2008-00-00 00:00
pulmonary fluid dynamics
organ systems
physiology
Guyton
cardiovascular circulation
Pulmonary Fluid Dynamics
Description of Guyton pulmonary fluid dynamics module
500
2008-00-00 00:00
Pulmonary Fluid Dynamics
This is the CellML 1.1 "parent" file to test the Pulmonary Fluid Dynamics Model.
PD15, PD15A, and PD15B:
The rate of change of the total quantity of protein in the pulmonary interstitium (PPD)
is equal to the rate of influx of protein into the interstitium as a result of protein
leakage through the pulmonary capillary membrane (PPN) minus the rate of return of protein
to the circulation from the interstitium by way of the lymphatics (PPO). Blocks 15A and
15B are computational blocks for the purpose of preventing overshoot of an iteration and
for preventing oscillation. The factor (Z) is a damping factor that is used widely
throughout the model.
NB: - Damping in PF15A has been removed so that PPD = PPZ.
- PD15B has been rearranged so that "if" statement is dependent on PPR which may alter
the PPD output. (PPD IMPORTED INTO CP33 - Capillary Dynamics! CHECK THIS!!!).
pulmonary fluid dynamics
Guyton
organ systems
physiology
cardiovascular circulation
keyword
This is a highly simplified analysis of pulmonary fluid dynamics. In general, the gel
portion of the pulmonary fluid is ignored, so that the pulmonary fluid volume (VPF) is
in reality an approximation of the amount of fluid that is relatively freely mobile.
Though this fluid is called "interstitial fluid," it includes fluid in the respiratory
passages. Likewise, the pressure-volume curve of the pulmonary interstitium is highly
simplified, as well as the control of lymph flow. Nevertheless, for many purposes, this
simplified analysis serves quite well.
PD5A, PD5B, and PD5C:
The rate of change of the fluid volume in the lungs (DFP) is equal to the rate
of filtration of fluid out of the pulmonary capillary membranes (PFI), minus the
rate of return of fluid to the circulation from the pulmonary interstitium by way
of the pulmonary lymphatics (PLF). Blocks 5B and 5C are computational blocks for
preventing oscillation and for preventing overshoot of the iteration. The damping
factor (Z) is used at multiple points in the model.
NB: - Damping in PD5B has been removed so that DFP = DFZ.
- PD5C has been rearranged so that "if" statement is dependent on VPF which may alter
the DFP output. (DFP IMPORTED INTO CP10 - Capillary Dynamics! CHECK THIS!!!).
Guyton
Encapsulation grouping component containing all the components in the Pulmonary Fluid Dynamics Model.
The inputs and outputs of the Pulmonary Fluid Dynamics Model must be passed by this component.
Description of Guyton pulmonary fluid dynamics module
PD10 and PD11:
Curve-fitting blocks to calculate the pulmonary interstitial fluid pressure (PPI)
from the pulmonary interstitial fluid volume (VPF).
Guyton
PD14:
Rate of return of protein from the pulmonary interstitium to the circulation in
the pulmonary lymph (PPO) is equal to the concentration of protein in the
pulmonary interstitial fluid (CPN) times the rate of pulmonary lymph flow (PLF).
1000
500
1000
PD5A, PD5B, and PD5C:
The rate of change of the fluid volume in the lungs (DFP) is equal to the rate
of filtration of fluid out of the pulmonary capillary membranes (PFI), minus the
rate of return of fluid to the circulation from the pulmonary interstitium by way
of the pulmonary lymphatics (PLF). Blocks 5B and 5C are computational blocks for
preventing oscillation and for preventing overshoot of the iteration. The damping
factor (Z) is used at multiple points in the model.
PD6:
Calculation of the volume of free fluid in the pulmonary interstitium (and
respiratory passageways) (VPF) by integrating the rate of change of the free fluid
in the lungs (DFP).
NB: - Damping in PD5B has been removed so that DFP = DFZ.
- PD5C has been rearranged so that "if" statement is dependent on VPF which may alter
the DFP output. (DFP IMPORTED INTO CP10 - Capillary Dynamics! CHECK THIS!!!).
PD15, PD15A, and PD15B:
The rate of change of the total quantity of protein in the pulmonary interstitium (PPD)
is equal to the rate of influx of protein into the interstitium as a result of protein
leakage through the pulmonary capillary membrane (PPN) minus the rate of return of protein
to the circulation from the interstitium by way of the lymphatics (PPO). Blocks 15A and
15B are computational blocks for the purpose of preventing overshoot of an iteration and
for preventing oscillation. The factor (Z) is a damping factor that is used widely
throughout the model.
NB: - Damping in PF15A has been removed so that PPD = PPZ.
- PD15B has been rearranged so that "if" statement is dependent on PPR which may alter
the PPD output. (PPD IMPORTED INTO CP33 - Capillary Dynamics! CHECK THIS!!!).
PD6:
Calculation of the volume of free fluid in the pulmonary interstitium (and
respiratory passageways) (VPF) by integrating the rate of change of the free fluid
in the lungs (DFP).
keyword
PD5A, PD5B, and PD5C:
The rate of change of the fluid volume in the lungs (DFP) is equal to the rate
of filtration of fluid out of the pulmonary capillary membranes (PFI), minus the
rate of return of fluid to the circulation from the pulmonary interstitium by way
of the pulmonary lymphatics (PLF). Blocks 5B and 5C are computational blocks for
preventing oscillation and for preventing overshoot of the iteration. The damping
factor (Z) is used at multiple points in the model.
NB: - Damping in PD5B has been removed so that DFP = DFZ.
- PD5C has been rearranged so that "if" statement is dependent on VPF which may alter
the DFP output. (DFP IMPORTED INTO CP10 - Capillary Dynamics! CHECK THIS!!!).
PD12 and PD13:
Curve-fitting blocks to calculate the rate of pulmonary lymph flow (PLF) from the
pulmonary interstitial fluid pressure (PPI).
PD10 and PD11:
Curve-fitting blocks to calculate the pulmonary interstitial fluid pressure (PPI)
from the pulmonary interstitial fluid volume (VPF).
Component to set all input values to 1.0 or a prescribed value.
PD5A, PD5B, and PD5C:
The rate of change of the fluid volume in the lungs (DFP) is equal to the rate
of filtration of fluid out of the pulmonary capillary membranes (PFI), minus the
rate of return of fluid to the circulation from the pulmonary interstitium by way
of the pulmonary lymphatics (PLF). Blocks 5B and 5C are computational blocks for
preventing oscillation and for preventing overshoot of the iteration. The damping
factor (Z) is used at multiple points in the model.
NB: - Damping in PD5B has been removed so that DFP = DFZ.
- PD5C has been rearranged so that "if" statement is dependent on VPF which may alter
the DFP output. (DFP IMPORTED INTO CP10 - Capillary Dynamics! CHECK THIS!!!).
PD15, PD15A, and PD15B:
The rate of change of the total quantity of protein in the pulmonary interstitium (PPD)
is equal to the rate of influx of protein into the interstitium as a result of protein
leakage through the pulmonary capillary membrane (PPN) minus the rate of return of protein
to the circulation from the interstitium by way of the lymphatics (PPO). Blocks 15A and
15B are computational blocks for the purpose of preventing overshoot of an iteration and
for preventing oscillation. The factor (Z) is a damping factor that is used widely
throughout the model.
NB: - Damping in PF15A has been removed so that PPD = PPZ.
- PD15B has been rearranged so that "if" statement is dependent on PPR which may alter
the PPD output. (PPD IMPORTED INTO CP33 - Capillary Dynamics! CHECK THIS!!!).
PD1, PD2, PD2A, and PD3:
Calculation of pulmonary capillary pressure (PCP) from the pulmonary arterial
pressure (PPA) and left atrial pressure (PLA), and also from the vascular
resistances in the arterial (RPA) and venous (RPV) sides of the pulmonary
capillaries. The arterial resistance is set to be 1.6 times the venous
resistance.
PD18:
The colloid osmotic pressure of the pulmonary interstitial fluid (POS) is equal to
the concentration of protein in the pulmonary interstitium (CPN) times a constant.
PD17:
The concentration of protein in the pulmonary interstitium (CPN) is equal to the total
quantity of protein in the interstitium (PPR) divided by the volume of interstitial
fluid (VPF).
PD18:
The colloid osmotic pressure of the pulmonary interstitial fluid (POS) is equal to
the concentration of protein in the pulmonary interstitium (CPN) times a constant.
PD15, PD15A, and PD15B:
The rate of change of the total quantity of protein in the pulmonary interstitium (PPD)
is equal to the rate of influx of protein into the interstitium as a result of protein
leakage through the pulmonary capillary membrane (PPN) minus the rate of return of protein
to the circulation from the interstitium by way of the lymphatics (PPO). Blocks 15A and
15B are computational blocks for the purpose of preventing overshoot of an iteration and
for preventing oscillation. The factor (Z) is a damping factor that is used widely
throughout the model.
NB: - Damping in PF15A has been removed so that PPD = PPZ.
- PD15B has been rearranged so that "if" statement is dependent on PPR which may alter
the PPD output. (PPD IMPORTED INTO CP33 - Capillary Dynamics! CHECK THIS!!!).
PD16:
The total quantity of protein in the pulmonary interstital free fluid (PPR) is calculated
by integrating with respect to time the rate of change of protein in the pulmonary
interstitium (PPD).
PD17:
The concentration of protein in the pulmonary interstitium (CPN) is equal to the total
quantity of protein in the interstitium (PPR) divided by the volume of interstitial
fluid (VPF).
PD4:
The pressure gradient across the pulmonary capillary membrane (PGRPCM) is equal
to the pulmonary capillary pressure (PCP), plus the colloid osmotic pressure of
the pulmonary interstitial fluid (POS), minus the pulmonary interstitial fluid
pressure (PPI), minus the plasma colloid osmotic pressure (PPC).
PD5:
Rate of filtration of fluid outward through the pulmonary capillary membranes
into the interstitium (PFI) is equal to the pressure gradient across the
pulmonary capillary membrane (PGRPCM) times the pulmonary capillary filtration
coefficient (CPF).
PD16:
The total quantity of protein in the pulmonary interstital free fluid (PPR) is calculated
by integrating with respect to time the rate of change of protein in the pulmonary
interstitium (PPD).
PD12 and PD13:
Curve-fitting blocks to calculate the rate of pulmonary lymph flow (PLF) from the
pulmonary interstitial fluid pressure (PPI).
PD14:
Rate of return of protein from the pulmonary interstitium to the circulation in
the pulmonary lymph (PPO) is equal to the concentration of protein in the
pulmonary interstitial fluid (CPN) times the rate of pulmonary lymph flow (PLF).
PD19 and PD20:
The rate of leakage of protein through the pulmonary capillary membrane into the pulmonary
interstitium (PPN) is equal to the concentration of protein in the plasma (CPP), minus the
concentration of protein in the pulmonary interstitium (CPN) times a constant.
PD1, PD2, PD2A, and PD3:
Calculation of pulmonary capillary pressure (PCP) from the pulmonary arterial
pressure (PPA) and left atrial pressure (PLA), and also from the vascular
resistances in the arterial (RPA) and venous (RPV) sides of the pulmonary
capillaries. The arterial resistance is set to be 1.6 times the venous
resistance.
PD19 and PD20:
The rate of leakage of protein through the pulmonary capillary membrane into the pulmonary
interstitium (PPN) is equal to the concentration of protein in the plasma (CPP), minus the
concentration of protein in the pulmonary interstitium (CPN) times a constant.
PD4:
The pressure gradient across the pulmonary capillary membrane (PGRPCM) is equal
to the pulmonary capillary pressure (PCP), plus the colloid osmotic pressure of
the pulmonary interstitial fluid (POS), minus the pulmonary interstitial fluid
pressure (PPI), minus the plasma colloid osmotic pressure (PPC).
PD5:
Rate of filtration of fluid outward through the pulmonary capillary membranes
into the interstitium (PFI) is equal to the pressure gradient across the
pulmonary capillary membrane (PGRPCM) times the pulmonary capillary filtration
coefficient (CPF).