# Size of variable arrays: sizeAlgebraic = 11 sizeStates = 10 sizeConstants = 31 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (second)" legend_states[0] = "ATP in component ATP (micromolar)" legend_constants[0] = "V_hyd in component V_hyd (flux)" legend_algebraic[1] = "V_MMCK in component V_MMCK (flux)" legend_algebraic[8] = "J_ATP in component J_ATP (flux)" legend_constants[1] = "V_cyt in component fractional_volumes (dimensionless)" legend_states[1] = "ADP in component ADP (micromolar)" legend_algebraic[9] = "J_ADP in component J_ADP (flux)" legend_states[2] = "PCr in component PCr (micromolar)" legend_algebraic[5] = "J_PCr in component J_PCr (flux)" legend_states[3] = "Cr in component Cr (micromolar)" legend_algebraic[6] = "J_Cr in component J_Cr (flux)" legend_states[4] = "Pi in component Pi (micromolar)" legend_algebraic[10] = "J_Pi in component J_Pi (flux)" legend_states[5] = "ATP_i in component ATP_i (micromolar)" legend_algebraic[3] = "V_MiCK in component V_MiCK (flux)" legend_algebraic[7] = "V_syn in component V_syn (flux)" legend_constants[2] = "V_ims in component fractional_volumes (dimensionless)" legend_states[6] = "ADP_i in component ADP_i (micromolar)" legend_states[7] = "PCr_i in component PCr_i (micromolar)" legend_states[8] = "Cr_i in component Cr_i (micromolar)" legend_states[9] = "Pi_i in component Pi_i (micromolar)" legend_algebraic[0] = "Den_MMCK in component V_MMCK (dimensionless)" legend_constants[3] = "Kia in component V_MMCK (micromolar)" legend_constants[4] = "Kb in component V_MMCK (micromolar)" legend_constants[5] = "Kib in component V_MMCK (micromolar)" legend_constants[27] = "KIb in component V_MMCK (micromolar)" legend_constants[28] = "Kc in component V_MMCK (micromolar)" legend_constants[6] = "Kic in component V_MMCK (micromolar)" legend_constants[7] = "Kd in component V_MMCK (micromolar)" legend_constants[8] = "Kid in component V_MMCK (micromolar)" legend_constants[9] = "Vf in component V_MMCK (flux)" legend_constants[10] = "Vb in component V_MMCK (flux)" legend_algebraic[2] = "Den_MiCK in component V_MiCK (dimensionless)" legend_constants[11] = "Kia in component V_MiCK (micromolar)" legend_constants[12] = "Kb in component V_MiCK (micromolar)" legend_constants[13] = "Kib in component V_MiCK (micromolar)" legend_constants[29] = "KIb in component V_MiCK (micromolar)" legend_constants[30] = "Kc in component V_MiCK (micromolar)" legend_constants[14] = "Kic in component V_MiCK (micromolar)" legend_constants[15] = "Kd in component V_MiCK (micromolar)" legend_constants[16] = "Kid in component V_MiCK (micromolar)" legend_constants[17] = "Vf in component V_MiCK (flux)" legend_constants[18] = "Vb in component V_MiCK (flux)" legend_algebraic[4] = "Den_syn in component V_syn (dimensionless)" legend_constants[19] = "KPi in component V_syn (micromolar)" legend_constants[20] = "KADP in component V_syn (micromolar)" legend_constants[21] = "V_syn_max in component V_syn (flux)" legend_constants[22] = "R_ATP in component J_ATP (first_order_rate_constant)" legend_constants[23] = "R_ADP in component J_ADP (first_order_rate_constant)" legend_constants[24] = "R_PCr in component J_PCr (first_order_rate_constant)" legend_constants[25] = "R_Cr in component J_Cr (first_order_rate_constant)" legend_constants[26] = "R_Pi in component J_Pi (first_order_rate_constant)" legend_rates[0] = "d/dt ATP in component ATP (micromolar)" legend_rates[1] = "d/dt ADP in component ADP (micromolar)" legend_rates[2] = "d/dt PCr in component PCr (micromolar)" legend_rates[3] = "d/dt Cr in component Cr (micromolar)" legend_rates[4] = "d/dt Pi in component Pi (micromolar)" legend_rates[5] = "d/dt ATP_i in component ATP_i (micromolar)" legend_rates[6] = "d/dt ADP_i in component ADP_i (micromolar)" legend_rates[7] = "d/dt PCr_i in component PCr_i (micromolar)" legend_rates[8] = "d/dt Cr_i in component Cr_i (micromolar)" legend_rates[9] = "d/dt Pi_i in component Pi_i (micromolar)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; states[0] = 9644.425 constants[0] = 4.6E3 constants[1] = 0.75 states[1] = 60.0 states[2] = 12500.0 states[3] = 13500.0 states[4] = 8000.0 states[5] = 9644.425 constants[2] = 0.0625 states[6] = 2.5 states[7] = 12500.0 states[8] = 13500.0 states[9] = 8000.0 constants[3] = 9.0E2 constants[4] = 1.55E4 constants[5] = 3.49E4 constants[6] = 2.224E2 constants[7] = 1.67E3 constants[8] = 4.73E3 constants[9] = 6.966E3 constants[10] = 2.925E4 constants[11] = 7.5E2 constants[12] = 5.2E3 constants[13] = 2.88E4 constants[14] = 2.048E2 constants[15] = 5.0E2 constants[16] = 1.6E3 constants[17] = 2.658E3 constants[18] = 1.116E4 constants[19] = 20.0 constants[20] = 8.0E2 constants[21] = 4.6E3 constants[22] = 8.16 constants[23] = 8.16 constants[24] = 14.6 constants[25] = 14.6 constants[26] = 18.4 constants[27] = constants[5] constants[28] = (constants[6]*constants[7])/constants[8] constants[29] = constants[13] constants[30] = (constants[14]*constants[15])/constants[16] return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic algebraic[0] = 1.00000+states[3]/constants[5]+states[2]/constants[8]+states[0]*(1.00000/constants[3]+states[3]/(constants[3]*constants[4]))+states[1]*(1.00000/constants[6]+states[2]/(constants[8]*constants[28])+states[3]/(constants[6]*constants[27])) algebraic[1] = (constants[9]*((states[0]*states[3])/(constants[3]*constants[4]))-constants[10]*((states[1]*states[2])/(constants[6]*constants[7])))/algebraic[0] algebraic[5] = constants[24]*(states[7]-states[2]) rates[2] = (algebraic[5]+algebraic[1])/constants[1] algebraic[6] = constants[25]*(states[8]-states[3]) rates[3] = (algebraic[6]-algebraic[1])/constants[1] algebraic[2] = 1.00000+states[8]/constants[13]+states[7]/constants[16]+states[5]*(1.00000/constants[11]+states[8]/(constants[11]*constants[12]))+states[6]*(1.00000/constants[14]+states[7]/(constants[16]*constants[30])+states[8]/(constants[14]*constants[29])) algebraic[3] = (constants[17]*((states[5]*states[8])/(constants[11]*constants[12]))-constants[18]*((states[6]*states[7])/(constants[14]*constants[15])))/algebraic[2] rates[7] = (algebraic[3]-algebraic[5])/constants[2] rates[8] = -(algebraic[3]+algebraic[6])/constants[2] algebraic[8] = constants[22]*(states[5]-states[0]) rates[0] = (algebraic[8]-(constants[0]+algebraic[1]))/constants[1] algebraic[9] = constants[23]*(states[6]-states[1]) rates[1] = (algebraic[9]+constants[0]+algebraic[1])/constants[1] algebraic[10] = constants[26]*(states[9]-states[4]) rates[4] = (algebraic[10]+constants[0])/constants[1] algebraic[4] = 1.00000+states[6]/constants[20]+states[9]/constants[19]+(states[6]*states[9])/(constants[20]*constants[19]) algebraic[7] = constants[21]*((states[6]*states[9])/(constants[19]*constants[20]*algebraic[4])) rates[5] = -(algebraic[8]+algebraic[7]+algebraic[3])/constants[2] rates[6] = ((algebraic[7]+algebraic[3])-algebraic[9])/constants[2] rates[9] = (algebraic[7]-algebraic[10])/constants[2] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[0] = 1.00000+states[3]/constants[5]+states[2]/constants[8]+states[0]*(1.00000/constants[3]+states[3]/(constants[3]*constants[4]))+states[1]*(1.00000/constants[6]+states[2]/(constants[8]*constants[28])+states[3]/(constants[6]*constants[27])) algebraic[1] = (constants[9]*((states[0]*states[3])/(constants[3]*constants[4]))-constants[10]*((states[1]*states[2])/(constants[6]*constants[7])))/algebraic[0] algebraic[5] = constants[24]*(states[7]-states[2]) algebraic[6] = constants[25]*(states[8]-states[3]) algebraic[2] = 1.00000+states[8]/constants[13]+states[7]/constants[16]+states[5]*(1.00000/constants[11]+states[8]/(constants[11]*constants[12]))+states[6]*(1.00000/constants[14]+states[7]/(constants[16]*constants[30])+states[8]/(constants[14]*constants[29])) algebraic[3] = (constants[17]*((states[5]*states[8])/(constants[11]*constants[12]))-constants[18]*((states[6]*states[7])/(constants[14]*constants[15])))/algebraic[2] algebraic[8] = constants[22]*(states[5]-states[0]) algebraic[9] = constants[23]*(states[6]-states[1]) algebraic[10] = constants[26]*(states[9]-states[4]) algebraic[4] = 1.00000+states[6]/constants[20]+states[9]/constants[19]+(states[6]*states[9])/(constants[20]*constants[19]) algebraic[7] = constants[21]*((states[6]*states[9])/(constants[19]*constants[20]*algebraic[4])) return algebraic def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)