# Size of variable arrays: sizeAlgebraic = 5 sizeStates = 7 sizeConstants = 34 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (day)" legend_states[0] = "phi_I in component phi_I (cells_per_mm3)" legend_algebraic[3] = "alpha in component model_parameters (dimensionless)" legend_constants[0] = "k1 in component model_parameters (dimensionless)" legend_constants[1] = "k2 in component model_parameters (per_day)" legend_constants[2] = "k3 in component model_parameters (mm3_per_cells)" legend_constants[3] = "k5 in component model_parameters (mm3_per_cells)" legend_constants[4] = "k6 in component model_parameters (mm3_per_microg)" legend_constants[5] = "d1 in component model_parameters (per_day)" legend_states[1] = "phi_R in component phi_R (cells_per_mm3)" legend_algebraic[0] = "K_T in component K_T (cells_per_mm3_per_day)" legend_states[2] = "F in component F (cells_per_mm3)" legend_states[3] = "C in component C (microg_per_mm3)" legend_states[4] = "T in component T (pg_per_mm3)" legend_constants[6] = "k4 in component model_parameters (pg_per_cells_per_day)" legend_constants[7] = "k7 in component model_parameters (pg_per_cells_per_day)" legend_constants[8] = "d2 in component model_parameters (per_day)" legend_states[5] = "P in component P (pg_per_mm3)" legend_constants[9] = "k8 in component model_parameters (pg_per_cells_per_day)" legend_constants[10] = "k9 in component model_parameters (pg_per_cells_per_day)" legend_constants[11] = "d3 in component model_parameters (per_day)" legend_constants[12] = "k10 in component model_parameters (per_day)" legend_constants[13] = "d4 in component model_parameters (per_day)" legend_algebraic[1] = "M_P in component M_P (cells_per_mm3_per_day)" legend_constants[14] = "k11 in component model_parameters (microg_per_cells_per_day)" legend_algebraic[2] = "f_T in component f_T (dimensionless)" legend_algebraic[4] = "g_C in component g_C (dimensionless)" legend_constants[15] = "d5 in component model_parameters (mm3_per_cells_per_day)" legend_states[6] = "H in component H (microg_per_mm3)" legend_constants[16] = "k12 in component model_parameters (microg_per_cells_per_day)" legend_constants[17] = "d6 in component model_parameters (per_day)" legend_constants[18] = "tau1 in component K_T (mm6_cells_per_pg3_day)" legend_constants[19] = "tau2 in component K_T (mm3_cells_per_pg2_day)" legend_constants[20] = "tau3 in component K_T (cells_per_pg_per_day)" legend_constants[21] = "tau4 in component K_T (cells_per_mm3_per_day)" legend_constants[22] = "tau1 in component M_P (mm6_cells_per_pg3_day)" legend_constants[23] = "tau2 in component M_P (mm3_cells_per_pg2_day)" legend_constants[24] = "tau3 in component M_P (cells_per_pg_per_day)" legend_constants[25] = "tau4 in component M_P (cells_per_mm3_per_day)" legend_constants[26] = "tau1 in component f_T (mm9_per_pg3)" legend_constants[27] = "tau2 in component f_T (mm6_per_pg2)" legend_constants[28] = "tau3 in component f_T (mm3_per_pg)" legend_constants[29] = "tau4 in component f_T (dimensionless)" legend_constants[30] = "tau1 in component g_C (mm9_per_microg3)" legend_constants[31] = "tau2 in component g_C (mm6_per_microg2)" legend_constants[32] = "tau3 in component g_C (mm3_per_microg)" legend_constants[33] = "tau4 in component g_C (dimensionless)" legend_rates[0] = "d/dt phi_I in component phi_I (cells_per_mm3)" legend_rates[1] = "d/dt phi_R in component phi_R (cells_per_mm3)" legend_rates[4] = "d/dt T in component T (pg_per_mm3)" legend_rates[5] = "d/dt P in component P (pg_per_mm3)" legend_rates[2] = "d/dt F in component F (cells_per_mm3)" legend_rates[3] = "d/dt C in component C (microg_per_mm3)" legend_rates[6] = "d/dt H in component H (microg_per_mm3)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; states[0] = 200.0 constants[0] = 0.05 constants[1] = 0.693 constants[2] = 0.002 constants[3] = 0.0025 constants[4] = 0.0004 constants[5] = 0.2 states[1] = 200.0 states[2] = 50.0 states[3] = 10.0 states[4] = 6.0 constants[6] = 0.07 constants[7] = 0.004 constants[8] = 9.1 states[5] = 2.0 constants[9] = 0.015 constants[10] = 0.0015 constants[11] = 4.0 constants[12] = 0.924 constants[13] = 2.5 constants[14] = 5.0 constants[15] = 1.5E-5 states[6] = 0.01 constants[16] = 0.001 constants[17] = 0.7 constants[18] = -2.47 constants[19] = 21.94 constants[20] = 6.41 constants[21] = 1.75 constants[22] = 15.333 constants[23] = -167.21 constants[24] = 452.38 constants[25] = 2.6593 constants[26] = 0.0092 constants[27] = -0.1552 constants[28] = 0.6279 constants[29] = 0.2527 constants[30] = -4.33E-10 constants[31] = 0.0000009 constants[32] = -0.00055 constants[33] = 0.13 return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic rates[4] = (constants[6]*states[0]+constants[7]*states[2])-constants[8]*states[4] rates[5] = (constants[9]*(states[0]+states[1])+constants[10]*states[2])-constants[11]*states[5] rates[6] = constants[16]*states[2]-constants[17]*states[6] algebraic[1] = constants[22]*(power(states[5], 3.00000))+constants[23]*(power(states[5], 2.00000))+constants[24]*states[5]+constants[25] rates[2] = (algebraic[1]+constants[12]*states[2]*(1.00000-(constants[2]*(states[0]+states[1])+constants[3]*states[2]+constants[4]*states[3])))-constants[13]*states[2] algebraic[3] = -(0.197000*log(states[6], 10))+0.440700 algebraic[0] = constants[18]*(power(states[4], 3.00000))+constants[19]*(power(states[4], 2.00000))+constants[20]*states[4]+constants[21] rates[0] = (algebraic[3]*algebraic[0]+constants[0]*constants[1]*states[0]*(1.00000-(constants[2]*(states[0]+states[1])+constants[3]*states[2]+constants[4]*states[3])))-constants[5]*states[0] rates[1] = ((1.00000-algebraic[3])*algebraic[0]+constants[0]*constants[1]*states[1]*(1.00000-(constants[2]*(states[0]+states[1])+constants[3]*states[2]+constants[4]*states[3])))-constants[5]*states[1] algebraic[2] = constants[26]*(power(states[4], 3.00000))+constants[27]*(power(states[4], 2.00000))+constants[28]*states[4]+constants[29] algebraic[4] = constants[30]*(power(states[3], 3.00000))+constants[31]*(power(states[3], 2.00000))+constants[32]*states[3]+constants[33] rates[3] = constants[14]*states[2]*algebraic[2]*algebraic[4]-constants[15]*states[2]*states[3] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[1] = constants[22]*(power(states[5], 3.00000))+constants[23]*(power(states[5], 2.00000))+constants[24]*states[5]+constants[25] algebraic[3] = -(0.197000*log(states[6], 10))+0.440700 algebraic[0] = constants[18]*(power(states[4], 3.00000))+constants[19]*(power(states[4], 2.00000))+constants[20]*states[4]+constants[21] algebraic[2] = constants[26]*(power(states[4], 3.00000))+constants[27]*(power(states[4], 2.00000))+constants[28]*states[4]+constants[29] algebraic[4] = constants[30]*(power(states[3], 3.00000))+constants[31]*(power(states[3], 2.00000))+constants[32]*states[3]+constants[33] return algebraic def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)