Generated Code

The following is c_ida code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

/*
   There are a total of 71 entries in the algebraic variable array.
   There are a total of 22 entries in each of the rate and state variable arrays.
   There are a total of 90 entries in the constant variable array.
 */
/*
 * VOI is time in component environment (second).
 * CONSTANTS[0] is dCell in component membrane (dimensionless).
 * CONSTANTS[66] is FCell in component membrane (dimensionless).
 * STATES[0] is V in component membrane (millivolt).
 * CONSTANTS[1] is R in component membrane (millijoule_per_mole_kelvin).
 * CONSTANTS[2] is T in component membrane (kelvin).
 * CONSTANTS[3] is F in component membrane (coulomb_per_mole).
 * CONSTANTS[71] is Cm in component membrane (microF).
 * CONSTANTS[4] is CmCentre in component membrane (microF).
 * CONSTANTS[5] is CmPeriphery in component membrane (microF).
 * ALGEBRAIC[69] is i_Na in component sodium_current (nanoA).
 * ALGEBRAIC[8] is i_Ca_L in component L_type_Ca_channel (nanoA).
 * ALGEBRAIC[17] is i_Ca_T in component T_type_Ca_channel (nanoA).
 * ALGEBRAIC[26] is i_to in component four_AP_sensitive_currents (nanoA).
 * ALGEBRAIC[27] is i_sus in component four_AP_sensitive_currents (nanoA).
 * ALGEBRAIC[70] is i_K_r in component rapid_delayed_rectifying_potassium_current (nanoA).
 * ALGEBRAIC[38] is i_K_s in component slow_delayed_rectifying_potassium_current (nanoA).
 * ALGEBRAIC[41] is i_f_Na in component hyperpolarisation_activated_current (nanoA).
 * ALGEBRAIC[42] is i_f_K in component hyperpolarisation_activated_current (nanoA).
 * ALGEBRAIC[45] is i_b_Na in component sodium_background_current (nanoA).
 * ALGEBRAIC[47] is i_b_Ca in component calcium_background_current (nanoA).
 * ALGEBRAIC[46] is i_b_K in component potassium_background_current (nanoA).
 * ALGEBRAIC[48] is i_NaCa in component sodium_calcium_exchanger (nanoA).
 * ALGEBRAIC[49] is i_p in component sodium_potassium_pump (nanoA).
 * ALGEBRAIC[61] is i_Ca_P in component intracellular_calcium_handling (nanoA).
 * ALGEBRAIC[50] is i_st in component sustained_inward_current (nanoA).
 * CONSTANTS[72] is g_Na in component sodium_current (microlitre_per_second).
 * CONSTANTS[6] is g_Na_Centre in component sodium_current (microlitre_per_second).
 * CONSTANTS[7] is g_Na_Periphery in component sodium_current (microlitre_per_second).
 * CONSTANTS[67] is E_Na in component reversal_and_equilibrium_potentials (millivolt).
 * CONSTANTS[8] is Na_o in component ionic_concentrations (millimolar).
 * STATES[1] is m in component sodium_current_m_gate (dimensionless).
 * ALGEBRAIC[3] is h in component sodium_current_h_gate (dimensionless).
 * ALGEBRAIC[0] is m_infinity in component sodium_current_m_gate (dimensionless).
 * ALGEBRAIC[1] is tau_m in component sodium_current_m_gate (second).
 * ALGEBRAIC[2] is F_Na in component sodium_current_h_gate (dimensionless).
 * STATES[2] is h1 in component sodium_current_h_gate (dimensionless).
 * STATES[3] is h2 in component sodium_current_h_gate (dimensionless).
 * ALGEBRAIC[4] is h1_infinity in component sodium_current_h_gate (dimensionless).
 * ALGEBRAIC[5] is h2_infinity in component sodium_current_h_gate (dimensionless).
 * ALGEBRAIC[6] is tau_h1 in component sodium_current_h_gate (second).
 * ALGEBRAIC[7] is tau_h2 in component sodium_current_h_gate (second).
 * CONSTANTS[9] is g_Ca_L_Centre in component L_type_Ca_channel (microS).
 * CONSTANTS[10] is g_Ca_L_Periphery in component L_type_Ca_channel (microS).
 * CONSTANTS[73] is g_Ca_L in component L_type_Ca_channel (microS).
 * CONSTANTS[11] is E_Ca_L in component L_type_Ca_channel (millivolt).
 * STATES[4] is d_L in component L_type_Ca_channel_d_gate (dimensionless).
 * STATES[5] is f_L in component L_type_Ca_channel_f_gate (dimensionless).
 * ALGEBRAIC[9] is alpha_d_L in component L_type_Ca_channel_d_gate (per_second).
 * ALGEBRAIC[10] is beta_d_L in component L_type_Ca_channel_d_gate (per_second).
 * ALGEBRAIC[12] is d_L_infinity in component L_type_Ca_channel_d_gate (dimensionless).
 * ALGEBRAIC[11] is tau_d_L in component L_type_Ca_channel_d_gate (second).
 * ALGEBRAIC[13] is alpha_f_L in component L_type_Ca_channel_f_gate (per_second).
 * ALGEBRAIC[14] is beta_f_L in component L_type_Ca_channel_f_gate (per_second).
 * ALGEBRAIC[16] is f_L_infinity in component L_type_Ca_channel_f_gate (dimensionless).
 * ALGEBRAIC[15] is tau_f_L in component L_type_Ca_channel_f_gate (second).
 * CONSTANTS[12] is g_Ca_T_Centre in component T_type_Ca_channel (microS).
 * CONSTANTS[13] is g_Ca_T_Periphery in component T_type_Ca_channel (microS).
 * CONSTANTS[74] is g_Ca_T in component T_type_Ca_channel (microS).
 * CONSTANTS[14] is E_Ca_T in component T_type_Ca_channel (millivolt).
 * STATES[6] is d_T in component T_type_Ca_channel_d_gate (dimensionless).
 * STATES[7] is f_T in component T_type_Ca_channel_f_gate (dimensionless).
 * ALGEBRAIC[18] is alpha_d_T in component T_type_Ca_channel_d_gate (per_second).
 * ALGEBRAIC[19] is beta_d_T in component T_type_Ca_channel_d_gate (per_second).
 * ALGEBRAIC[21] is d_T_infinity in component T_type_Ca_channel_d_gate (dimensionless).
 * ALGEBRAIC[20] is tau_d_T in component T_type_Ca_channel_d_gate (second).
 * ALGEBRAIC[22] is alpha_f_T in component T_type_Ca_channel_f_gate (per_second).
 * ALGEBRAIC[23] is beta_f_T in component T_type_Ca_channel_f_gate (per_second).
 * ALGEBRAIC[25] is f_T_infinity in component T_type_Ca_channel_f_gate (dimensionless).
 * ALGEBRAIC[24] is tau_f_T in component T_type_Ca_channel_f_gate (second).
 * CONSTANTS[15] is g_to_Centre in component four_AP_sensitive_currents (microS).
 * CONSTANTS[16] is g_to_Periphery in component four_AP_sensitive_currents (microS).
 * CONSTANTS[75] is g_to in component four_AP_sensitive_currents (microS).
 * CONSTANTS[17] is g_sus_Centre in component four_AP_sensitive_currents (microS).
 * CONSTANTS[18] is g_sus_Periphery in component four_AP_sensitive_currents (microS).
 * CONSTANTS[76] is g_sus in component four_AP_sensitive_currents (microS).
 * CONSTANTS[68] is E_K in component reversal_and_equilibrium_potentials (millivolt).
 * STATES[8] is q in component four_AP_sensitive_currents_q_gate (dimensionless).
 * STATES[9] is r in component four_AP_sensitive_currents_r_gate (dimensionless).
 * ALGEBRAIC[28] is q_infinity in component four_AP_sensitive_currents_q_gate (dimensionless).
 * ALGEBRAIC[29] is tau_q in component four_AP_sensitive_currents_q_gate (second).
 * ALGEBRAIC[30] is r_infinity in component four_AP_sensitive_currents_r_gate (dimensionless).
 * ALGEBRAIC[31] is tau_r in component four_AP_sensitive_currents_r_gate (second).
 * CONSTANTS[19] is g_K_r_Centre in component rapid_delayed_rectifying_potassium_current (microS).
 * CONSTANTS[20] is g_K_r_Periphery in component rapid_delayed_rectifying_potassium_current (microS).
 * CONSTANTS[77] is g_K_r in component rapid_delayed_rectifying_potassium_current (microS).
 * ALGEBRAIC[32] is P_a in component rapid_delayed_rectifying_potassium_current (dimensionless).
 * STATES[10] is P_af in component rapid_delayed_rectifying_potassium_current_P_af_gate (dimensionless).
 * STATES[11] is P_as in component rapid_delayed_rectifying_potassium_current_P_as_gate (dimensionless).
 * STATES[12] is P_i in component rapid_delayed_rectifying_potassium_current_P_i_gate (dimensionless).
 * ALGEBRAIC[33] is P_af_infinity in component rapid_delayed_rectifying_potassium_current_P_af_gate (dimensionless).
 * ALGEBRAIC[34] is tau_P_af in component rapid_delayed_rectifying_potassium_current_P_af_gate (second).
 * ALGEBRAIC[35] is P_as_infinity in component rapid_delayed_rectifying_potassium_current_P_as_gate (dimensionless).
 * ALGEBRAIC[36] is tau_P_as in component rapid_delayed_rectifying_potassium_current_P_as_gate (second).
 * ALGEBRAIC[37] is P_i_infinity in component rapid_delayed_rectifying_potassium_current_P_i_gate (dimensionless).
 * CONSTANTS[21] is tau_P_i in component rapid_delayed_rectifying_potassium_current_P_i_gate (second).
 * CONSTANTS[22] is g_K_s_Centre in component slow_delayed_rectifying_potassium_current (microS).
 * CONSTANTS[23] is g_K_s_Periphery in component slow_delayed_rectifying_potassium_current (microS).
 * CONSTANTS[78] is g_K_s in component slow_delayed_rectifying_potassium_current (microS).
 * CONSTANTS[69] is E_K_s in component reversal_and_equilibrium_potentials (millivolt).
 * STATES[13] is xs in component slow_delayed_rectifying_potassium_current_xs_gate (dimensionless).
 * ALGEBRAIC[39] is alpha_xs in component slow_delayed_rectifying_potassium_current_xs_gate (per_second).
 * ALGEBRAIC[40] is beta_xs in component slow_delayed_rectifying_potassium_current_xs_gate (per_second).
 * CONSTANTS[24] is g_f_Na_Centre in component hyperpolarisation_activated_current (microS).
 * CONSTANTS[25] is g_f_Na_Periphery in component hyperpolarisation_activated_current (microS).
 * CONSTANTS[79] is g_f_Na in component hyperpolarisation_activated_current (microS).
 * CONSTANTS[26] is g_f_K_Centre in component hyperpolarisation_activated_current (microS).
 * CONSTANTS[27] is g_f_K_Periphery in component hyperpolarisation_activated_current (microS).
 * CONSTANTS[80] is g_f_K in component hyperpolarisation_activated_current (microS).
 * STATES[14] is y in component hyperpolarisation_activated_current_y_gate (dimensionless).
 * ALGEBRAIC[43] is alpha_y in component hyperpolarisation_activated_current_y_gate (per_second).
 * ALGEBRAIC[44] is beta_y in component hyperpolarisation_activated_current_y_gate (per_second).
 * CONSTANTS[28] is g_b_Na_Centre in component sodium_background_current (microS).
 * CONSTANTS[29] is g_b_Na_Periphery in component sodium_background_current (microS).
 * CONSTANTS[81] is g_b_Na in component sodium_background_current (microS).
 * CONSTANTS[30] is g_b_K_Centre in component potassium_background_current (microS).
 * CONSTANTS[31] is g_b_K_Periphery in component potassium_background_current (microS).
 * CONSTANTS[82] is g_b_K in component potassium_background_current (microS).
 * CONSTANTS[32] is g_b_Ca_Centre in component calcium_background_current (microS).
 * CONSTANTS[33] is g_b_Ca_Periphery in component calcium_background_current (microS).
 * CONSTANTS[83] is g_b_Ca in component calcium_background_current (microS).
 * CONSTANTS[70] is E_Ca in component reversal_and_equilibrium_potentials (millivolt).
 * CONSTANTS[34] is k_NaCa_Centre in component sodium_calcium_exchanger (nanoA).
 * CONSTANTS[35] is k_NaCa_Periphery in component sodium_calcium_exchanger (nanoA).
 * CONSTANTS[84] is k_NaCa in component sodium_calcium_exchanger (nanoA).
 * CONSTANTS[36] is d_NaCa in component sodium_calcium_exchanger (dimensionless).
 * CONSTANTS[37] is gamma_NaCa in component sodium_calcium_exchanger (dimensionless).
 * CONSTANTS[38] is Na_i in component ionic_concentrations (millimolar).
 * CONSTANTS[39] is Ca_i in component ionic_concentrations (millimolar).
 * CONSTANTS[40] is Ca_o in component ionic_concentrations (millimolar).
 * CONSTANTS[41] is K_m_Na in component sodium_potassium_pump (millimolar).
 * CONSTANTS[42] is K_m_K in component sodium_potassium_pump (millimolar).
 * CONSTANTS[43] is i_p_max_Centre in component sodium_potassium_pump (nanoA).
 * CONSTANTS[44] is i_p_max_Periphery in component sodium_potassium_pump (nanoA).
 * CONSTANTS[85] is i_p_max in component sodium_potassium_pump (nanoA).
 * CONSTANTS[45] is K_o in component ionic_concentrations (millimolar).
 * CONSTANTS[46] is K_i in component ionic_concentrations (millimolar).
 * CONSTANTS[47] is g_st in component sustained_inward_current (microS).
 * STATES[15] is d_s in component sustained_inward_current_d_gate (dimensionless).
 * STATES[16] is f_s in component sustained_inward_current_f_gate (dimensionless).
 * ALGEBRAIC[51] is alpha_d_s in component sustained_inward_current_d_gate (per_second).
 * ALGEBRAIC[52] is beta_d_s in component sustained_inward_current_d_gate (per_second).
 * ALGEBRAIC[54] is d_s_infinity in component sustained_inward_current_d_gate (dimensionless).
 * ALGEBRAIC[53] is tau_d_s in component sustained_inward_current_d_gate (second).
 * ALGEBRAIC[55] is alpha_f_s in component sustained_inward_current_f_gate (per_second).
 * ALGEBRAIC[56] is beta_f_s in component sustained_inward_current_f_gate (per_second).
 * ALGEBRAIC[58] is f_s_infinity in component sustained_inward_current_f_gate (dimensionless).
 * ALGEBRAIC[57] is tau_f_s in component sustained_inward_current_f_gate (second).
 * ALGEBRAIC[59] is U_d in component intracellular_calcium_handling (dimensionless).
 * ALGEBRAIC[63] is U_s in component intracellular_calcium_handling (dimensionless).
 * CONSTANTS[48] is i_Ca_P_max in component intracellular_calcium_handling (nanoA).
 * ALGEBRAIC[60] is J_Ca_ds in component intracellular_calcium_handling (millimole_per_second).
 * ALGEBRAIC[62] is J_Ca_r in component intracellular_calcium_handling (millimole_per_second).
 * ALGEBRAIC[64] is J_Ca_P in component intracellular_calcium_handling (millimole_per_second).
 * CONSTANTS[49] is J_Ca_P_max in component intracellular_calcium_handling (millimole_per_second).
 * ALGEBRAIC[65] is J_Ca_u in component intracellular_calcium_handling (millimole_per_second).
 * CONSTANTS[50] is J_Ca_u_max in component intracellular_calcium_handling (millimole_per_second).
 * ALGEBRAIC[66] is J_Ca_ur in component intracellular_calcium_handling (millimole_per_second).
 * ALGEBRAIC[67] is J_Ca_1 in component intracellular_calcium_handling (millimole_per_second).
 * STATES[17] is Ca_d in component intracellular_calcium_handling (millimolar).
 * STATES[18] is Ca_s in component intracellular_calcium_handling (millimolar).
 * STATES[19] is Ca_u in component intracellular_calcium_handling (millimolar).
 * STATES[20] is Ca_r in component intracellular_calcium_handling (millimolar).
 * CONSTANTS[51] is B_d in component intracellular_calcium_handling (millimolar).
 * CONSTANTS[52] is B_s in component intracellular_calcium_handling (millimolar).
 * CONSTANTS[86] is Vol_u in component intracellular_calcium_handling (litre).
 * CONSTANTS[87] is Vol_r in component intracellular_calcium_handling (litre).
 * CONSTANTS[88] is Vol_d in component intracellular_calcium_handling (litre).
 * CONSTANTS[89] is Vol_s in component intracellular_calcium_handling (litre).
 * CONSTANTS[53] is Vol_c in component intracellular_calcium_handling (litre).
 * CONSTANTS[54] is K_m_b in component intracellular_calcium_handling (millimolar).
 * CONSTANTS[55] is K_m_r in component intracellular_calcium_handling (millimolar).
 * CONSTANTS[56] is K_m_u in component intracellular_calcium_handling (millimolar).
 * CONSTANTS[57] is f_d in component intracellular_calcium_handling (dimensionless).
 * CONSTANTS[58] is f_r in component intracellular_calcium_handling (dimensionless).
 * CONSTANTS[59] is f_u in component intracellular_calcium_handling (dimensionless).
 * CONSTANTS[60] is alpha_ds in component intracellular_calcium_handling (per_second).
 * CONSTANTS[61] is alpha_fR in component intracellular_calcium_handling (per_second_millimolar).
 * CONSTANTS[62] is alpha_1 in component intracellular_calcium_handling (per_second).
 * CONSTANTS[63] is alpha_r in component intracellular_calcium_handling (per_second).
 * CONSTANTS[64] is alpha_ur in component intracellular_calcium_handling (per_second).
 * CONSTANTS[65] is beta_fR in component intracellular_calcium_handling (per_second).
 * STATES[21] is f_R in component intracellular_calcium_handling (dimensionless).
 * ALGEBRAIC[68] is i_Ca in component intracellular_calcium_handling (nanoA).
 * RATES[0] is d/dt V in component membrane (millivolt).
 * RATES[1] is d/dt m in component sodium_current_m_gate (dimensionless).
 * RATES[2] is d/dt h1 in component sodium_current_h_gate (dimensionless).
 * RATES[3] is d/dt h2 in component sodium_current_h_gate (dimensionless).
 * RATES[4] is d/dt d_L in component L_type_Ca_channel_d_gate (dimensionless).
 * RATES[5] is d/dt f_L in component L_type_Ca_channel_f_gate (dimensionless).
 * RATES[6] is d/dt d_T in component T_type_Ca_channel_d_gate (dimensionless).
 * RATES[7] is d/dt f_T in component T_type_Ca_channel_f_gate (dimensionless).
 * RATES[8] is d/dt q in component four_AP_sensitive_currents_q_gate (dimensionless).
 * RATES[9] is d/dt r in component four_AP_sensitive_currents_r_gate (dimensionless).
 * RATES[10] is d/dt P_af in component rapid_delayed_rectifying_potassium_current_P_af_gate (dimensionless).
 * RATES[11] is d/dt P_as in component rapid_delayed_rectifying_potassium_current_P_as_gate (dimensionless).
 * RATES[12] is d/dt P_i in component rapid_delayed_rectifying_potassium_current_P_i_gate (dimensionless).
 * RATES[13] is d/dt xs in component slow_delayed_rectifying_potassium_current_xs_gate (dimensionless).
 * RATES[14] is d/dt y in component hyperpolarisation_activated_current_y_gate (dimensionless).
 * RATES[15] is d/dt d_s in component sustained_inward_current_d_gate (dimensionless).
 * RATES[16] is d/dt f_s in component sustained_inward_current_f_gate (dimensionless).
 * RATES[21] is d/dt f_R in component intracellular_calcium_handling (dimensionless).
 * RATES[17] is d/dt Ca_d in component intracellular_calcium_handling (millimolar).
 * RATES[18] is d/dt Ca_s in component intracellular_calcium_handling (millimolar).
 * RATES[19] is d/dt Ca_u in component intracellular_calcium_handling (millimolar).
 * RATES[20] is d/dt Ca_r in component intracellular_calcium_handling (millimolar).
 * There are a total of 0 condition variables.
 */
void
initConsts(double* CONSTANTS, double* RATES, double *STATES)
{
CONSTANTS[0] = 0;
STATES[0] = -39.013558536;
CONSTANTS[1] = 8314;
CONSTANTS[2] = 310;
CONSTANTS[3] = 96845;
CONSTANTS[4] = 2e-5;
CONSTANTS[5] = 6.5e-5;
CONSTANTS[6] = 0;
CONSTANTS[7] = 1.2e-6;
CONSTANTS[8] = 140;
STATES[1] = 0.092361701692;
STATES[2] = 0.015905380261;
STATES[3] = 0.01445216109;
CONSTANTS[9] = 0.0058;
CONSTANTS[10] = 0.0659;
CONSTANTS[11] = 46.4;
STATES[4] = 0.04804900895;
STATES[5] = 0.48779845203;
CONSTANTS[12] = 0.0043;
CONSTANTS[13] = 0.0139;
CONSTANTS[14] = 45;
STATES[6] = 0.42074047435;
STATES[7] = 0.038968420558;
CONSTANTS[15] = 0.00491;
CONSTANTS[16] = 0.03649;
CONSTANTS[17] = 6.65e-5;
CONSTANTS[18] = 0.0114;
STATES[8] = 0.29760539675;
STATES[9] = 0.064402950262;
CONSTANTS[19] = 0.000797;
CONSTANTS[20] = 0.016;
STATES[10] = 0.13034201158;
STATES[11] = 0.46960956028;
STATES[12] = 0.87993375273;
CONSTANTS[21] = 0.002;
CONSTANTS[22] = 0.000518;
CONSTANTS[23] = 0.0104;
STATES[13] = 0.082293827208;
CONSTANTS[24] = 0.000548;
CONSTANTS[25] = 0.0069;
CONSTANTS[26] = 0.000548;
CONSTANTS[27] = 0.0069;
STATES[14] = 0.03889291759;
CONSTANTS[28] = 5.8e-5;
CONSTANTS[29] = 0.000189;
CONSTANTS[30] = 2.52e-5;
CONSTANTS[31] = 8.19e-5;
CONSTANTS[32] = 1.32e-5;
CONSTANTS[33] = 4.3e-5;
CONSTANTS[34] = 2.7e-6;
CONSTANTS[35] = 8.8e-6;
CONSTANTS[36] = 0.0001;
CONSTANTS[37] = 0.5;
CONSTANTS[38] = 8;
CONSTANTS[39] = 0.0001;
CONSTANTS[40] = 2;
CONSTANTS[41] = 5.64;
CONSTANTS[42] = 0.621;
CONSTANTS[43] = 0.0478;
CONSTANTS[44] = 0.16;
CONSTANTS[45] = 5.4;
CONSTANTS[46] = 140;
CONSTANTS[47] = 0.00214;
STATES[15] = 0.230;
STATES[16] = 0.283;
CONSTANTS[48] = 0.24;
CONSTANTS[49] = 0.00000000096;
CONSTANTS[50] = 0.00000000096;
STATES[17] = 0.001544;
STATES[18] = 0.05487;
STATES[19] = 6.983;
STATES[20] = 4.909;
CONSTANTS[51] = 0.4;
CONSTANTS[52] = 0.2;
CONSTANTS[53] = 8.0e-12;
CONSTANTS[54] = 0.002;
CONSTANTS[55] = 0.001;
CONSTANTS[56] = 0.005;
CONSTANTS[57] = 0.1;
CONSTANTS[58] = 0.3;
CONSTANTS[59] = 0.06;
CONSTANTS[60] = 3300.0;
CONSTANTS[61] = 6670.0;
CONSTANTS[62] = 0.172;
CONSTANTS[63] = 333.5;
CONSTANTS[64] = 533.6;
CONSTANTS[65] = 2.0;
STATES[21] = 0.188;
CONSTANTS[66] = ( 1.07000*( 3.00000*CONSTANTS[0] - 0.100000))/( 3.00000*(1.00000+ 0.774500*exp(- ( 3.00000*CONSTANTS[0] - 2.05000)/0.295000)));
CONSTANTS[67] =  (( CONSTANTS[1]*CONSTANTS[2])/CONSTANTS[3])*log(CONSTANTS[8]/CONSTANTS[38]);
CONSTANTS[68] =  (( CONSTANTS[1]*CONSTANTS[2])/CONSTANTS[3])*log(CONSTANTS[45]/CONSTANTS[46]);
CONSTANTS[69] =  (( CONSTANTS[1]*CONSTANTS[2])/CONSTANTS[3])*log((CONSTANTS[45]+ 0.120000*CONSTANTS[8])/(CONSTANTS[46]+ 0.120000*CONSTANTS[38]));
CONSTANTS[70] =  (( CONSTANTS[1]*CONSTANTS[2])/( 2.00000*CONSTANTS[3]))*log(CONSTANTS[40]/CONSTANTS[39]);
CONSTANTS[71] = CONSTANTS[4]+ CONSTANTS[66]*(CONSTANTS[5] - CONSTANTS[4]);
CONSTANTS[72] = CONSTANTS[6]+ CONSTANTS[66]*(CONSTANTS[7] - CONSTANTS[6]);
CONSTANTS[73] = CONSTANTS[9]+ CONSTANTS[66]*(CONSTANTS[10] - CONSTANTS[9]);
CONSTANTS[74] = CONSTANTS[12]+ CONSTANTS[66]*(CONSTANTS[13] - CONSTANTS[12]);
CONSTANTS[75] = CONSTANTS[15]+ CONSTANTS[66]*(CONSTANTS[16] - CONSTANTS[15]);
CONSTANTS[76] = CONSTANTS[17]+ CONSTANTS[66]*(CONSTANTS[18] - CONSTANTS[17]);
CONSTANTS[77] = CONSTANTS[19]+ CONSTANTS[66]*(CONSTANTS[20] - CONSTANTS[19]);
CONSTANTS[78] = CONSTANTS[22]+ CONSTANTS[66]*(CONSTANTS[23] - CONSTANTS[22]);
CONSTANTS[79] = CONSTANTS[24]+ CONSTANTS[66]*(CONSTANTS[25] - CONSTANTS[24]);
CONSTANTS[80] = CONSTANTS[26]+ CONSTANTS[66]*(CONSTANTS[27] - CONSTANTS[26]);
CONSTANTS[81] = CONSTANTS[28]+ CONSTANTS[66]*(CONSTANTS[29] - CONSTANTS[28]);
CONSTANTS[82] = CONSTANTS[30]+ CONSTANTS[66]*(CONSTANTS[31] - CONSTANTS[30]);
CONSTANTS[83] = CONSTANTS[32]+ CONSTANTS[66]*(CONSTANTS[33] - CONSTANTS[32]);
CONSTANTS[84] = CONSTANTS[34]+ CONSTANTS[66]*(CONSTANTS[35] - CONSTANTS[34]);
CONSTANTS[85] = CONSTANTS[43]+ CONSTANTS[66]*(CONSTANTS[44] - CONSTANTS[43]);
CONSTANTS[86] =  CONSTANTS[59]*CONSTANTS[53];
CONSTANTS[87] =  CONSTANTS[58]*CONSTANTS[53];
CONSTANTS[88] =  CONSTANTS[57]*CONSTANTS[53];
CONSTANTS[89] = CONSTANTS[53] - (CONSTANTS[86]+CONSTANTS[88]);
RATES[0] = 0.1001;
RATES[1] = 0.1001;
RATES[2] = 0.1001;
RATES[3] = 0.1001;
RATES[4] = 0.1001;
RATES[5] = 0.1001;
RATES[6] = 0.1001;
RATES[7] = 0.1001;
RATES[8] = 0.1001;
RATES[9] = 0.1001;
RATES[10] = 0.1001;
RATES[11] = 0.1001;
RATES[12] = 0.1001;
RATES[13] = 0.1001;
RATES[14] = 0.1001;
RATES[15] = 0.1001;
RATES[16] = 0.1001;
RATES[21] = 0.1001;
RATES[17] = 0.1001;
RATES[18] = 0.1001;
RATES[19] = 0.1001;
RATES[20] = 0.1001;
}
void
computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
                 double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
resid[0] = RATES[0] -  (- 1.00000/CONSTANTS[71])*(ALGEBRAIC[69]+ALGEBRAIC[8]+ALGEBRAIC[17]+ALGEBRAIC[26]+ALGEBRAIC[27]+ALGEBRAIC[70]+ALGEBRAIC[38]+ALGEBRAIC[41]+ALGEBRAIC[42]+ALGEBRAIC[45]+ALGEBRAIC[47]+ALGEBRAIC[46]+ALGEBRAIC[48]+ALGEBRAIC[49]+ALGEBRAIC[61]);
resid[1] = RATES[1] - (ALGEBRAIC[0] - STATES[1])/ALGEBRAIC[1];
resid[2] = RATES[2] - (ALGEBRAIC[4] - STATES[2])/ALGEBRAIC[6];
resid[3] = RATES[3] - (ALGEBRAIC[5] - STATES[3])/ALGEBRAIC[7];
resid[4] = RATES[4] - (ALGEBRAIC[12] - STATES[4])/ALGEBRAIC[11];
resid[5] = RATES[5] - (ALGEBRAIC[16] - STATES[5])/ALGEBRAIC[15];
resid[6] = RATES[6] - (ALGEBRAIC[21] - STATES[6])/ALGEBRAIC[20];
resid[7] = RATES[7] - (ALGEBRAIC[25] - STATES[7])/ALGEBRAIC[24];
resid[8] = RATES[8] - (ALGEBRAIC[28] - STATES[8])/ALGEBRAIC[29];
resid[9] = RATES[9] - (ALGEBRAIC[30] - STATES[9])/ALGEBRAIC[31];
resid[10] = RATES[10] - (ALGEBRAIC[33] - STATES[10])/ALGEBRAIC[34];
resid[11] = RATES[11] - (ALGEBRAIC[35] - STATES[11])/ALGEBRAIC[36];
resid[12] = RATES[12] - (ALGEBRAIC[37] - STATES[12])/CONSTANTS[21];
resid[13] = RATES[13] -  ALGEBRAIC[39]*(1.00000 - STATES[13]) -  ALGEBRAIC[40]*STATES[13];
resid[14] = RATES[14] -  ALGEBRAIC[43]*(1.00000 - STATES[14]) -  ALGEBRAIC[44]*STATES[14];
resid[15] = RATES[15] - (ALGEBRAIC[54] - STATES[15])/ALGEBRAIC[53];
resid[16] = RATES[16] - (ALGEBRAIC[58] - STATES[16])/ALGEBRAIC[57];
resid[17] = RATES[21] -  - CONSTANTS[61]*STATES[17]*STATES[21]+ CONSTANTS[65]*(1.00000 - STATES[21]);
resid[18] = RATES[17] -  (ALGEBRAIC[59]/CONSTANTS[88])*(ALGEBRAIC[60] - ( 0.950000*ALGEBRAIC[68])/( 2.00000*CONSTANTS[3]));
resid[19] = RATES[18] -  (ALGEBRAIC[63]/CONSTANTS[89])*((ALGEBRAIC[60] - ((( 0.0500000*ALGEBRAIC[68] -  2.00000*ALGEBRAIC[48])+ALGEBRAIC[47])/( 2.00000*CONSTANTS[3])+ALGEBRAIC[65]))+ALGEBRAIC[62]+ALGEBRAIC[67]);
resid[20] = RATES[19] - (ALGEBRAIC[65] - (ALGEBRAIC[67]+ALGEBRAIC[66]))/CONSTANTS[86];
resid[21] = RATES[20] - (ALGEBRAIC[66] - ALGEBRAIC[62])/CONSTANTS[87];
}
void
computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[50] =  CONSTANTS[47]*STATES[15]*STATES[16]*(STATES[0] - 18.0000);
ALGEBRAIC[64] =  CONSTANTS[49]*(STATES[18]/(STATES[18]+0.000400000));
}
void
computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[0] = pow(1.00000/(1.00000+exp(- STATES[0]/5.46000)), 1.00000/3.00000);
ALGEBRAIC[1] = 0.000624700/( 0.832000*exp( - 0.335000*(STATES[0]+56.7000))+ 0.627000*exp( 0.0820000*(STATES[0]+65.0100)))+4.00000e-05;
ALGEBRAIC[4] = 1.00000/(1.00000+exp((STATES[0]+66.1000)/6.40000));
ALGEBRAIC[5] = ALGEBRAIC[4];
ALGEBRAIC[6] = ( 3.71700e-06*exp( - 0.281500*(STATES[0]+17.1100)))/(1.00000+ 0.00373200*exp( - 0.342600*(STATES[0]+37.7600)))+0.000597700;
ALGEBRAIC[7] = ( 3.18600e-08*exp( - 0.621900*(STATES[0]+18.8000)))/(1.00000+ 7.18900e-05*exp( - 0.668300*(STATES[0]+34.0700)))+0.00355600;
ALGEBRAIC[8] =  CONSTANTS[73]*( STATES[5]*STATES[4]+0.00600000/(1.00000+exp(- (STATES[0]+14.1000)/6.00000)))*(STATES[0] - CONSTANTS[11]);
ALGEBRAIC[9] = ( - 28.3800*(STATES[0]+35.0000))/(exp(- (STATES[0]+35.0000)/2.50000) - 1.00000) - ( 84.9000*STATES[0])/(exp( - 0.208000*STATES[0]) - 1.00000);
ALGEBRAIC[10] = ( 11.4200*(STATES[0] - 5.00000))/(exp( 0.400000*(STATES[0] - 5.00000)) - 1.00000);
ALGEBRAIC[11] = 2.00000/(ALGEBRAIC[9]+ALGEBRAIC[10]);
ALGEBRAIC[12] = 1.00000/(1.00000+exp(- (STATES[0]+23.1000)/6.00000));
ALGEBRAIC[13] = ( 3.12000*(STATES[0]+28.0000))/(exp((STATES[0]+28.0000)/4.00000) - 1.00000);
ALGEBRAIC[14] = 25.0000/(1.00000+exp(- (STATES[0]+28.0000)/4.00000));
ALGEBRAIC[15] = 1.00000/(ALGEBRAIC[13]+ALGEBRAIC[14]);
ALGEBRAIC[16] = 1.00000/(1.00000+exp((STATES[0]+45.0000)/5.00000));
ALGEBRAIC[17] =  CONSTANTS[74]*STATES[6]*STATES[7]*(STATES[0] - CONSTANTS[14]);
ALGEBRAIC[18] =  1068.00*exp((STATES[0]+26.3000)/30.0000);
ALGEBRAIC[19] =  1068.00*exp(- (STATES[0]+26.3000)/30.0000);
ALGEBRAIC[20] = 1.00000/(ALGEBRAIC[18]+ALGEBRAIC[19]);
ALGEBRAIC[21] = 1.00000/(1.00000+exp(- (STATES[0]+37.0000)/6.80000));
ALGEBRAIC[22] =  15.3000*exp(- (STATES[0]+71.7000)/83.3000);
ALGEBRAIC[23] =  15.0000*exp((STATES[0]+71.7000)/15.3800);
ALGEBRAIC[24] = 1.00000/(ALGEBRAIC[22]+ALGEBRAIC[23]);
ALGEBRAIC[25] = 1.00000/(1.00000+exp((STATES[0]+71.0000)/9.00000));
ALGEBRAIC[26] =  CONSTANTS[75]*STATES[8]*STATES[9]*(STATES[0] - CONSTANTS[68]);
ALGEBRAIC[27] =  CONSTANTS[76]*STATES[9]*(STATES[0] - CONSTANTS[68]);
ALGEBRAIC[28] = 1.00000/(1.00000+exp((STATES[0]+59.3700)/13.1000));
ALGEBRAIC[29] = 0.0101000+0.0651700/( 0.570000*exp( - 0.0800000*(STATES[0]+49.0000)))+ 2.40000e-05*exp( 0.100000*(STATES[0]+50.9300));
ALGEBRAIC[30] = 1.00000/(1.00000+exp(- (STATES[0] - 10.9300)/19.7000));
ALGEBRAIC[31] =  0.00100000*(2.98000+15.5900/( 1.03700*exp( 0.0900000*(STATES[0]+30.6100))+ 0.369000*exp( - 0.120000*(STATES[0]+23.8400))));
ALGEBRAIC[33] = 1.00000/(1.00000+exp(- (STATES[0]+14.2000)/10.6000));
ALGEBRAIC[34] = 1.00000/( 37.2000*exp((STATES[0] - 9.00000)/15.9000)+ 0.960000*exp(- (STATES[0] - 9.00000)/22.5000));
ALGEBRAIC[35] = ALGEBRAIC[33];
ALGEBRAIC[36] = 1.00000/( 4.20000*exp((STATES[0] - 9.00000)/17.0000)+ 0.150000*exp(- (STATES[0] - 9.00000)/21.6000));
ALGEBRAIC[37] = 1.00000/(1.00000+exp((STATES[0]+18.6000)/10.1000));
ALGEBRAIC[38] =  CONSTANTS[78]*pow(STATES[13], 2.00000)*(STATES[0] - CONSTANTS[69]);
ALGEBRAIC[39] = 14.0000/(1.00000+exp(- (STATES[0] - 40.0000)/9.00000));
ALGEBRAIC[40] =  1.00000*exp(- STATES[0]/45.0000);
ALGEBRAIC[41] =  CONSTANTS[79]*STATES[14]*(STATES[0] - CONSTANTS[67]);
ALGEBRAIC[42] =  CONSTANTS[80]*STATES[14]*(STATES[0] - CONSTANTS[68]);
ALGEBRAIC[43] =  1.00000*exp(- (STATES[0]+78.9100)/26.6200);
ALGEBRAIC[44] =  1.00000*exp((STATES[0]+75.1300)/21.2500);
ALGEBRAIC[45] =  CONSTANTS[81]*(STATES[0] - CONSTANTS[67]);
ALGEBRAIC[46] =  CONSTANTS[82]*(STATES[0] - CONSTANTS[68]);
ALGEBRAIC[47] =  CONSTANTS[83]*(STATES[0] - CONSTANTS[70]);
ALGEBRAIC[48] = ( CONSTANTS[84]*( pow(CONSTANTS[38], 3.00000)*CONSTANTS[40]*exp( 0.0374300*STATES[0]*CONSTANTS[37]) -  pow(CONSTANTS[8], 3.00000)*CONSTANTS[39]*exp( 0.0374000*STATES[0]*(CONSTANTS[37] - 1.00000))))/(1.00000+ CONSTANTS[36]*( CONSTANTS[39]*pow(CONSTANTS[8], 3.00000)+ CONSTANTS[40]*pow(CONSTANTS[38], 3.00000)));
ALGEBRAIC[49] = ( CONSTANTS[85]*pow(CONSTANTS[38]/(CONSTANTS[41]+CONSTANTS[38]), 3.00000)*pow(CONSTANTS[45]/(CONSTANTS[42]+CONSTANTS[45]), 2.00000)*1.60000)/(1.50000+exp(- (STATES[0]+60.0000)/40.0000));
ALGEBRAIC[51] = 1000.00/( 0.150000*exp(- STATES[0]/11.0000)+ 0.200000*exp(- STATES[0]/700.000));
ALGEBRAIC[52] = 1000.00/( 16.0000*exp(STATES[0]/8.00000)+ 0.200000*exp(STATES[0]/50.0000));
ALGEBRAIC[53] = 1.00000/(ALGEBRAIC[51]+ALGEBRAIC[52]);
ALGEBRAIC[54] = ALGEBRAIC[51]/(ALGEBRAIC[51]+ALGEBRAIC[52]);
ALGEBRAIC[55] = 1000.00/( 3100.00*exp(- STATES[0]/13.0000)+ 700.000*exp(- STATES[0]/70.0000));
ALGEBRAIC[56] = 1000.00/( 16.0000*exp(STATES[0]/8.00000)+ 0.200000*exp(STATES[0]/50.0000));
ALGEBRAIC[57] = 1.00000/(ALGEBRAIC[55]+ALGEBRAIC[56]);
ALGEBRAIC[58] = ALGEBRAIC[55]/(ALGEBRAIC[55]+ALGEBRAIC[56]);
ALGEBRAIC[59] = 1.00000 - CONSTANTS[51]/(CONSTANTS[54]+STATES[17]+CONSTANTS[51]);
ALGEBRAIC[60] =  CONSTANTS[60]*CONSTANTS[88]*(STATES[17] - STATES[18]);
ALGEBRAIC[61] =  CONSTANTS[48]*(STATES[18]/(STATES[18]+0.000400000));
ALGEBRAIC[62] =  CONSTANTS[63]*STATES[21]*(pow(STATES[17], 2.00000)/(pow(CONSTANTS[55], 2.00000)+pow(STATES[17], 2.00000)))*CONSTANTS[87]*STATES[20];
ALGEBRAIC[63] = 1.00000 - CONSTANTS[52]/(CONSTANTS[54]+STATES[18]+CONSTANTS[52]);
ALGEBRAIC[65] =  CONSTANTS[50]*(pow(STATES[18], 2.00000)/(pow(CONSTANTS[56], 2.00000)+pow(STATES[18], 2.00000)));
ALGEBRAIC[66] =  CONSTANTS[64]*CONSTANTS[86]*(STATES[19] - STATES[20]);
ALGEBRAIC[67] =  CONSTANTS[62]*CONSTANTS[86]*STATES[19];
ALGEBRAIC[68] = ALGEBRAIC[8]+ALGEBRAIC[17];
ALGEBRAIC[2] = ( 0.0952000*exp( - 0.0630000*(STATES[0]+34.4000)))/(1.00000+ 1.66000*exp( - 0.225000*(STATES[0]+63.7000)))+0.0869000;
ALGEBRAIC[3] =  (1.00000 - ALGEBRAIC[2])*STATES[2]+ ALGEBRAIC[2]*STATES[3];
ALGEBRAIC[69] =  (( (( CONSTANTS[72]*pow(STATES[1], 3.00000)*ALGEBRAIC[3]*CONSTANTS[8]*pow(CONSTANTS[3], 2.00000))/( CONSTANTS[1]*CONSTANTS[2]))*(exp(( (STATES[0] - CONSTANTS[67])*CONSTANTS[3])/( CONSTANTS[1]*CONSTANTS[2])) - 1.00000))/(exp(( STATES[0]*CONSTANTS[3])/( CONSTANTS[1]*CONSTANTS[2])) - 1.00000))*STATES[0];
ALGEBRAIC[32] =  0.600000*STATES[10]+ 0.400000*STATES[11];
ALGEBRAIC[70] =  CONSTANTS[77]*ALGEBRAIC[32]*STATES[12]*(STATES[0] - CONSTANTS[68]);
}
void
getStateInformation(double* SI)
{
SI[0] = 1.0;
SI[1] = 1.0;
SI[2] = 1.0;
SI[3] = 1.0;
SI[4] = 1.0;
SI[5] = 1.0;
SI[6] = 1.0;
SI[7] = 1.0;
SI[8] = 1.0;
SI[9] = 1.0;
SI[10] = 1.0;
SI[11] = 1.0;
SI[12] = 1.0;
SI[13] = 1.0;
SI[14] = 1.0;
SI[15] = 1.0;
SI[16] = 1.0;
SI[17] = 1.0;
SI[18] = 1.0;
SI[19] = 1.0;
SI[20] = 1.0;
SI[21] = 1.0;
}
void
computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
             double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
}