Generated Code
The following is c_ida code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
/* There are a total of 4 entries in the algebraic variable array. There are a total of 3 entries in each of the rate and state variable arrays. There are a total of 15 entries in the constant variable array. */ /* * VOI is time in component environment (min). * STATES[0] is Z in component Ca (uM). * STATES[1] is Y in component Ca (uM). * STATES[2] is X in component Ca (uM). * CONSTANTS[14] is V_in in component V_in (uM_per_min). * ALGEBRAIC[0] is V_2i in component V_2i (uM_per_min). * ALGEBRAIC[1] is V_3i in component V_3i (uM_per_min). * ALGEBRAIC[2] is V_2s in component V_2s (uM_per_min). * ALGEBRAIC[3] is V_3s in component V_3s (uM_per_min). * CONSTANTS[0] is K_f in component Ca (per_min). * CONSTANTS[1] is K in component Ca (per_min). * CONSTANTS[2] is beta in component Ca_flux (dimensionless). * CONSTANTS[3] is v_0 in component V_in (uM_per_min). * CONSTANTS[4] is v_1 in component V_in (uM_per_min). * CONSTANTS[5] is V_M2i in component V_2i (uM_per_min). * CONSTANTS[6] is K_2i in component V_2i (uM). * CONSTANTS[7] is V_M3i in component V_3i (uM_per_min). * CONSTANTS[8] is K_3z in component V_3i (uM). * CONSTANTS[9] is K_3y in component V_3i (uM). * CONSTANTS[10] is V_M2s in component V_2s (uM_per_min). * CONSTANTS[11] is K_2s in component V_2s (uM). * CONSTANTS[12] is V_M3s in component V_3s (uM_per_min). * CONSTANTS[13] is K_3s in component V_3s (uM). * RATES[0] is d/dt Z in component Ca (uM). * RATES[1] is d/dt Y in component Ca (uM). * RATES[2] is d/dt X in component Ca (uM). * There are a total of 0 condition variables. */ void initConsts(double* CONSTANTS, double* RATES, double *STATES) { STATES[0] = 0.0; STATES[1] = 0.0; STATES[2] = 0.5; CONSTANTS[0] = 0.5; CONSTANTS[1] = 1; CONSTANTS[2] = 1; CONSTANTS[3] = 0.015; CONSTANTS[4] = 0.012; CONSTANTS[5] = 3.1; CONSTANTS[6] = 0.005; CONSTANTS[7] = 25; CONSTANTS[8] = 0.022; CONSTANTS[9] = 0.065; CONSTANTS[10] = 1.5; CONSTANTS[11] = 0.0265; CONSTANTS[12] = 0.169; CONSTANTS[13] = 0.1; CONSTANTS[14] = CONSTANTS[3]+ CONSTANTS[4]*CONSTANTS[2]; RATES[0] = 0.1001; RATES[1] = 0.1001; RATES[2] = 0.1001; } void computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { resid[0] = RATES[0] - CONSTANTS[14]+- ALGEBRAIC[0]+ALGEBRAIC[1]+ CONSTANTS[0]*STATES[1]+- ALGEBRAIC[2]+ALGEBRAIC[3]+ CONSTANTS[0]*STATES[2]+- ( CONSTANTS[1]*STATES[0]); resid[1] = RATES[1] - ALGEBRAIC[0]+- ALGEBRAIC[1]+- ( CONSTANTS[0]*STATES[1]); resid[2] = RATES[2] - ALGEBRAIC[2]+- ALGEBRAIC[3]+- ( CONSTANTS[0]*STATES[2]); } void computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { } void computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[0] = CONSTANTS[5]*(pow(STATES[0], 2.00000)/(pow(CONSTANTS[6], 2.00000)+pow(STATES[0], 2.00000))); ALGEBRAIC[1] = CONSTANTS[7]*(pow(STATES[1], 2.00000)/(pow(CONSTANTS[9], 2.00000)+pow(STATES[1], 2.00000)))*(pow(STATES[0], 2.00000)/(pow(CONSTANTS[8], 2.00000)+pow(STATES[0], 2.00000))); ALGEBRAIC[2] = CONSTANTS[10]*(pow(STATES[0], 2.00000)/(pow(CONSTANTS[11], 2.00000)+pow(STATES[0], 2.00000))); ALGEBRAIC[3] = CONSTANTS[2]*CONSTANTS[12]*(pow(STATES[2], 2.00000)/(pow(CONSTANTS[13], 2.00000)+pow(STATES[2], 2.00000))); } void getStateInformation(double* SI) { SI[0] = 1.0; SI[1] = 1.0; SI[2] = 1.0; } void computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { }