ALGEBRAIC[39] = ( CONSTANTS[42]*CONSTANTS[38]*( exp(( CONSTANTS[41]*(CONSTANTS[39] - 2.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(STATES[2], CONSTANTS[39])*CONSTANTS[12] - exp(( (CONSTANTS[41] - 1.00000)*(CONSTANTS[39] - 2.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(CONSTANTS[11], CONSTANTS[39])*STATES[9]))/( (1.00000+ CONSTANTS[40]*( STATES[9]*pow(CONSTANTS[11], CONSTANTS[39])+ CONSTANTS[12]*pow(STATES[2], CONSTANTS[39])))*(1.00000+STATES[9]/0.00690000)); ALGEBRAIC[41] = STATES[3]+ STATES[14]*CONSTANTS[66]+ CONSTANTS[43]*CONSTANTS[44]+CONSTANTS[43]; ALGEBRAIC[42] = (STATES[3]/ALGEBRAIC[41])*CONSTANTS[46] - (( STATES[14]*CONSTANTS[66])/ALGEBRAIC[41])*CONSTANTS[47]; ALGEBRAIC[43] = 50.0000*(STATES[14] - STATES[15]); ALGEBRAIC[44] = exp( 0.0800000*(STATES[0] - 40.0000)); ALGEBRAIC[45] = STATES[3]/(STATES[3]+CONSTANTS[50]); ALGEBRAIC[46] = STATES[9]/(STATES[9]+CONSTANTS[51]); ALGEBRAIC[47] = ALGEBRAIC[45]+ (1.00000 - ALGEBRAIC[45])*ALGEBRAIC[46]; ALGEBRAIC[48] = 0.00000*ALGEBRAIC[44]+ 90.0000*pow(ALGEBRAIC[47], 2.00000); ALGEBRAIC[49] = 60.0000+ 500.000*pow(ALGEBRAIC[47], 2.00000); ALGEBRAIC[50] = (CONDVAR[7]<0.00000 ? 5.00000 : 1.00000); ALGEBRAIC[51] = (1.00000 - STATES[16]) - STATES[17]; ALGEBRAIC[52] = ( pow(STATES[16]/(STATES[16]+0.250000), 2.00000)*CONSTANTS[49]+CONSTANTS[48])*STATES[15]; ALGEBRAIC[30] = (1.00000 - STATES[11])*(1.00000 - ALGEBRAIC[29]); ALGEBRAIC[53] = ((( (1.00000 - CONSTANTS[28])*4.00000*CONSTANTS[23]*STATES[10]*ALGEBRAIC[30]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))/(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2]*2.00000)/( CONSTANTS[0]*CONSTANTS[1]))))*( STATES[3]*exp(( 100.000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[12]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2]*2.00000)/( CONSTANTS[0]*CONSTANTS[1]))); ALGEBRAIC[54] = ((( (1.00000 - CONSTANTS[28])*CONSTANTS[24]*CONSTANTS[23]*STATES[10]*ALGEBRAIC[30]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))/(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))))*( STATES[1]*exp(( 50.0000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[10]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))); ALGEBRAIC[55] = ((( (1.00000 - CONSTANTS[28])*CONSTANTS[25]*CONSTANTS[23]*STATES[10]*ALGEBRAIC[30]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))/(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))))*( STATES[2]*exp(( 50.0000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[11]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))); ALGEBRAIC[31] = STATES[9]/(CONSTANTS[27]+STATES[9]); ALGEBRAIC[32] = (1.00000 - STATES[11])*(1.00000 - ALGEBRAIC[31]); ALGEBRAIC[56] = ((( CONSTANTS[28]*4.00000*CONSTANTS[23]*STATES[10]*ALGEBRAIC[32]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))/(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2]*2.00000)/( CONSTANTS[0]*CONSTANTS[1]))))*( STATES[3]*exp(( 100.000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[12]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2]*2.00000)/( CONSTANTS[0]*CONSTANTS[1]))); ALGEBRAIC[57] = ((( CONSTANTS[28]*CONSTANTS[24]*CONSTANTS[23]*STATES[10]*ALGEBRAIC[32]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))/(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))))*( STATES[1]*exp(( 50.0000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[10]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))); ALGEBRAIC[58] = ((( CONSTANTS[28]*CONSTANTS[25]*CONSTANTS[23]*STATES[10]*ALGEBRAIC[32]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))/(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))))*( STATES[2]*exp(( 50.0000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[11]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))); } void getStateInformation(double* SI) { SI[0] = 1.0; SI[1] = 1.0; SI[2] = 1.0; SI[3] = 1.0; SI[4] = 1.0; SI[5] = 1.0; SI[6] = 1.0; SI[7] = 1.0; SI[8] = 1.0; SI[9] = 1.0; SI[10] = 1.0; SI[11] = 1.0; SI[12] = 1.0; SI[13] = 1.0; SI[14] = 1.0; SI[15] = 1.0; SI[16] = 1.0; SI[17] = 1.0; SI[18] = 1.0; SI[19] = 1.0; } void computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { CONDVAR[0] = VOI - CONSTANTS[4]; CONDVAR[1] = VOI - CONSTANTS[5]; CONDVAR[2] = ((VOI - CONSTANTS[4]) - floor((VOI - CONSTANTS[4])/CONSTANTS[6])*CONSTANTS[6]) - CONSTANTS[7]; CONDVAR[3] = fabs(ALGEBRAIC[16]) - CONSTANTS[19]; CONDVAR[4] = fabs(ALGEBRAIC[23]) - 0.000100000; CONDVAR[5] = fabs(ALGEBRAIC[23]) - 0.000100000; CONDVAR[6] = fabs(ALGEBRAIC[26]) - CONSTANTS[31]; CONDVAR[7] = STATES[0] - - 50.0000; }