Generated Code
The following is python code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
# Size of variable arrays: sizeAlgebraic = 2 sizeStates = 3 sizeConstants = 18 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (min)" legend_states[0] = "Z in component Ca (uM)" legend_states[1] = "Y in component Ca (uM)" legend_constants[17] = "V_in in component V_in (uM_per_min)" legend_algebraic[0] = "V_2 in component V_2 (uM_per_min)" legend_algebraic[1] = "V_3 in component V_3 (uM_per_min)" legend_constants[0] = "K_f in component Ca (per_min)" legend_constants[1] = "K in component Ca (per_min)" legend_constants[2] = "beta in component Ca_flux (dimensionless)" legend_constants[3] = "v_0 in component V_in (uM_per_min)" legend_constants[4] = "v_1 in component V_in (uM_per_min)" legend_constants[5] = "V_M2 in component V_2 (uM_per_min)" legend_constants[6] = "K_2 in component V_2 (uM)" legend_states[2] = "A in component A (uM)" legend_constants[7] = "K_y in component V_3 (uM)" legend_constants[8] = "K_z in component V_3 (uM)" legend_constants[9] = "K_a in component V_3 (uM)" legend_constants[10] = "V_M3 in component V_3 (uM_per_min)" legend_constants[11] = "upsilon_p in component A (uM_per_min)" legend_constants[12] = "upsilon_d in component A (uM_per_min)" legend_constants[13] = "K_p in component A (uM)" legend_constants[14] = "K_d in component A (uM)" legend_constants[15] = "n in component A (dimensionless)" legend_constants[16] = "epsilon in component A (per_min)" legend_rates[0] = "d/dt Z in component Ca (uM)" legend_rates[1] = "d/dt Y in component Ca (uM)" legend_rates[2] = "d/dt A in component A (uM)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; states[0] = 0.1 states[1] = 1.0 constants[0] = 1 constants[1] = 10 constants[2] = 0.5 constants[3] = 2 constants[4] = 1 constants[5] = 6.5 constants[6] = 0.1 states[2] = 0.5 constants[7] = 0.2 constants[8] = 0.3 constants[9] = 0.2 constants[10] = 19.5 constants[11] = 2.5 constants[12] = 80 constants[13] = 1 constants[14] = 0.4 constants[15] = 4 constants[16] = 0.1 constants[17] = constants[3]+constants[4]*constants[2] return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic rates[2] = (constants[2]*constants[11]-constants[12]*((power(states[2], 2.00000))/(power(constants[13], 2.00000)+power(states[2], 2.00000)))*((power(states[0], constants[15]))/(power(constants[14], constants[15])+power(states[0], constants[15]))))-constants[16]*states[2] algebraic[0] = constants[5]*((power(states[0], 2.00000))/(power(constants[6], 2.00000)+power(states[0], 2.00000))) algebraic[1] = constants[10]*((power(states[2], 4.00000))/(power(constants[9], 4.00000)+power(states[2], 4.00000)))*((power(states[1], 2.00000))/(power(constants[7], 2.00000)+power(states[1], 2.00000)))*((power(states[0], 4.00000))/(power(constants[8], 4.00000)+power(states[0], 4.00000))) rates[0] = (constants[17]-algebraic[0])+algebraic[1]+(constants[0]*states[1]-constants[1]*states[0]) rates[1] = (algebraic[0]-algebraic[1])-constants[0]*states[1] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[0] = constants[5]*((power(states[0], 2.00000))/(power(constants[6], 2.00000)+power(states[0], 2.00000))) algebraic[1] = constants[10]*((power(states[2], 4.00000))/(power(constants[9], 4.00000)+power(states[2], 4.00000)))*((power(states[1], 2.00000))/(power(constants[7], 2.00000)+power(states[1], 2.00000)))*((power(states[0], 4.00000))/(power(constants[8], 4.00000)+power(states[0], 4.00000))) return algebraic def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)