function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction() % This is the "main function". In Matlab, things work best if you rename this function to match the filename. [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel(); end function [algebraicVariableCount] = getAlgebraicVariableCount() % Used later when setting a global variable with the number of algebraic variables. % Note: This is not the "main method". algebraicVariableCount =9; end % There are a total of 1 entries in each of the rate and state variable arrays. % There are a total of 29 entries in the constant variable array. % function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel() % Create ALGEBRAIC of correct size global algebraicVariableCount; algebraicVariableCount = getAlgebraicVariableCount(); % Initialise constants and state variables [INIT_STATES, CONSTANTS] = initConsts; % Set timespan to solve over tspan = [0, 10]; % Set numerical accuracy options for ODE solver options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1); % Solve model with ODE solver [VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options); % Compute algebraic variables [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS); ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI); % Plot state variables against variable of integration [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends(); figure(); plot(VOI, STATES); xlabel(LEGEND_VOI); l = legend(LEGEND_STATES); set(l,'Interpreter','none'); end function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends() LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = ''; LEGEND_VOI = strpad('time in component environment (second)'); LEGEND_ALGEBRAIC(:,9) = strpad('F_CE in component F_CE (newton)'); LEGEND_ALGEBRAIC(:,1) = strpad('f_L_CE in component f_L_CE (newton)'); LEGEND_ALGEBRAIC(:,6) = strpad('g_V_CE in component g_V_CE (dimensionless)'); LEGEND_CONSTANTS(:,1) = strpad('a in component user_defined_constants (dimensionless)'); LEGEND_CONSTANTS(:,2) = strpad('F_min in component f_L_CE (newton)'); LEGEND_CONSTANTS(:,3) = strpad('F_max in component user_defined_constants (newton)'); LEGEND_STATES(:,1) = strpad('L_CE in component L_CE (metre)'); LEGEND_CONSTANTS(:,4) = strpad('L_CE_opt in component user_defined_constants (metre)'); LEGEND_CONSTANTS(:,5) = strpad('W in component f_L_CE (dimensionless)'); LEGEND_CONSTANTS(:,29) = strpad('lambda_a in component lambda_a (second_per_metre)'); LEGEND_CONSTANTS(:,6) = strpad('V_max in component g_V_CE (metre_per_second)'); LEGEND_ALGEBRAIC(:,7) = strpad('V_CE in component V_CE (dimensionless)'); LEGEND_CONSTANTS(:,7) = strpad('A in component g_V_CE (dimensionless)'); LEGEND_CONSTANTS(:,8) = strpad('g_max in component g_V_CE (dimensionless)'); LEGEND_CONSTANTS(:,25) = strpad('d1 in component d1 (dimensionless)'); LEGEND_CONSTANTS(:,27) = strpad('d2 in component d2 (dimensionless)'); LEGEND_CONSTANTS(:,28) = strpad('d3 in component d3 (dimensionless)'); LEGEND_CONSTANTS(:,9) = strpad('gamma in component g_V_CE (dimensionless)'); LEGEND_CONSTANTS(:,10) = strpad('V_max in component d1 (metre_per_second)'); LEGEND_CONSTANTS(:,11) = strpad('A in component d1 (dimensionless)'); LEGEND_CONSTANTS(:,12) = strpad('g_max in component d1 (dimensionless)'); LEGEND_CONSTANTS(:,13) = strpad('S in component d1 (metre_per_second)'); LEGEND_CONSTANTS(:,14) = strpad('S in component d2 (metre_per_second)'); LEGEND_CONSTANTS(:,15) = strpad('A in component d2 (dimensionless)'); LEGEND_CONSTANTS(:,16) = strpad('V_max in component d2 (metre_per_second)'); LEGEND_CONSTANTS(:,17) = strpad('gamma in component d2 (dimensionless)'); LEGEND_CONSTANTS(:,18) = strpad('g_max in component d3 (dimensionless)'); LEGEND_CONSTANTS(:,19) = strpad('gamma in component d3 (dimensionless)'); LEGEND_ALGEBRAIC(:,5) = strpad('F_SEE in component F_SEE (newton)'); LEGEND_CONSTANTS(:,20) = strpad('k_SEE in component F_SEE (newton_per_metre2)'); LEGEND_ALGEBRAIC(:,4) = strpad('L_SEE in component L_SEE (metre)'); LEGEND_CONSTANTS(:,21) = strpad('L_slack in component F_SEE (metre)'); LEGEND_ALGEBRAIC(:,2) = strpad('F_PEE in component F_PEE (newton)'); LEGEND_CONSTANTS(:,26) = strpad('k_PEE in component k_PEE (newton_per_metre2)'); LEGEND_CONSTANTS(:,22) = strpad('L_slack in component F_PEE (metre)'); LEGEND_CONSTANTS(:,23) = strpad('W in component k_PEE (dimensionless)'); LEGEND_CONSTANTS(:,24) = strpad('L_CE_opt in component k_PEE (metre)'); LEGEND_ALGEBRAIC(:,3) = strpad('L_m in component L_m (metre)'); LEGEND_ALGEBRAIC(:,8) = strpad('F_m in component F_m (newton)'); LEGEND_RATES(:,1) = strpad('d/dt L_CE in component L_CE (metre)'); LEGEND_STATES = LEGEND_STATES'; LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC'; LEGEND_RATES = LEGEND_RATES'; LEGEND_CONSTANTS = LEGEND_CONSTANTS'; end function [STATES, CONSTANTS] = initConsts() VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = []; CONSTANTS(:,1) = 0.8; CONSTANTS(:,2) = 10; CONSTANTS(:,3) = 7000; STATES(:,1) = 0.038; CONSTANTS(:,4) = 0.093; CONSTANTS(:,5) = 0.63; CONSTANTS(:,6) = 0.93; CONSTANTS(:,7) = 0.25; CONSTANTS(:,8) = 1.5; CONSTANTS(:,9) = 5.67; CONSTANTS(:,10) = 0.93; CONSTANTS(:,11) = 0.25; CONSTANTS(:,12) = 1.5; CONSTANTS(:,13) = 2; CONSTANTS(:,14) = 2; CONSTANTS(:,15) = 0.25; CONSTANTS(:,16) = 0.93; CONSTANTS(:,17) = 5.67; CONSTANTS(:,18) = 1.5; CONSTANTS(:,19) = 5.67; CONSTANTS(:,20) = 1000000; CONSTANTS(:,21) = 0.0025; CONSTANTS(:,22) = 0.0025; CONSTANTS(:,23) = 0.63; CONSTANTS(:,24) = 0.01; CONSTANTS(:,25) = ( CONSTANTS(:,10).*CONSTANTS(:,11).*(CONSTANTS(:,12) - 1.00000))./( CONSTANTS(:,13).*(CONSTANTS(:,11)+1.00000)); CONSTANTS(:,26) = CONSTANTS(:,3)./power( CONSTANTS(:,23).*CONSTANTS(:,24), 2.00000); CONSTANTS(:,27) = ( CONSTANTS(:,14).*(CONSTANTS(:,15)+1.00000))./( CONSTANTS(:,16).*CONSTANTS(:,15).*power(CONSTANTS(:,17)+1.00000, 2.00000)); CONSTANTS(:,28) = ( (CONSTANTS(:,18) - 1.00000).*power(CONSTANTS(:,19), 2.00000))./power(CONSTANTS(:,19)+1.00000, 2.00000)+1.00000; CONSTANTS(:,29) = 1.00000.*((1.00000 - exp( - 3.82000.*CONSTANTS(:,1)))+ CONSTANTS(:,1).*exp( - 3.82000)); if (isempty(STATES)), warning('Initial values for states not set');, end end function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS) global algebraicVariableCount; statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; ALGEBRAIC = zeros(1, algebraicVariableCount); utilOnes = 1; else statesRowCount = statesSize(1); ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount); RATES = zeros(statesRowCount, statesColumnCount); utilOnes = ones(statesRowCount, 1); end ALGEBRAIC(:,1) = ( CONSTANTS(:,3).*( 1.00000.*(1.00000 - STATES(:,1)) - power(CONSTANTS(:,4), 2.00000)))./( power(CONSTANTS(:,5), 2.00000).*power(CONSTANTS(:,4), 2.00000)); ALGEBRAIC(:,3) = piecewise({VOI<=1.00000, 0.0380000 , VOI>1.00000&VOI<2.00000, 0.0380000+ 0.00200000.*(VOI - 1.00000) }, 0.0400000); ALGEBRAIC(:,4) = ALGEBRAIC(:,3) - STATES(:,1); ALGEBRAIC(:,5) = piecewise({ALGEBRAIC(:,4)<=CONSTANTS(:,21), 0.00000 }, CONSTANTS(:,20).*power(ALGEBRAIC(:,4) - CONSTANTS(:,21), 2.00000)); ALGEBRAIC(:,2) = piecewise({STATES(:,1)<=CONSTANTS(:,22), 0.00000 }, CONSTANTS(:,26).*power(STATES(:,1) - CONSTANTS(:,22), 2.00000)); [CONSTANTS, STATES, ALGEBRAIC] = rootfind_0(VOI, CONSTANTS, STATES, ALGEBRAIC); RATES(:,1) = 1.00000.*ALGEBRAIC(:,7); RATES = RATES'; end % Calculate algebraic variables function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI) statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; utilOnes = 1; else statesRowCount = statesSize(1); utilOnes = ones(statesRowCount, 1); end ALGEBRAIC(:,1) = ( CONSTANTS(:,3).*( 1.00000.*(1.00000 - STATES(:,1)) - power(CONSTANTS(:,4), 2.00000)))./( power(CONSTANTS(:,5), 2.00000).*power(CONSTANTS(:,4), 2.00000)); ALGEBRAIC(:,3) = piecewise({VOI<=1.00000, 0.0380000 , VOI>1.00000&VOI<2.00000, 0.0380000+ 0.00200000.*(VOI - 1.00000) }, 0.0400000); ALGEBRAIC(:,4) = ALGEBRAIC(:,3) - STATES(:,1); ALGEBRAIC(:,5) = piecewise({ALGEBRAIC(:,4)<=CONSTANTS(:,21), 0.00000 }, CONSTANTS(:,20).*power(ALGEBRAIC(:,4) - CONSTANTS(:,21), 2.00000)); ALGEBRAIC(:,2) = piecewise({STATES(:,1)<=CONSTANTS(:,22), 0.00000 }, CONSTANTS(:,26).*power(STATES(:,1) - CONSTANTS(:,22), 2.00000)); ALGEBRAIC(:,8) = ALGEBRAIC(:,5); ALGEBRAIC(:,9) = ALGEBRAIC(:,1).*ALGEBRAIC(:,6).*CONSTANTS(:,1); end % Functions required for solving differential algebraic equation function [CONSTANTS, STATES, ALGEBRAIC] = rootfind_0(VOI, CONSTANTS_IN, STATES_IN, ALGEBRAIC_IN) ALGEBRAIC = ALGEBRAIC_IN; CONSTANTS = CONSTANTS_IN; STATES = STATES_IN; global initialGuess_0; if (length(initialGuess_0) ~= 2), initialGuess_0 = [0.1,0.1];, end options = optimset('Display', 'off', 'TolX', 1E-6); if length(VOI) == 1 residualfn = @(algebraicCandidate)residualSN_0(algebraicCandidate, ALGEBRAIC, VOI, CONSTANTS, STATES); soln = fsolve(residualfn, initialGuess_0, options); initialGuess_0 = soln; ALGEBRAIC(:,6) = soln(1); ALGEBRAIC(:,7) = soln(2); else SET_ALGEBRAIC(:,6) = logical(1); SET_ALGEBRAIC(:,7) = logical(1); for i=1:length(VOI) residualfn = @(algebraicCandidate)residualSN_0(algebraicCandidate, ALGEBRAIC(i,:), VOI(i), CONSTANTS, STATES(i,:)); soln = fsolve(residualfn, initialGuess_0, options); initialGuess_0 = soln; TEMP_ALGEBRAIC(:,6) = soln(1); TEMP_ALGEBRAIC(:,7) = soln(2); ALGEBRAIC(i,SET_ALGEBRAIC) = TEMP_ALGEBRAIC(SET_ALGEBRAIC); end end end function resid = residualSN_0(algebraicCandidate, ALGEBRAIC, VOI, CONSTANTS, STATES) ALGEBRAIC(:,6) = algebraicCandidate(1); ALGEBRAIC(:,7) = algebraicCandidate(2); resid(1) = ALGEBRAIC(:,6) - piecewise({ALGEBRAIC(:,7)<=0.00000, ( CONSTANTS(:,29).*CONSTANTS(:,6)+ALGEBRAIC(:,7))./( CONSTANTS(:,29).*CONSTANTS(:,6) - ALGEBRAIC(:,7)./CONSTANTS(:,7)) , 0.00000 CONSTANTS(:,9).*CONSTANTS(:,25), CONSTANTS(:,28)+ CONSTANTS(:,27).*ALGEBRAIC(:,7) }, NaN); resid(2) = ALGEBRAIC(:,7) - 1.00000.*(( (1.00000./ALGEBRAIC(:,6)).*( ALGEBRAIC(:,5).*(ALGEBRAIC(:,3) - STATES(:,1)) - ALGEBRAIC(:,2).*STATES(:,1)))./( CONSTANTS(:,1).*ALGEBRAIC(:,1))); end % Compute result of a piecewise function function x = piecewise(cases, default) set = [0]; for i = 1:2:length(cases) if (length(cases{i+1}) == 1) x(cases{i} & ~set,:) = cases{i+1}; else x(cases{i} & ~set,:) = cases{i+1}(cases{i} & ~set); end set = set | cases{i}; if(set), break, end end if (length(default) == 1) x(~set,:) = default; else x(~set,:) = default(~set); end end % Pad out or shorten strings to a set length function strout = strpad(strin) req_length = 160; insize = size(strin,2); if insize > req_length strout = strin(1:req_length); else strout = [strin, blanks(req_length - insize)]; end end