Model Mathematics

Component: AP1

$ddtimeAP1=v_sap1⁢GFK_agf+GF-k_dap1⁢AP1⁢eps$

Component: pRB

$ddtimepRB=v_sprb-k_pc1⁢pRB⁢E2F+k_pc2⁢pRBc1-V_1⁢pRBK_1+pRB⁢Md+Mdp27+V_2⁢pRBpK_2+pRBp-k_dprb⁢pRB⁢eps$

Component: pRBc1

$ddtimepRBc1=k_pc1⁢pRB⁢E2F-k_pc2⁢pRBc1⁢eps$

Component: pRBp

$ddtimepRBp=V_1⁢pRBK_1+pRB⁢Md+Mdp27-V_2⁢pRBpK_2+pRBp-V_3⁢pRBpK_3+pRBp⁢Me+V_4⁢pRBppK_4+pRBpp-k_pc3⁢pRBp⁢E2F+k_pc4⁢pRBc2-k_dpRBp⁢pRBp⁢eps$

Component: pRBc2

$ddtimepRBc2=k_pc3⁢pRBp⁢E2F-k_pc4⁢pRBc2⁢eps$

Component: pRBpp

$ddtimepRBpp=V_3⁢pRBpK_3+pRBp⁢Me-V_4⁢pRBppK_4+pRBpp-k_dpRBpp⁢pRBpp⁢eps$

Component: E2F

$ddtimeE2F=v_se2f-k_pc1⁢pRB⁢E2F+k_pc2⁢pRBc1-k_pc3⁢pRBp⁢E2F+k_pc4⁢pRBc2-V_1e2f⁢Ma⁢E2FK_1e2f+E2F+V_2e2f⁢E2FpK_2e2f+E2Fp-k_de2f⁢E2F⁢eps$

Component: E2Fp

$ddtimeE2Fp=V_1e2f⁢Ma⁢E2FK_1e2f+E2F-V_2e2f⁢E2FpK_2e2f+E2Fp-k_de2fp⁢E2Fp⁢eps$

Component: Cd

$ddtimeCd=k_cd1⁢AP1+k_cd2⁢E2F⁢K_i7K_i7+pRB⁢K_i8K_i8+pRBp-k_com1⁢Cd⁢Cdk4_tot-Mdi+Md+Mdp27+k_decom1⁢Mdi-V_dd⁢CdK_dd+Cd-k_ddd⁢Cd⁢eps$

Component: Mdi

$ddtimeMdi=k_com1⁢Cd⁢Cdk4_tot-Mdi+Md+Mdp27-k_decom1⁢Mdi+V_m2d⁢MdK_2d+Md-V_m1d⁢MdiK_1d+Mdi⁢eps$

Component: Md

$ddtimeMd=V_m1d⁢MdiK_1d+Mdi-V_m2d⁢MdK_2d+Md-k_c1⁢Md⁢p27+k_c2⁢Mdp27⁢eps$

Component: Mdp27

$ddtimeMdp27=k_c1⁢Md⁢p27-k_c2⁢Mdp27⁢eps$

Component: Ce

$ddtimeCe=k_ce⁢E2F⁢K_i9K_i9+pRB⁢K_i10K_i10+pRBp-k_com2⁢Ce⁢Cdk2_tot-Mei+Me+Mep27+Mai+Ma+Map27+k_decom2⁢Mei-V_de⁢Skp2K_dceskp2+Skp2⁢CeK_de+Ce-k_dde⁢Ce⁢eps$

Component: Mei

$ddtimeMei=k_com2⁢Ce⁢Cdk2_tot-Mei+Me+Mep27+Mai+Ma+Map27-k_decom2⁢Mei+V_m2e⁢Wee1+i_b1⁢MeK_2e+Me-V_m1e⁢Pe⁢MeiK_1e+Mei⁢eps$

Component: Me

$ddtimeMe=V_m1e⁢Pe⁢MeiK_1e+Mei-V_m2e⁢Wee1+i_b1⁢MeK_2e+Me-k_c3⁢Me⁢p27+k_c4⁢Mep27⁢eps$

Component: Skp2

$ddtimeSkp2=v_sskp2-V_dskp2⁢Skp2K_dskp2+Skp2⁢Cdh1aK_cdh1+Cdh1a-k_ddskp2⁢Skp2⁢eps$

Component: Mep27

$ddtimeMep27=k_c3⁢Me⁢p27-k_c4⁢Mep27⁢eps$

Component: Pei

$ddtimePei=v_spei+V_6e⁢x_e1+x_e2⁢Chk1⁢PeK_6e+Pe-V_m5e⁢Me+a_e⁢PeiK_5e+Pei-k_dpei⁢Pei⁢eps$

Component: Pe

$ddtimePe=V_m5e⁢Me+a_e⁢PeiK_5e+Pei-V_6e⁢x_e1+x_e2⁢Chk1⁢PeK_6e+Pe-k_dpe⁢Pe⁢eps$

Component: Ca

$ddtimeCa=k_ca⁢E2F⁢K_i11K_i11+pRB⁢K_i12K_i12+pRBp-k_com3⁢Ca⁢Cdk2_tot-Mei+Me+Mep27+Mai+Ma+Map27+k_decom3⁢Mai-V_da⁢CaK_da+Ca⁢Cdc20aK_acdc20+Cdc20a-k_dda⁢Ca⁢eps$

Component: Mai

$ddtimeMai=k_com3⁢Ca⁢Cdk2_tot-Mei+Me+Mep27+Mai+Ma+Map27-k_decom3⁢Mai+V_m2a⁢Wee1+i_b2⁢MaK_2a+Ma-V_m1a⁢Pa⁢MaiK_1a+Mai⁢eps$

Component: Ma

$ddtimeMa=V_m1a⁢Pa⁢MaiK_1a+Mai-V_m2a⁢Wee1+i_b2⁢MaK_2a+Ma-k_c5⁢Ma⁢p27+k_c6⁢Map27⁢eps$

Component: Map27

$ddtimeMap27=k_c5⁢Ma⁢p27-k_c6⁢Map27⁢eps$

Component: p27

$ddtimep27=v_s1p27+v_s2p27⁢E2F⁢K_i13K_i13+pRB⁢K_i14K_i14+pRBp-k_c1⁢Md⁢p27+k_c2⁢Mdp27-k_c3⁢Me⁢p27+k_c4⁢Mep27-k_c5⁢Ma⁢p27+k_c6⁢Map27-k_c7⁢Mb⁢p27+k_c8⁢Mbp27-V_1p27⁢Me⁢p27K_1p27+p27+V_2p27⁢p27pK_2p27+p27p-k_ddp27⁢p27⁢eps$

Component: p27p

$ddtimep27p=V_1p27⁢Me⁢p27K_1p27+p27-V_2p27⁢p27pK_2p27+p27p-V_dp27p⁢Skp2K_dp27skp2+Skp2⁢p27pK_dp27p+p27p-k_ddp27p⁢p27p⁢eps$

Component: Cdh1i

$ddtimeCdh1i=V_2cdh1⁢Cdh1aK_2cdh1+Cdh1a⁢Ma+Mb-V_1cdh1⁢Cdh1iK_1cdh1+Cdh1i-k_dcdh1i⁢Cdh1i⁢eps$

Component: Cdh1a

$ddtimeCdh1a=v_scdh1a+V_1cdh1⁢Cdh1iK_1cdh1+Cdh1i-V_2cdh1⁢Cdh1aK_2cdh1+Cdh1a⁢Ma+Mb-k_dcdh1a⁢Cdh1a⁢eps$

Component: Pai

$ddtimePai=v_spai+V_6a⁢x_a1+x_a2⁢Chk1⁢PaK_6a+Pa-V_m5a⁢Ma+a_a⁢PaiK_5a+Pai-k_dpai⁢Pai⁢eps$

Component: Pa

$ddtimePa=V_m5a⁢Ma+a_a⁢PaiK_5a+Pai-V_6a⁢x_a1+x_a2⁢Chk1⁢PaK_6a+Pa-k_dpa⁢Pa⁢eps$

Component: Cb

$ddtimeCb=v_cb-k_com4⁢Cb⁢Cdk1_tot-Mbi+Mb+Mbp27+k_decom4⁢Mbi-V_db⁢CbK_db+Cb⁢Cdc20aK_dbcdc20+Cdc20a+Cdh1aK_dbcdh1+Cdh1a-k_ddb⁢Cb⁢eps$

Component: Mbi

$ddtimeMbi=k_com4⁢Cb⁢Cdk1_tot-Mbi+Mb+Mbp27-k_decom4⁢Mbi+V_m2b⁢Wee1+i_b3⁢MbK_2b+Mb-V_m1b⁢Pb⁢MbiK_1b+Mbi⁢eps$

Component: Mb

$ddtimeMb=V_m1b⁢Pb⁢MbiK_1b+Mbi-V_m2b⁢Wee1+i_b3⁢MbK_2b+Mb-k_c7⁢Mb⁢p27+k_c8⁢Mbp27⁢eps$

Component: Mbp27

$ddtimeMbp27=k_c7⁢Mb⁢p27-k_c8⁢Mbp27⁢eps$

Component: Cdc20i

$ddtimeCdc20i=v_scdc20i-V_m3b⁢Mb⁢Cdc20iK_3b+Cdc20i+V_m4b⁢Cdc20aK_4b+Cdc20a-k_dcdc20i⁢Cdc20i⁢eps$

Component: Cdc20a

$ddtimeCdc20a=V_m3b⁢Mb⁢Cdc20iK_3b+Cdc20i-V_m4b⁢Cdc20aK_4b+Cdc20a-k_dcdc20a⁢Cdc20a⁢eps$

Component: Pbi

$ddtimePbi=v_spbi+V_6b⁢x_b1+x_b2⁢Chk1⁢PbK_6b+Pb-V_m5b⁢Mb+a_b⁢PbiK_5b+Pbi-k_dpbi⁢Pbi⁢eps$

Component: Pb

$ddtimePb=V_m5b⁢Mb+a_b⁢PbiK_5b+Pbi-V_6b⁢x_b1+x_b2⁢Chk1⁢PbK_6b+Pb-k_dpb⁢Pb⁢eps$

Component: Wee1

$ddtimeWee1=v_swee1+k_sw⁢Mw-V_m7b⁢Mb+i_b⁢Wee1K_7b+Wee1+V_m8b⁢Wee1pK_8b+Wee1p-k_dwee1⁢Wee1⁢eps$

Component: Wee1p

$ddtimeWee1p=V_m7b⁢Mb+i_b⁢Wee1K_7b+Wee1-V_m8b⁢Wee1pK_8b+Wee1p-k_dwee1p⁢Wee1p⁢eps$

Component: Cdc45

$ddtimeCdc45=V_1cdc45⁢Me⁢Cdc45_tot-Cdc45K_1cdc45+Cdc45_tot-Cdc45-V_2cdc45⁢Cdc45K_2cdc45+Cdc45-k_spol⁢Pol_tot-Pol⁢Cdc45+k_dpol⁢Pol⁢eps$

Component: Pol

$ddtimePol=k_spol⁢Pol_tot-Pol⁢Cdc45-k_dpol⁢Pol⁢eps$

Component: Primer

$ddtimePrimer=k_sprim⁢Pol-k_dprim⁢Primer-k_aatr⁢ATR_tot-ATR⁢Primer+k_datr⁢ATR⁢eps$

Component: ATR

$ddtimeATR=k_aatr⁢ATR_tot-ATR⁢Primer-k_datr⁢ATR⁢eps$

Component: Chk1

$ddtimeChk1=V_1chk⁢ATR⁢Chk1_tot-Chk1K_1chk+Chk1_tot-Chk1-V_2chk⁢Chk1K_2chk+Chk1⁢eps$

Component: Mw

$ddtimeMw=v_sw⁢BNn_gerardK_iwn_gerard+BNn_gerard-v_dw⁢MwK_dw+Mw$

Component: X

$ddtimeX=V_1x⁢Ma⁢X_tot-XK_1x+X_tot-X-V_2x⁢XK_2x+X⁢eps$

Component: CbA

$ddtimeCbA=v_cb⁢X⁢1-k_com4⁢CbA⁢Cdk1_tot-Mbi+Mb+Mbp27+k_decom4⁢Mbi-V_db⁢CbAK_db+CbA⁢Cdc20aK_dbcdc20+Cdc20a+Cdh1aK_dbcdh1+Cdh1a-k_ddb⁢CbA⁢eps$

Component: MP

$ddtimeMP=vsP⁢BNnKAPn+BNn-vmP⁢MPKmP+MP+kdmp⁢MP$

Component: MC

$ddtimeMC=vsC⁢BNnKACn+BNn-vmC⁢MCKmC+MC+kdmc⁢MC$

Component: MB

$ddtimeMB=vsB⁢KIBmKIBm+RNm-vmB⁢MBKmB+MB+kdmb⁢MB$

Component: MR

$ddtimeMR=vsR⁢BNhKARh+BNh-vmR⁢MRKmR+MR+kdmr⁢MR$

Component: PC

$ddtimePC=ksP⁢MP+V2P⁢PCPKdp+PCP+k4⁢PCC-V1P⁢PCKp+PC+k3⁢PC⁢CC+kdn⁢PC$

Component: CC

$ddtimeCC=ksC⁢MC+V2C⁢CCPKdp+CCP+k4⁢PCC-V1C⁢CCKp+CC+k3⁢PC⁢CC+kdnc⁢CC$

Component: RC

$ddtimeRC=ksR⁢MR+k10⁢RN-k9⁢RC+vdRC⁢RCKd+RC+kdn⁢RC$

Component: PCP

$ddtimePCP=V1P⁢PCKp+PC-V2P⁢PCPKdp+PCP+vdPC⁢PCPKd+PCP+kdn⁢PCP$

Component: CCP

$ddtimeCCP=V1C⁢CCKp+CC-V2C⁢CCPKdp+CCP+vdCC⁢CCPKd+CCP+kdn⁢CCP$

Component: PCC

$ddtimePCC=V2PC⁢PCCPKdp+PCCP+k3⁢PC⁢CC+k2⁢PCN-V1PC⁢PCCKp+PCC+k4⁢PCC+k1⁢PCC+kdn⁢PCC$

Component: PCN

$ddtimePCN=V4PC⁢PCNPKdp+PCNP+k1⁢PCC+k8⁢IN-V3PC⁢PCNKp+PCN+k2⁢PCN+k7⁢BN⁢PCN+kdn⁢PCN$

Component: RN

$ddtimeRN=k9⁢RC-k10⁢RN+vdRN⁢RNKd+RN+kdn⁢RN$

Component: PCCP

$ddtimePCCP=V1PC⁢PCCKp+PCC-V2PC⁢PCCPKdp+PCCP+vdPCC⁢PCCPKd+PCCP+kdn⁢PCCP$

Component: PCNP

$ddtimePCNP=V3PC⁢PCNKp+PCN-V4PC⁢PCNPKdp+PCNP+vdPCN⁢PCNPKd+PCNP+kdn⁢PCNP$

Component: BC

$ddtimeBC=V2B⁢BCPKdp+BCP+k6⁢BN+ksB⁢MB-V1B⁢BCKp+BC+k5⁢BC+kdn⁢BC$

Component: BCP

$ddtimeBCP=V1B⁢BCKp+BC-V2B⁢BCPKdp+BCP+vdBC⁢BCPKd+BCP+kdn⁢BCP$

Component: BN

$ddtimeBN=V4B⁢BNPKdp+BNP+k5⁢BC+k8⁢IN-V3B⁢BNKp+BN+k6⁢BN+k7⁢BN⁢PCN+kdn⁢BN$

Component: BNP

$ddtimeBNP=V3B⁢BNKp+BN-V4B⁢BNPKdp+BNP+vdBN⁢BNPKd+BNP+kdn⁢BNP$

Component: IN

$ddtimeIN=k7⁢BN⁢PCN-k8⁢IN+vdIN⁢INKd+IN+kdn⁢IN$

Component: model_parameters

Source
Derived from workspace Gerard and Goldbeter 2009 at changeset 3b84cd0d62e5.
Collaboration
To begin collaborating on this work, please use your git client and issue this command: