Generated Code

The following is c_ida code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

/*
   There are a total of 60 entries in the algebraic variable array.
   There are a total of 20 entries in each of the rate and state variable arrays.
   There are a total of 69 entries in the constant variable array.
 */
/*
 * VOI is time in component environment (second).
 * STATES[0] is V in component membrane (millivolt).
 * CONSTANTS[0] is R in component membrane (joule_per_kilomole_kelvin).
 * CONSTANTS[1] is T in component membrane (kelvin).
 * CONSTANTS[2] is F in component membrane (coulomb_per_mole).
 * CONSTANTS[3] is Cm in component membrane (microF).
 * ALGEBRAIC[6] is i_K1 in component time_independent_potassium_current (nanoA).
 * ALGEBRAIC[34] is i_to in component transient_outward_current (nanoA).
 * ALGEBRAIC[7] is i_Kr in component rapid_delayed_rectifier_potassium_current (nanoA).
 * ALGEBRAIC[12] is i_Ks in component slow_delayed_rectifier_potassium_current (nanoA).
 * ALGEBRAIC[54] is i_Ca_L_K_cyt in component L_type_Ca_channel (nanoA).
 * ALGEBRAIC[57] is i_Ca_L_K_ds in component L_type_Ca_channel (nanoA).
 * ALGEBRAIC[37] is i_NaK in component sodium_potassium_pump (nanoA).
 * ALGEBRAIC[15] is i_Na in component fast_sodium_current (nanoA).
 * ALGEBRAIC[22] is i_b_Na in component sodium_background_current (nanoA).
 * ALGEBRAIC[21] is i_p_Na in component persistent_sodium_current (nanoA).
 * ALGEBRAIC[55] is i_Ca_L_Na_cyt in component L_type_Ca_channel (nanoA).
 * ALGEBRAIC[58] is i_Ca_L_Na_ds in component L_type_Ca_channel (nanoA).
 * ALGEBRAIC[38] is i_NaCa_cyt in component sodium_calcium_exchanger (nanoA).
 * ALGEBRAIC[39] is i_NaCa_ds in component sodium_calcium_exchanger (nanoA).
 * ALGEBRAIC[53] is i_Ca_L_Ca_cyt in component L_type_Ca_channel (nanoA).
 * ALGEBRAIC[56] is i_Ca_L_Ca_ds in component L_type_Ca_channel (nanoA).
 * ALGEBRAIC[33] is i_b_Ca in component calcium_background_current (nanoA).
 * ALGEBRAIC[0] is i_Stim in component membrane (nanoA).
 * CONSTANTS[4] is stim_start in component membrane (second).
 * CONSTANTS[5] is stim_end in component membrane (second).
 * CONSTANTS[6] is stim_period in component membrane (second).
 * CONSTANTS[7] is stim_duration in component membrane (second).
 * CONSTANTS[8] is stim_amplitude in component membrane (nanoA).
 * ALGEBRAIC[1] is E_Na in component reversal_potentials (millivolt).
 * ALGEBRAIC[2] is E_K in component reversal_potentials (millivolt).
 * ALGEBRAIC[3] is E_Ks in component reversal_potentials (millivolt).
 * ALGEBRAIC[4] is E_Ca in component reversal_potentials (millivolt).
 * ALGEBRAIC[5] is E_mh in component reversal_potentials (millivolt).
 * CONSTANTS[9] is P_kna in component reversal_potentials (dimensionless).
 * CONSTANTS[10] is K_o in component extracellular_potassium_concentration (millimolar).
 * CONSTANTS[11] is Na_o in component extracellular_sodium_concentration (millimolar).
 * STATES[1] is K_i in component intracellular_potassium_concentration (millimolar).
 * STATES[2] is Na_i in component intracellular_sodium_concentration (millimolar).
 * CONSTANTS[12] is Ca_o in component extracellular_calcium_concentration (millimolar).
 * STATES[3] is Ca_i in component intracellular_calcium_concentration (millimolar).
 * CONSTANTS[13] is K_mk1 in component time_independent_potassium_current (millimolar).
 * CONSTANTS[14] is g_K1 in component time_independent_potassium_current (microS).
 * CONSTANTS[15] is g_Kr1 in component rapid_delayed_rectifier_potassium_current (microS).
 * CONSTANTS[16] is g_Kr2 in component rapid_delayed_rectifier_potassium_current (microS).
 * STATES[4] is xr1 in component rapid_delayed_rectifier_potassium_current_xr1_gate (dimensionless).
 * STATES[5] is xr2 in component rapid_delayed_rectifier_potassium_current_xr2_gate (dimensionless).
 * ALGEBRAIC[8] is alpha_xr1 in component rapid_delayed_rectifier_potassium_current_xr1_gate (per_second).
 * ALGEBRAIC[9] is beta_xr1 in component rapid_delayed_rectifier_potassium_current_xr1_gate (per_second).
 * ALGEBRAIC[10] is alpha_xr2 in component rapid_delayed_rectifier_potassium_current_xr2_gate (per_second).
 * ALGEBRAIC[11] is beta_xr2 in component rapid_delayed_rectifier_potassium_current_xr2_gate (per_second).
 * CONSTANTS[17] is g_Ks in component slow_delayed_rectifier_potassium_current (microS).
 * STATES[6] is xs in component slow_delayed_rectifier_potassium_current_xs_gate (dimensionless).
 * ALGEBRAIC[13] is alpha_xs in component slow_delayed_rectifier_potassium_current_xs_gate (per_second).
 * ALGEBRAIC[14] is beta_xs in component slow_delayed_rectifier_potassium_current_xs_gate (per_second).
 * CONSTANTS[18] is g_Na in component fast_sodium_current (microS).
 * STATES[7] is m in component fast_sodium_current_m_gate (dimensionless).
 * STATES[8] is h in component fast_sodium_current_h_gate (dimensionless).
 * ALGEBRAIC[17] is alpha_m in component fast_sodium_current_m_gate (per_second).
 * ALGEBRAIC[18] is beta_m in component fast_sodium_current_m_gate (per_second).
 * CONSTANTS[19] is delta_m in component fast_sodium_current_m_gate (millivolt).
 * ALGEBRAIC[16] is E0_m in component fast_sodium_current_m_gate (millivolt).
 * ALGEBRAIC[19] is alpha_h in component fast_sodium_current_h_gate (per_second).
 * ALGEBRAIC[20] is beta_h in component fast_sodium_current_h_gate (per_second).
 * CONSTANTS[20] is shift_h in component fast_sodium_current_h_gate (millivolt).
 * CONSTANTS[21] is g_pna in component persistent_sodium_current (microS).
 * CONSTANTS[22] is g_bna in component sodium_background_current (microS).
 * ALGEBRAIC[59] is i_Ca_L in component L_type_Ca_channel (nanoA).
 * CONSTANTS[23] is P_Ca_L in component L_type_Ca_channel (nanoA_per_millimolar).
 * CONSTANTS[24] is P_CaK in component L_type_Ca_channel (dimensionless).
 * CONSTANTS[25] is P_CaNa in component L_type_Ca_channel (dimensionless).
 * STATES[9] is Ca_ds in component intracellular_calcium_concentration (millimolar).
 * STATES[10] is d in component L_type_Ca_channel_d_gate (dimensionless).
 * ALGEBRAIC[30] is CaChoncyt in component L_type_Ca_channel_f_gate (dimensionless).
 * ALGEBRAIC[32] is CaChonds in component L_type_Ca_channel_f_gate (dimensionless).
 * CONSTANTS[26] is KCaChoff in component L_type_Ca_channel (millimolar).
 * CONSTANTS[27] is Kmdsinact in component L_type_Ca_channel (millimolar).
 * CONSTANTS[28] is FrICa in component L_type_Ca_channel (dimensionless).
 * ALGEBRAIC[24] is alpha_d in component L_type_Ca_channel_d_gate (per_second).
 * ALGEBRAIC[25] is beta_d in component L_type_Ca_channel_d_gate (per_second).
 * ALGEBRAIC[23] is E0_d in component L_type_Ca_channel_d_gate (millivolt).
 * CONSTANTS[29] is speed_d in component L_type_Ca_channel_d_gate (dimensionless).
 * STATES[11] is f in component L_type_Ca_channel_f_gate (dimensionless).
 * ALGEBRAIC[29] is CaChoffcyt in component L_type_Ca_channel_f_gate (dimensionless).
 * ALGEBRAIC[31] is CaChoffds in component L_type_Ca_channel_f_gate (dimensionless).
 * ALGEBRAIC[27] is alpha_f in component L_type_Ca_channel_f_gate (per_second).
 * ALGEBRAIC[28] is beta_f in component L_type_Ca_channel_f_gate (per_second).
 * CONSTANTS[30] is speed_f in component L_type_Ca_channel_f_gate (dimensionless).
 * CONSTANTS[31] is delta_f in component L_type_Ca_channel_f_gate (millivolt).
 * ALGEBRAIC[26] is E0_f in component L_type_Ca_channel_f_gate (millivolt).
 * CONSTANTS[32] is g_bca in component calcium_background_current (microS).
 * CONSTANTS[33] is g_to in component transient_outward_current (microS).
 * CONSTANTS[34] is g_tos in component transient_outward_current (dimensionless).
 * STATES[12] is s in component transient_outward_current_s_gate (dimensionless).
 * STATES[13] is r in component transient_outward_current_r_gate (dimensionless).
 * ALGEBRAIC[35] is alpha_s in component transient_outward_current_s_gate (per_second).
 * ALGEBRAIC[36] is beta_s in component transient_outward_current_s_gate (per_second).
 * CONSTANTS[35] is i_NaK_max in component sodium_potassium_pump (nanoA).
 * CONSTANTS[36] is K_mK in component sodium_potassium_pump (millimolar).
 * CONSTANTS[37] is K_mNa in component sodium_potassium_pump (millimolar).
 * ALGEBRAIC[40] is i_NaCa in component sodium_calcium_exchanger (nanoA).
 * CONSTANTS[38] is k_NaCa in component sodium_calcium_exchanger (nanoA).
 * CONSTANTS[39] is n_NaCa in component sodium_calcium_exchanger (dimensionless).
 * CONSTANTS[40] is d_NaCa in component sodium_calcium_exchanger (dimensionless).
 * CONSTANTS[41] is gamma in component sodium_calcium_exchanger (dimensionless).
 * CONSTANTS[42] is FRiNaCa in component sodium_calcium_exchanger (dimensionless).
 * ALGEBRAIC[42] is i_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second).
 * CONSTANTS[66] is K_1 in component sarcoplasmic_reticulum_calcium_pump (dimensionless).
 * ALGEBRAIC[41] is K_2 in component sarcoplasmic_reticulum_calcium_pump (millimolar).
 * CONSTANTS[43] is K_cyca in component sarcoplasmic_reticulum_calcium_pump (millimolar).
 * CONSTANTS[44] is K_xcs in component sarcoplasmic_reticulum_calcium_pump (dimensionless).
 * CONSTANTS[45] is K_srca in component sarcoplasmic_reticulum_calcium_pump (millimolar).
 * CONSTANTS[46] is alpha_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second).
 * CONSTANTS[47] is beta_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second).
 * STATES[14] is Ca_up in component intracellular_calcium_concentration (millimolar).
 * ALGEBRAIC[43] is i_trans in component calcium_translocation (millimolar_per_second).
 * STATES[15] is Ca_rel in component intracellular_calcium_concentration (millimolar).
 * ALGEBRAIC[52] is i_rel in component calcium_release (millimolar_per_second).
 * ALGEBRAIC[44] is VoltDep in component calcium_release (dimensionless).
 * ALGEBRAIC[47] is RegBindSite in component calcium_release (dimensionless).
 * ALGEBRAIC[45] is CaiReg in component calcium_release (dimensionless).
 * ALGEBRAIC[46] is CadsReg in component calcium_release (dimensionless).
 * ALGEBRAIC[48] is ActRate in component calcium_release (per_second).
 * ALGEBRAIC[49] is InactRate in component calcium_release (per_second).
 * CONSTANTS[48] is K_leak_rate in component calcium_release (per_second).
 * CONSTANTS[49] is K_m_rel in component calcium_release (per_second).
 * CONSTANTS[50] is K_m_Ca_cyt in component calcium_release (millimolar).
 * CONSTANTS[51] is K_m_Ca_ds in component calcium_release (millimolar).
 * ALGEBRAIC[51] is PrecFrac in component calcium_release (dimensionless).
 * STATES[16] is ActFrac in component calcium_release (dimensionless).
 * STATES[17] is ProdFrac in component calcium_release (dimensionless).
 * ALGEBRAIC[50] is SpeedRel in component calcium_release (dimensionless).
 * CONSTANTS[68] is V_i in component intracellular_calcium_concentration (micrometre3).
 * STATES[18] is Ca_Calmod in component intracellular_calcium_concentration (millimolar).
 * STATES[19] is Ca_Trop in component intracellular_calcium_concentration (millimolar).
 * CONSTANTS[52] is Calmod in component intracellular_calcium_concentration (millimolar).
 * CONSTANTS[53] is Trop in component intracellular_calcium_concentration (millimolar).
 * CONSTANTS[54] is alpha_Calmod in component intracellular_calcium_concentration (per_millimolar_second).
 * CONSTANTS[55] is beta_Calmod in component intracellular_calcium_concentration (per_second).
 * CONSTANTS[56] is alpha_Trop in component intracellular_calcium_concentration (per_millimolar_second).
 * CONSTANTS[57] is beta_Trop in component intracellular_calcium_concentration (per_second).
 * CONSTANTS[58] is radius in component intracellular_calcium_concentration (micrometre).
 * CONSTANTS[59] is length in component intracellular_calcium_concentration (micrometre).
 * CONSTANTS[65] is V_Cell in component intracellular_calcium_concentration (micrometre3).
 * CONSTANTS[67] is V_i_ratio in component intracellular_calcium_concentration (dimensionless).
 * CONSTANTS[60] is V_ds_ratio in component intracellular_calcium_concentration (dimensionless).
 * CONSTANTS[61] is V_rel_ratio in component intracellular_calcium_concentration (dimensionless).
 * CONSTANTS[62] is V_e_ratio in component intracellular_calcium_concentration (dimensionless).
 * CONSTANTS[63] is V_up_ratio in component intracellular_calcium_concentration (dimensionless).
 * CONSTANTS[64] is Kdecay in component intracellular_calcium_concentration (per_second).
 * RATES[0] is d/dt V in component membrane (millivolt).
 * RATES[4] is d/dt xr1 in component rapid_delayed_rectifier_potassium_current_xr1_gate (dimensionless).
 * RATES[5] is d/dt xr2 in component rapid_delayed_rectifier_potassium_current_xr2_gate (dimensionless).
 * RATES[6] is d/dt xs in component slow_delayed_rectifier_potassium_current_xs_gate (dimensionless).
 * RATES[7] is d/dt m in component fast_sodium_current_m_gate (dimensionless).
 * RATES[8] is d/dt h in component fast_sodium_current_h_gate (dimensionless).
 * RATES[10] is d/dt d in component L_type_Ca_channel_d_gate (dimensionless).
 * RATES[11] is d/dt f in component L_type_Ca_channel_f_gate (dimensionless).
 * RATES[12] is d/dt s in component transient_outward_current_s_gate (dimensionless).
 * RATES[13] is d/dt r in component transient_outward_current_r_gate (dimensionless).
 * RATES[16] is d/dt ActFrac in component calcium_release (dimensionless).
 * RATES[17] is d/dt ProdFrac in component calcium_release (dimensionless).
 * RATES[2] is d/dt Na_i in component intracellular_sodium_concentration (millimolar).
 * RATES[1] is d/dt K_i in component intracellular_potassium_concentration (millimolar).
 * RATES[3] is d/dt Ca_i in component intracellular_calcium_concentration (millimolar).
 * RATES[18] is d/dt Ca_Calmod in component intracellular_calcium_concentration (millimolar).
 * RATES[19] is d/dt Ca_Trop in component intracellular_calcium_concentration (millimolar).
 * RATES[9] is d/dt Ca_ds in component intracellular_calcium_concentration (millimolar).
 * RATES[14] is d/dt Ca_up in component intracellular_calcium_concentration (millimolar).
 * RATES[15] is d/dt Ca_rel in component intracellular_calcium_concentration (millimolar).
 * There are a total of 8 condition variables.
 */
void
initConsts(double* CONSTANTS, double* RATES, double *STATES)
{
STATES[0] = -92.8915042;
CONSTANTS[0] = 8314.472;
CONSTANTS[1] = 310;
CONSTANTS[2] = 96485.3415;
CONSTANTS[3] = 9.5e-5;
CONSTANTS[4] = 200;
CONSTANTS[5] = 600;
CONSTANTS[6] = 1;
CONSTANTS[7] = 0.002;
CONSTANTS[8] = -6;
CONSTANTS[9] = 0.03;
CONSTANTS[10] = 4;
CONSTANTS[11] = 140;
STATES[1] = 136.1745362;
STATES[2] = 7.6713487;
CONSTANTS[12] = 2;
STATES[3] = 1.49e-5;
CONSTANTS[13] = 10;
CONSTANTS[14] = 0.5;
CONSTANTS[15] = 0.0028;
CONSTANTS[16] = 0.0017;
STATES[4] = 1.02e-5;
STATES[5] = 2e-7;
CONSTANTS[17] = 0.0016;
STATES[6] = 0.0006469;
CONSTANTS[18] = 0.5;
STATES[7] = 0.0016111;
STATES[8] = 0.9944559;
CONSTANTS[19] = 1e-5;
CONSTANTS[20] = 0;
CONSTANTS[21] = 0.0027;
CONSTANTS[22] = 0.0006;
CONSTANTS[23] = 1;
CONSTANTS[24] = 0.002;
CONSTANTS[25] = 0.01;
STATES[9] = 2.7e-6;
STATES[10] = 0;
CONSTANTS[26] = 0.01;
CONSTANTS[27] = 0.001;
CONSTANTS[28] = 0.7;
CONSTANTS[29] = 3;
STATES[11] = 0;
CONSTANTS[30] = 0.3;
CONSTANTS[31] = 0.0001;
CONSTANTS[32] = 0.00025;
CONSTANTS[33] = 0.005;
CONSTANTS[34] = 0;
STATES[12] = 0.9948645;
STATES[13] = 0;
CONSTANTS[35] = 0.7;
CONSTANTS[36] = 1;
CONSTANTS[37] = 40;
CONSTANTS[38] = 0.0005;
CONSTANTS[39] = 3;
CONSTANTS[40] = 0;
CONSTANTS[41] = 0.2;
CONSTANTS[42] = 0.001;
CONSTANTS[43] = 0.0003;
CONSTANTS[44] = 0.4;
CONSTANTS[45] = 0.5;
CONSTANTS[46] = 0.4;
CONSTANTS[47] = 0.03;
STATES[14] = 0.36963;
STATES[15] = 0.6460487;
CONSTANTS[48] = 0.05;
CONSTANTS[49] = 250;
CONSTANTS[50] = 0.0005;
CONSTANTS[51] = 0.01;
STATES[16] = 0.0049039;
STATES[17] = 0.6950649;
STATES[18] = 0.0005841;
STATES[19] = 0.0003732;
CONSTANTS[52] = 0.02;
CONSTANTS[53] = 0.05;
CONSTANTS[54] = 100000;
CONSTANTS[55] = 50;
CONSTANTS[56] = 100000;
CONSTANTS[57] = 200;
CONSTANTS[58] = 12;
CONSTANTS[59] = 74;
CONSTANTS[60] = 0.1;
CONSTANTS[61] = 0.1;
CONSTANTS[62] = 0.4;
CONSTANTS[63] = 0.01;
CONSTANTS[64] = 10;
CONSTANTS[65] = ( 3.14159*pow(CONSTANTS[58]/1000.00, 2.00000)*CONSTANTS[59])/1000.00;
CONSTANTS[66] = ( CONSTANTS[43]*CONSTANTS[44])/CONSTANTS[45];
CONSTANTS[67] = ((1.00000 - CONSTANTS[62]) - CONSTANTS[63]) - CONSTANTS[61];
CONSTANTS[68] =  CONSTANTS[65]*CONSTANTS[67];
RATES[0] = 0.1001;
RATES[4] = 0.1001;
RATES[5] = 0.1001;
RATES[6] = 0.1001;
RATES[7] = 0.1001;
RATES[8] = 0.1001;
RATES[10] = 0.1001;
RATES[11] = 0.1001;
RATES[12] = 0.1001;
RATES[13] = 0.1001;
RATES[16] = 0.1001;
RATES[17] = 0.1001;
RATES[2] = 0.1001;
RATES[1] = 0.1001;
RATES[3] = 0.1001;
RATES[18] = 0.1001;
RATES[19] = 0.1001;
RATES[9] = 0.1001;
RATES[14] = 0.1001;
RATES[15] = 0.1001;
}
void
computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
                 double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
resid[0] = RATES[0] -  (- 1.00000/CONSTANTS[3])*(ALGEBRAIC[0]+ALGEBRAIC[6]+ALGEBRAIC[34]+ALGEBRAIC[7]+ALGEBRAIC[12]+ALGEBRAIC[37]+ALGEBRAIC[15]+ALGEBRAIC[22]+ALGEBRAIC[21]+ALGEBRAIC[55]+ALGEBRAIC[58]+ALGEBRAIC[38]+ALGEBRAIC[39]+ALGEBRAIC[53]+ALGEBRAIC[56]+ALGEBRAIC[54]+ALGEBRAIC[57]+ALGEBRAIC[33]);
resid[1] = RATES[4] -  ALGEBRAIC[8]*(1.00000 - STATES[4]) -  ALGEBRAIC[9]*STATES[4];
resid[2] = RATES[5] -  ALGEBRAIC[10]*(1.00000 - STATES[5]) -  ALGEBRAIC[11]*STATES[5];
resid[3] = RATES[6] -  ALGEBRAIC[13]*(1.00000 - STATES[6]) -  ALGEBRAIC[14]*STATES[6];
resid[4] = RATES[7] -  ALGEBRAIC[17]*(1.00000 - STATES[7]) -  ALGEBRAIC[18]*STATES[7];
resid[5] = RATES[8] -  ALGEBRAIC[19]*(1.00000 - STATES[8]) -  ALGEBRAIC[20]*STATES[8];
resid[6] = RATES[10] -  CONSTANTS[29]*( ALGEBRAIC[24]*(1.00000 - STATES[10]) -  ALGEBRAIC[25]*STATES[10]);
resid[7] = RATES[11] -  ( 120.000*(1.00000 - STATES[11])*ALGEBRAIC[29]+ (1.00000 - STATES[11])*(1.00000 - ALGEBRAIC[29]))*CONSTANTS[30]*ALGEBRAIC[28] -  ALGEBRAIC[27]*STATES[11];
resid[8] = RATES[12] -  ALGEBRAIC[35]*(1.00000 - STATES[12]) -  ALGEBRAIC[36]*STATES[12];
resid[9] = RATES[13] -  333.000*(1.00000/(1.00000+exp(- (STATES[0]+4.00000)/5.00000)) - STATES[13]);
resid[10] = RATES[16] -  ALGEBRAIC[51]*ALGEBRAIC[50]*ALGEBRAIC[48] -  STATES[16]*ALGEBRAIC[50]*ALGEBRAIC[49];
resid[11] = RATES[17] -  STATES[16]*ALGEBRAIC[50]*ALGEBRAIC[49] -  ALGEBRAIC[50]*1.00000*STATES[17];
resid[12] = RATES[2] -  (- 1.00000/( 1.00000*CONSTANTS[68]*CONSTANTS[2]))*(ALGEBRAIC[15]+ALGEBRAIC[21]+ALGEBRAIC[22]+ 3.00000*ALGEBRAIC[37]+ 3.00000*ALGEBRAIC[38]+ALGEBRAIC[55]+ALGEBRAIC[58]);
resid[13] = RATES[1] -  (- 1.00000/( 1.00000*CONSTANTS[68]*CONSTANTS[2]))*((ALGEBRAIC[6]+ALGEBRAIC[7]+ALGEBRAIC[12]+ALGEBRAIC[54]+ALGEBRAIC[57]+ALGEBRAIC[34]) -  2.00000*ALGEBRAIC[37]);
resid[14] = RATES[3] - ((( (- 1.00000/( 2.00000*1.00000*CONSTANTS[68]*CONSTANTS[2]))*(((ALGEBRAIC[53]+ALGEBRAIC[33]) -  2.00000*ALGEBRAIC[38]) -  2.00000*ALGEBRAIC[39])+ STATES[9]*CONSTANTS[60]*CONSTANTS[64]+( ALGEBRAIC[52]*CONSTANTS[61])/CONSTANTS[67]) - RATES[18]) - RATES[19]) - ALGEBRAIC[42];
resid[15] = RATES[9] - ( - 1.00000*ALGEBRAIC[56])/( 2.00000*1.00000*CONSTANTS[60]*CONSTANTS[68]*CONSTANTS[2]) -  STATES[9]*CONSTANTS[64];
resid[16] = RATES[14] -  (CONSTANTS[67]/CONSTANTS[63])*ALGEBRAIC[42] - ALGEBRAIC[43];
resid[17] = RATES[15] -  (CONSTANTS[63]/CONSTANTS[61])*ALGEBRAIC[43] - ALGEBRAIC[52];
resid[18] = RATES[18] -  CONSTANTS[54]*STATES[3]*(CONSTANTS[52] - STATES[18]) -  CONSTANTS[55]*STATES[18];
resid[19] = RATES[19] -  CONSTANTS[56]*STATES[3]*(CONSTANTS[53] - STATES[19]) -  CONSTANTS[57]*STATES[19];
}
void
computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[40] = ALGEBRAIC[38]+ALGEBRAIC[39];
ALGEBRAIC[59] = ALGEBRAIC[53]+ALGEBRAIC[54]+ALGEBRAIC[55]+ALGEBRAIC[56]+ALGEBRAIC[57]+ALGEBRAIC[58];
}
void
computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[0] = (CONDVAR[0]>=0.00000&&CONDVAR[1]<=0.00000&&CONDVAR[2]<=0.00000 ? CONSTANTS[8] : 0.00000);
ALGEBRAIC[2] =  (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[10]/STATES[1]);
ALGEBRAIC[6] = ( (( CONSTANTS[14]*CONSTANTS[10])/(CONSTANTS[10]+CONSTANTS[13]))*(STATES[0] - ALGEBRAIC[2]))/(1.00000+exp(( ((STATES[0] - ALGEBRAIC[2]) - 10.0000)*CONSTANTS[2]*1.25000)/( CONSTANTS[0]*CONSTANTS[1])));
ALGEBRAIC[7] =  (( ( CONSTANTS[15]*STATES[4]+ CONSTANTS[16]*STATES[5])*1.00000)/(1.00000+exp((STATES[0]+9.00000)/22.4000)))*(STATES[0] - ALGEBRAIC[2]);
ALGEBRAIC[8] = 50.0000/(1.00000+exp(- (STATES[0] - 5.00000)/9.00000));
ALGEBRAIC[9] =  0.0500000*exp(- (STATES[0] - 20.0000)/15.0000);
ALGEBRAIC[10] = 50.0000/(1.00000+exp(- (STATES[0] - 5.00000)/9.00000));
ALGEBRAIC[11] =  0.400000*exp(- pow((STATES[0]+30.0000)/30.0000, 3.00000));
ALGEBRAIC[3] =  (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log((CONSTANTS[10]+ CONSTANTS[9]*CONSTANTS[11])/(STATES[1]+ CONSTANTS[9]*STATES[2]));
ALGEBRAIC[12] =  CONSTANTS[17]*pow(STATES[6], 2.00000)*(STATES[0] - ALGEBRAIC[3]);
ALGEBRAIC[13] = 14.0000/(1.00000+exp(- (STATES[0] - 40.0000)/9.00000));
ALGEBRAIC[14] =  1.00000*exp(- STATES[0]/45.0000);
ALGEBRAIC[5] =  (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log((CONSTANTS[11]+ 0.120000*CONSTANTS[10])/(STATES[2]+ 0.120000*STATES[1]));
ALGEBRAIC[15] =  CONSTANTS[18]*pow(STATES[7], 3.00000)*STATES[8]*(STATES[0] - ALGEBRAIC[5]);
ALGEBRAIC[16] = STATES[0]+41.0000;
ALGEBRAIC[17] = (CONDVAR[3]<0.00000 ? 2000.00 : ( 200.000*ALGEBRAIC[16])/(1.00000 - exp( - 0.100000*ALGEBRAIC[16])));
ALGEBRAIC[18] =  8000.00*exp( - 0.0560000*(STATES[0]+66.0000));
ALGEBRAIC[19] =  20.0000*exp( - 0.125000*((STATES[0]+75.0000) - CONSTANTS[20]));
ALGEBRAIC[20] = 2000.00/(1.00000+ 320.000*exp( - 0.100000*((STATES[0]+75.0000) - CONSTANTS[20])));
ALGEBRAIC[1] =  (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[11]/STATES[2]);
ALGEBRAIC[21] =  (( CONSTANTS[21]*1.00000)/(1.00000+exp(- (STATES[0]+52.0000)/8.00000)))*(STATES[0] - ALGEBRAIC[1]);
ALGEBRAIC[22] =  CONSTANTS[22]*(STATES[0] - ALGEBRAIC[1]);
ALGEBRAIC[23] = (STATES[0]+24.0000) - 5.00000;
ALGEBRAIC[24] = (CONDVAR[4]<0.00000 ? 120.000 : ( 30.0000*ALGEBRAIC[23])/(1.00000 - exp(- ALGEBRAIC[23]/4.00000)));
ALGEBRAIC[25] = (CONDVAR[5]<0.00000 ? 120.000 : ( 12.0000*ALGEBRAIC[23])/(exp(ALGEBRAIC[23]/10.0000) - 1.00000));
ALGEBRAIC[26] = STATES[0]+34.0000;
ALGEBRAIC[27] = (CONDVAR[6]<0.00000 ? 25.0000 : ( 6.25000*ALGEBRAIC[26])/(exp(ALGEBRAIC[26]/4.00000) - 1.00000));
ALGEBRAIC[28] = 12.0000/(1.00000+exp(( - 1.00000*(STATES[0]+34.0000))/4.00000));
ALGEBRAIC[29] = STATES[3]/(CONSTANTS[26]+STATES[3]);
ALGEBRAIC[4] =  (( 0.500000*CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[12]/STATES[3]);
ALGEBRAIC[33] =  CONSTANTS[32]*(STATES[0] - ALGEBRAIC[4]);
ALGEBRAIC[34] =  CONSTANTS[33]*(CONSTANTS[34]+ STATES[12]*(1.00000 - CONSTANTS[34]))*STATES[13]*(STATES[0] - ALGEBRAIC[2]);
ALGEBRAIC[35] =  0.0330000*exp(- STATES[0]/17.0000);
ALGEBRAIC[36] = 33.0000/(1.00000+exp( - 0.125000*(STATES[0]+10.0000)));
ALGEBRAIC[37] = ( (( CONSTANTS[35]*CONSTANTS[10])/(CONSTANTS[36]+CONSTANTS[10]))*STATES[2])/(CONSTANTS[37]+STATES[2]);
ALGEBRAIC[38] = ( (1.00000 - CONSTANTS[42])*CONSTANTS[38]*( exp(( CONSTANTS[41]*(CONSTANTS[39] - 2.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(STATES[2], CONSTANTS[39])*CONSTANTS[12] -  exp(( (CONSTANTS[41] - 1.00000)*(CONSTANTS[39] - 2.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(CONSTANTS[11], CONSTANTS[39])*STATES[3]))/( (1.00000+ CONSTANTS[40]*( STATES[3]*pow(CONSTANTS[11], CONSTANTS[39])+ CONSTANTS[12]*pow(STATES[2], CONSTANTS[39])))*(1.00000+STATES[3]/0.00690000));
ALGEBRAIC[39] = ( CONSTANTS[42]*CONSTANTS[38]*( exp(( CONSTANTS[41]*(CONSTANTS[39] - 2.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(STATES[2], CONSTANTS[39])*CONSTANTS[12] -  exp(( (CONSTANTS[41] - 1.00000)*(CONSTANTS[39] - 2.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(CONSTANTS[11], CONSTANTS[39])*STATES[9]))/( (1.00000+ CONSTANTS[40]*( STATES[9]*pow(CONSTANTS[11], CONSTANTS[39])+ CONSTANTS[12]*pow(STATES[2], CONSTANTS[39])))*(1.00000+STATES[9]/0.00690000));
ALGEBRAIC[41] = STATES[3]+ STATES[14]*CONSTANTS[66]+ CONSTANTS[43]*CONSTANTS[44]+CONSTANTS[43];
ALGEBRAIC[42] =  (STATES[3]/ALGEBRAIC[41])*CONSTANTS[46] -  (( STATES[14]*CONSTANTS[66])/ALGEBRAIC[41])*CONSTANTS[47];
ALGEBRAIC[43] =  50.0000*(STATES[14] - STATES[15]);
ALGEBRAIC[44] = exp( 0.0800000*(STATES[0] - 40.0000));
ALGEBRAIC[45] = STATES[3]/(STATES[3]+CONSTANTS[50]);
ALGEBRAIC[46] = STATES[9]/(STATES[9]+CONSTANTS[51]);
ALGEBRAIC[47] = ALGEBRAIC[45]+ (1.00000 - ALGEBRAIC[45])*ALGEBRAIC[46];
ALGEBRAIC[48] =  0.00000*ALGEBRAIC[44]+ 90.0000*pow(ALGEBRAIC[47], 2.00000);
ALGEBRAIC[49] = 60.0000+ 500.000*pow(ALGEBRAIC[47], 2.00000);
ALGEBRAIC[50] = (CONDVAR[7]<0.00000 ? 5.00000 : 1.00000);
ALGEBRAIC[51] = (1.00000 - STATES[16]) - STATES[17];
ALGEBRAIC[52] =  ( pow(STATES[16]/(STATES[16]+0.250000), 2.00000)*CONSTANTS[49]+CONSTANTS[48])*STATES[15];
ALGEBRAIC[30] =  (1.00000 - STATES[11])*(1.00000 - ALGEBRAIC[29]);
ALGEBRAIC[53] =  ((( (1.00000 - CONSTANTS[28])*4.00000*CONSTANTS[23]*STATES[10]*ALGEBRAIC[30]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))/(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2]*2.00000)/( CONSTANTS[0]*CONSTANTS[1]))))*( STATES[3]*exp(( 100.000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) -  CONSTANTS[12]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2]*2.00000)/( CONSTANTS[0]*CONSTANTS[1])));
ALGEBRAIC[54] =  ((( (1.00000 - CONSTANTS[28])*CONSTANTS[24]*CONSTANTS[23]*STATES[10]*ALGEBRAIC[30]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))/(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))))*( STATES[1]*exp(( 50.0000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) -  CONSTANTS[10]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])));
ALGEBRAIC[55] =  ((( (1.00000 - CONSTANTS[28])*CONSTANTS[25]*CONSTANTS[23]*STATES[10]*ALGEBRAIC[30]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))/(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))))*( STATES[2]*exp(( 50.0000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) -  CONSTANTS[11]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])));
ALGEBRAIC[31] = STATES[9]/(CONSTANTS[27]+STATES[9]);
ALGEBRAIC[32] =  (1.00000 - STATES[11])*(1.00000 - ALGEBRAIC[31]);
ALGEBRAIC[56] =  ((( CONSTANTS[28]*4.00000*CONSTANTS[23]*STATES[10]*ALGEBRAIC[32]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))/(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2]*2.00000)/( CONSTANTS[0]*CONSTANTS[1]))))*( STATES[3]*exp(( 100.000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) -  CONSTANTS[12]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2]*2.00000)/( CONSTANTS[0]*CONSTANTS[1])));
ALGEBRAIC[57] =  ((( CONSTANTS[28]*CONSTANTS[24]*CONSTANTS[23]*STATES[10]*ALGEBRAIC[32]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))/(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))))*( STATES[1]*exp(( 50.0000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) -  CONSTANTS[10]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])));
ALGEBRAIC[58] =  ((( CONSTANTS[28]*CONSTANTS[25]*CONSTANTS[23]*STATES[10]*ALGEBRAIC[32]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))/(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))))*( STATES[2]*exp(( 50.0000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) -  CONSTANTS[11]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])));
}
void
getStateInformation(double* SI)
{
SI[0] = 1.0;
SI[1] = 1.0;
SI[2] = 1.0;
SI[3] = 1.0;
SI[4] = 1.0;
SI[5] = 1.0;
SI[6] = 1.0;
SI[7] = 1.0;
SI[8] = 1.0;
SI[9] = 1.0;
SI[10] = 1.0;
SI[11] = 1.0;
SI[12] = 1.0;
SI[13] = 1.0;
SI[14] = 1.0;
SI[15] = 1.0;
SI[16] = 1.0;
SI[17] = 1.0;
SI[18] = 1.0;
SI[19] = 1.0;
}
void
computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
             double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
CONDVAR[0] = VOI - CONSTANTS[4];
CONDVAR[1] = VOI - CONSTANTS[5];
CONDVAR[2] = ((VOI - CONSTANTS[4]) -  floor((VOI - CONSTANTS[4])/CONSTANTS[6])*CONSTANTS[6]) - CONSTANTS[7];
CONDVAR[3] = fabs(ALGEBRAIC[16]) - CONSTANTS[19];
CONDVAR[4] = fabs(ALGEBRAIC[23]) - 0.000100000;
CONDVAR[5] = fabs(ALGEBRAIC[23]) - 0.000100000;
CONDVAR[6] = fabs(ALGEBRAIC[26]) - CONSTANTS[31];
CONDVAR[7] = STATES[0] - - 50.0000;
}