function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction() % This is the "main function". In Matlab, things work best if you rename this function to match the filename. [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel(); end function [algebraicVariableCount] = getAlgebraicVariableCount() % Used later when setting a global variable with the number of algebraic variables. % Note: This is not the "main method". algebraicVariableCount =1; end % There are a total of 1 entries in each of the rate and state variable arrays. % There are a total of 11 entries in the constant variable array. % function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel() % Create ALGEBRAIC of correct size global algebraicVariableCount; algebraicVariableCount = getAlgebraicVariableCount(); % Initialise constants and state variables [INIT_STATES, CONSTANTS] = initConsts; % Set timespan to solve over tspan = [0, 10]; % Set numerical accuracy options for ODE solver options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1); % Solve model with ODE solver [VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options); % Compute algebraic variables [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS); ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI); % Plot state variables against variable of integration [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends(); figure(); plot(VOI, STATES); xlabel(LEGEND_VOI); l = legend(LEGEND_STATES); set(l,'Interpreter','none'); end function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends() LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = ''; LEGEND_VOI = strpad('time in component environment (millisecond)'); LEGEND_CONSTANTS(:,1) = strpad('C in component membrane (microF_per_mm2)'); LEGEND_CONSTANTS(:,2) = strpad('T in component membrane (per_millisecond)'); LEGEND_STATES(:,1) = strpad('Y in component membrane (dimensionless)'); LEGEND_CONSTANTS(:,8) = strpad('Y_infinity_Vm in component membrane (dimensionless)'); LEGEND_CONSTANTS(:,3) = strpad('Vm in component membrane (millivolt)'); LEGEND_ALGEBRAIC(:,1) = strpad('I_ion in component membrane (microA_per_mm2)'); LEGEND_CONSTANTS(:,9) = strpad('i1_Vm in component membrane (microA_per_mm2)'); LEGEND_CONSTANTS(:,11) = strpad('i0_Vm in component membrane (microA_per_mm2)'); LEGEND_CONSTANTS(:,10) = strpad('f_Vm in component membrane (microA_per_mm2)'); LEGEND_CONSTANTS(:,4) = strpad('af in component membrane (dimensionless)'); LEGEND_CONSTANTS(:,5) = strpad('bf in component membrane (dimensionless)'); LEGEND_CONSTANTS(:,6) = strpad('cf in component membrane (dimensionless)'); LEGEND_CONSTANTS(:,7) = strpad('df in component membrane (dimensionless)'); LEGEND_RATES(:,1) = strpad('d/dt Y in component membrane (dimensionless)'); LEGEND_STATES = LEGEND_STATES'; LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC'; LEGEND_RATES = LEGEND_RATES'; LEGEND_CONSTANTS = LEGEND_CONSTANTS'; end function [STATES, CONSTANTS] = initConsts() VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = []; CONSTANTS(:,1) = 0.01; CONSTANTS(:,2) = 50.0; STATES(:,1) = 0.07; CONSTANTS(:,3) = -78.6; CONSTANTS(:,4) = 0.00003837854; CONSTANTS(:,5) = 0.00584649; CONSTANTS(:,6) = 0.2531834; CONSTANTS(:,7) = 2.356256; CONSTANTS(:,8) = piecewise({CONSTANTS(:,3)<-80.0000, 0.00000 , CONSTANTS(:,3)>-60.0000, 1.00000 }, (CONSTANTS(:,3)+80.0000)./20.0000); CONSTANTS(:,9) = piecewise({CONSTANTS(:,3)<-70.0000, 0.0500000+ 0.00500000.*(CONSTANTS(:,3)+70.0000) , CONSTANTS(:,3)>0.00000, 0.0600000+ 0.00425000.*CONSTANTS(:,3) }, 0.0500000+( 0.0100000.*(CONSTANTS(:,3)+70.0000))./70.0000); CONSTANTS(:,10) = piecewise({CONSTANTS(:,3)<-74.3000, 0.0784000+ 0.0200000.*(CONSTANTS(:,3)+74.3000) , CONSTANTS(:,3)>-27.8000, -0.988400+ 0.0171000.*(CONSTANTS(:,3)+27.8000) }, CONSTANTS(:,4).*power(CONSTANTS(:,3), 3.00000)+ CONSTANTS(:,5).*power(CONSTANTS(:,3), 2.00000)+ CONSTANTS(:,6).*CONSTANTS(:,3)+CONSTANTS(:,7)); CONSTANTS(:,11) = CONSTANTS(:,9)+CONSTANTS(:,10); if (isempty(STATES)), warning('Initial values for states not set');, end end function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS) global algebraicVariableCount; statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; ALGEBRAIC = zeros(1, algebraicVariableCount); utilOnes = 1; else statesRowCount = statesSize(1); ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount); RATES = zeros(statesRowCount, statesColumnCount); utilOnes = ones(statesRowCount, 1); end RATES(:,1) = (1.00000./CONSTANTS(:,2)).*(CONSTANTS(:,8) - STATES(:,1)); RATES = RATES'; end % Calculate algebraic variables function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI) statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; utilOnes = 1; else statesRowCount = statesSize(1); utilOnes = ones(statesRowCount, 1); end ALGEBRAIC(:,1) = - STATES(:,1).*CONSTANTS(:,9) - (1.00000 - STATES(:,1)).*CONSTANTS(:,11); end % Compute result of a piecewise function function x = piecewise(cases, default) set = [0]; for i = 1:2:length(cases) if (length(cases{i+1}) == 1) x(cases{i} & ~set,:) = cases{i+1}; else x(cases{i} & ~set,:) = cases{i+1}(cases{i} & ~set); end set = set | cases{i}; if(set), break, end end if (length(default) == 1) x(~set,:) = default; else x(~set,:) = default(~set); end end % Pad out or shorten strings to a set length function strout = strpad(strin) req_length = 160; insize = size(strin,2); if insize > req_length strout = strin(1:req_length); else strout = [strin, blanks(req_length - insize)]; end end