Generated Code

The following is matlab code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction()
    % This is the "main function".  In Matlab, things work best if you rename this function to match the filename.
   [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel();
end

function [algebraicVariableCount] = getAlgebraicVariableCount() 
    % Used later when setting a global variable with the number of algebraic variables.
    % Note: This is not the "main method".  
    algebraicVariableCount =1;
end
% There are a total of 1 entries in each of the rate and state variable arrays.
% There are a total of 11 entries in the constant variable array.
%

function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel()
    % Create ALGEBRAIC of correct size
    global algebraicVariableCount;  algebraicVariableCount = getAlgebraicVariableCount();
    % Initialise constants and state variables
    [INIT_STATES, CONSTANTS] = initConsts;

    % Set timespan to solve over 
    tspan = [0, 10];

    % Set numerical accuracy options for ODE solver
    options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1);

    % Solve model with ODE solver
    [VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options);

    % Compute algebraic variables
    [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS);
    ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI);

    % Plot state variables against variable of integration
    [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends();
    figure();
    plot(VOI, STATES);
    xlabel(LEGEND_VOI);
    l = legend(LEGEND_STATES);
    set(l,'Interpreter','none');
end

function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends()
    LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = '';
    LEGEND_VOI = strpad('time in component environment (millisecond)');
    LEGEND_CONSTANTS(:,1) = strpad('C in component membrane (microF_per_mm2)');
    LEGEND_CONSTANTS(:,2) = strpad('T in component membrane (per_millisecond)');
    LEGEND_STATES(:,1) = strpad('Y in component membrane (dimensionless)');
    LEGEND_CONSTANTS(:,8) = strpad('Y_infinity_Vm in component membrane (dimensionless)');
    LEGEND_CONSTANTS(:,3) = strpad('Vm in component membrane (millivolt)');
    LEGEND_ALGEBRAIC(:,1) = strpad('I_ion in component membrane (microA_per_mm2)');
    LEGEND_CONSTANTS(:,9) = strpad('i1_Vm in component membrane (microA_per_mm2)');
    LEGEND_CONSTANTS(:,11) = strpad('i0_Vm in component membrane (microA_per_mm2)');
    LEGEND_CONSTANTS(:,10) = strpad('f_Vm in component membrane (microA_per_mm2)');
    LEGEND_CONSTANTS(:,4) = strpad('af in component membrane (dimensionless)');
    LEGEND_CONSTANTS(:,5) = strpad('bf in component membrane (dimensionless)');
    LEGEND_CONSTANTS(:,6) = strpad('cf in component membrane (dimensionless)');
    LEGEND_CONSTANTS(:,7) = strpad('df in component membrane (dimensionless)');
    LEGEND_RATES(:,1) = strpad('d/dt Y in component membrane (dimensionless)');
    LEGEND_STATES  = LEGEND_STATES';
    LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC';
    LEGEND_RATES = LEGEND_RATES';
    LEGEND_CONSTANTS = LEGEND_CONSTANTS';
end

function [STATES, CONSTANTS] = initConsts()
    VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = [];
    CONSTANTS(:,1) = 0.01;
    CONSTANTS(:,2) = 50.0;
    STATES(:,1) = 0.07;
    CONSTANTS(:,3) = -78.6;
    CONSTANTS(:,4) = 0.00003837854;
    CONSTANTS(:,5) = 0.00584649;
    CONSTANTS(:,6) = 0.2531834;
    CONSTANTS(:,7) = 2.356256;
    CONSTANTS(:,8) = piecewise({CONSTANTS(:,3)<-80.0000, 0.00000 , CONSTANTS(:,3)>-60.0000, 1.00000 }, (CONSTANTS(:,3)+80.0000)./20.0000);
    CONSTANTS(:,9) = piecewise({CONSTANTS(:,3)<-70.0000, 0.0500000+ 0.00500000.*(CONSTANTS(:,3)+70.0000) , CONSTANTS(:,3)>0.00000, 0.0600000+ 0.00425000.*CONSTANTS(:,3) }, 0.0500000+( 0.0100000.*(CONSTANTS(:,3)+70.0000))./70.0000);
    CONSTANTS(:,10) = piecewise({CONSTANTS(:,3)<-74.3000, 0.0784000+ 0.0200000.*(CONSTANTS(:,3)+74.3000) , CONSTANTS(:,3)>-27.8000, -0.988400+ 0.0171000.*(CONSTANTS(:,3)+27.8000) },  CONSTANTS(:,4).*power(CONSTANTS(:,3), 3.00000)+ CONSTANTS(:,5).*power(CONSTANTS(:,3), 2.00000)+ CONSTANTS(:,6).*CONSTANTS(:,3)+CONSTANTS(:,7));
    CONSTANTS(:,11) = CONSTANTS(:,9)+CONSTANTS(:,10);
    if (isempty(STATES)), warning('Initial values for states not set');, end
end

function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS)
    global algebraicVariableCount;
    statesSize = size(STATES);
    statesColumnCount = statesSize(2);
    if ( statesColumnCount == 1)
        STATES = STATES';
        ALGEBRAIC = zeros(1, algebraicVariableCount);
        utilOnes = 1;
    else
        statesRowCount = statesSize(1);
        ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount);
        RATES = zeros(statesRowCount, statesColumnCount);
        utilOnes = ones(statesRowCount, 1);
    end
    RATES(:,1) =  (1.00000./CONSTANTS(:,2)).*(CONSTANTS(:,8) - STATES(:,1));
   RATES = RATES';
end

% Calculate algebraic variables
function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI)
    statesSize = size(STATES);
    statesColumnCount = statesSize(2);
    if ( statesColumnCount == 1)
        STATES = STATES';
        utilOnes = 1;
    else
        statesRowCount = statesSize(1);
        utilOnes = ones(statesRowCount, 1);
    end
    ALGEBRAIC(:,1) =   - STATES(:,1).*CONSTANTS(:,9) -  (1.00000 - STATES(:,1)).*CONSTANTS(:,11);
end

% Compute result of a piecewise function
function x = piecewise(cases, default)
    set = [0];
    for i = 1:2:length(cases)
        if (length(cases{i+1}) == 1)
            x(cases{i} & ~set,:) = cases{i+1};
        else
            x(cases{i} & ~set,:) = cases{i+1}(cases{i} & ~set);
        end
        set = set | cases{i};
        if(set), break, end
    end
    if (length(default) == 1)
        x(~set,:) = default;
    else
        x(~set,:) = default(~set);
    end
end

% Pad out or shorten strings to a set length
function strout = strpad(strin)
    req_length = 160;
    insize = size(strin,2);
    if insize > req_length
        strout = strin(1:req_length);
    else
        strout = [strin, blanks(req_length - insize)];
    end
end