# Size of variable arrays: sizeAlgebraic = 8 sizeStates = 1 sizeConstants = 12 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (second)" legend_algebraic[0] = "F_isom in component contraction (newton)" legend_constants[11] = "c in component contraction (newton)" legend_states[0] = "L_ce in component contraction (metre)" legend_constants[0] = "L_ce_opt in component contraction (metre)" legend_algebraic[1] = "L in component contraction (metre)" legend_constants[1] = "width in component contraction (metre)" legend_constants[2] = "Factor in component contraction (per_second)" legend_constants[3] = "A_REL in component contraction (newton)" legend_constants[4] = "B_REL in component contraction (dimensionless)" legend_algebraic[7] = "v_ce in component contraction (metre_per_second)" legend_algebraic[5] = "F in component contraction (newton)" legend_constants[5] = "F_max in component contraction (newton)" legend_constants[6] = "q in component contraction (dimensionless)" legend_algebraic[4] = "c1 in component contraction (per_second)" legend_algebraic[2] = "c2 in component contraction (newton)" legend_algebraic[6] = "c3 in component contraction (per_newton_second)" legend_constants[7] = "slope in component contraction (newton)" legend_constants[8] = "F_asympt in component contraction (dimensionless)" legend_algebraic[3] = "L_see in component contraction (metre)" legend_constants[9] = "L_slack in component contraction (metre)" legend_constants[10] = "alpha in component contraction (newton_per_metre)" legend_rates[0] = "d/dt L_ce in component contraction (metre)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; states[0] = 0.05 constants[0] = 0.055 constants[1] = 0.888 constants[2] = 1 constants[3] = 0.41 constants[4] = 5.2 constants[5] = 3277.4 constants[6] = 1 constants[7] = 2 constants[8] = 1.5 constants[9] = 0.42 constants[10] = 1449.027 constants[11] = -1.00000/(power(constants[1], 2.00000)) return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic algebraic[0] = (constants[11]*(power(states[0]/constants[0], 2.00000))-(2.00000*constants[11]*states[0])/constants[0])+constants[11]+1.00000 algebraic[1] = custom_piecewise([less_equal(voi , 1.00000), 1.00000 , greater(voi , 1.00000) & less(voi , 5.00000), 0.920000 , True, 0.900000]) algebraic[3] = algebraic[1]-states[0] algebraic[5] = constants[10]*(algebraic[3]-constants[9]) algebraic[7] = -constants[2]*states[0]*(((algebraic[0]+constants[3])*constants[4])/(1.00000*(algebraic[5]/(constants[5]*constants[6]))+constants[3])-constants[4]) rates[0] = algebraic[7] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[0] = (constants[11]*(power(states[0]/constants[0], 2.00000))-(2.00000*constants[11]*states[0])/constants[0])+constants[11]+1.00000 algebraic[1] = custom_piecewise([less_equal(voi , 1.00000), 1.00000 , greater(voi , 1.00000) & less(voi , 5.00000), 0.920000 , True, 0.900000]) algebraic[3] = algebraic[1]-states[0] algebraic[5] = constants[10]*(algebraic[3]-constants[9]) algebraic[7] = -constants[2]*states[0]*(((algebraic[0]+constants[3])*constants[4])/(1.00000*(algebraic[5]/(constants[5]*constants[6]))+constants[3])-constants[4]) algebraic[2] = algebraic[0]*constants[8] algebraic[4] = (constants[2]*constants[4]*(power(algebraic[0]+algebraic[2], 2.00000)))/((algebraic[0]+constants[3])*constants[7]) algebraic[6] = algebraic[4]/(algebraic[0]+algebraic[2]) return algebraic def custom_piecewise(cases): """Compute result of a piecewise function""" return select(cases[0::2],cases[1::2]) def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)