Generated Code
The following is python code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
# Size of variable arrays: sizeAlgebraic = 24 sizeStates = 5 sizeConstants = 37 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (millisecond)" legend_states[0] = "V in component membrane (millivolt)" legend_constants[0] = "Cm in component membrane (femtoF)" legend_algebraic[1] = "i_K in component K_current (picoA)" legend_algebraic[11] = "i_K_Ca in component K_Ca_current (picoA)" legend_algebraic[4] = "i_K_ATP in component K_ATP_current (picoA)" legend_algebraic[15] = "i_CRAC in component CRAC_current (picoA)" legend_algebraic[10] = "i_Ca in component Ca_current_total (picoA)" legend_algebraic[17] = "i_leak in component leak_current (picoA)" legend_constants[1] = "V_K in component K_current (millivolt)" legend_constants[2] = "g_K in component K_current (picoS)" legend_states[1] = "n in component K_channel_n_gate (dimensionless)" legend_algebraic[0] = "n_infinity in component K_channel_n_gate (dimensionless)" legend_algebraic[3] = "tau_n in component K_channel_n_gate (millisecond)" legend_constants[3] = "Vn in component K_channel_n_gate (millivolt)" legend_constants[4] = "Sn in component K_channel_n_gate (millivolt)" legend_constants[5] = "lambda_n in component K_channel_n_gate (dimensionless)" legend_constants[6] = "g_K_ATP in component K_ATP_current (picoS)" legend_algebraic[7] = "i_Ca_f in component fast_Ca_current (picoA)" legend_constants[7] = "V_Ca in component fast_Ca_current (millivolt)" legend_constants[8] = "g_Ca_f in component fast_Ca_current (picoS)" legend_algebraic[6] = "m_f_infinity in component fast_Ca_channel_m_gate (dimensionless)" legend_constants[9] = "Vm_f in component fast_Ca_channel_m_gate (millivolt)" legend_constants[10] = "Sm_f in component fast_Ca_channel_m_gate (millivolt)" legend_algebraic[9] = "i_Ca_s in component slow_Ca_current (picoA)" legend_constants[11] = "g_Ca_s in component slow_Ca_current (picoS)" legend_algebraic[8] = "m_s_infinity in component slow_Ca_channel_m_gate (dimensionless)" legend_states[2] = "jm in component slow_Ca_channel_j_gate (dimensionless)" legend_constants[12] = "Vm_s in component slow_Ca_channel_m_gate (millivolt)" legend_constants[13] = "Sm_s in component slow_Ca_channel_m_gate (millivolt)" legend_algebraic[2] = "jm_infinity in component slow_Ca_channel_j_gate (dimensionless)" legend_constants[14] = "Vj in component slow_Ca_channel_j_gate (millivolt)" legend_algebraic[5] = "tau_j in component slow_Ca_channel_j_gate (millisecond)" legend_constants[15] = "Sj in component slow_Ca_channel_j_gate (millivolt)" legend_constants[16] = "g_K_Ca in component K_Ca_current (picoS)" legend_states[3] = "Ca_i in component Ca_equations (micromolar)" legend_constants[17] = "kdkca in component K_Ca_current (micromolar)" legend_constants[18] = "g_CRAC in component CRAC_current (picoS)" legend_constants[19] = "V_CRAC in component CRAC_current (millivolt)" legend_states[4] = "Ca_er in component Ca_equations (micromolar)" legend_algebraic[13] = "r_infinity in component CRAC_r_gate (dimensionless)" legend_constants[20] = "Ca_er_bar in component CRAC_r_gate (micromolar)" legend_constants[21] = "sloper in component CRAC_r_gate (micromolar)" legend_constants[22] = "g_leak in component leak_current (picoS)" legend_algebraic[12] = "J_er_p in component ER_parameters (micromolar_per_millisecond)" legend_constants[23] = "IP3 in component ER_parameters (micromolar)" legend_constants[24] = "kerp in component ER_parameters (micromolar)" legend_constants[25] = "verp in component ER_parameters (micromolar_per_millisecond)" legend_constants[26] = "dact in component ER_parameters (micromolar)" legend_constants[27] = "dinh in component ER_parameters (micromolar)" legend_constants[28] = "dip3 in component ER_parameters (micromolar)" legend_algebraic[14] = "a_infinity in component ER_parameters (dimensionless)" legend_constants[36] = "b_infinity in component ER_parameters (dimensionless)" legend_algebraic[16] = "h_infinity in component ER_parameters (dimensionless)" legend_algebraic[18] = "O in component ER_parameters (per_millisecond)" legend_algebraic[21] = "J_er_tot in component Ca_equations (micromolar_per_millisecond)" legend_algebraic[20] = "J_er_IP3 in component Ca_equations (micromolar_per_millisecond)" legend_algebraic[19] = "J_er_leak in component Ca_equations (micromolar_per_millisecond)" legend_algebraic[23] = "J_mem_tot in component Ca_membrane_flux (micromolar_per_millisecond)" legend_constants[29] = "perl in component Ca_equations (per_millisecond)" legend_constants[30] = "lambda_er in component Ca_equations (dimensionless)" legend_constants[31] = "sigma_er in component Ca_equations (dimensionless)" legend_constants[32] = "kmp in component Ca_membrane_flux (micromolar)" legend_constants[33] = "vmp in component Ca_membrane_flux (micromolar)" legend_constants[34] = "gamma in component Ca_membrane_flux (micromolar_per_picoA)" legend_algebraic[22] = "Jmp in component Ca_membrane_flux (micromolar)" legend_constants[35] = "f in component Ca_membrane_flux (per_millisecond)" legend_rates[0] = "d/dt V in component membrane (millivolt)" legend_rates[1] = "d/dt n in component K_channel_n_gate (dimensionless)" legend_rates[2] = "d/dt jm in component slow_Ca_channel_j_gate (dimensionless)" legend_rates[4] = "d/dt Ca_er in component Ca_equations (micromolar)" legend_rates[3] = "d/dt Ca_i in component Ca_equations (micromolar)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; states[0] = -61 constants[0] = 6158 constants[1] = -70 constants[2] = 3900 states[1] = 0.0005 constants[3] = -15 constants[4] = 6 constants[5] = 1.85 constants[6] = 150 constants[7] = 100 constants[8] = 810 constants[9] = -20 constants[10] = 7.5 constants[11] = 510 states[2] = 0.12 constants[12] = -16 constants[13] = 10 constants[14] = -53 constants[15] = 2 constants[16] = 1200 states[3] = 0.11 constants[17] = 0.55 constants[18] = 75 constants[19] = 0 states[4] = 60 constants[20] = 40 constants[21] = 3 constants[22] = 0 constants[23] = 0 constants[24] = 0.09 constants[25] = 0.24 constants[26] = 0.35 constants[27] = 0.4 constants[28] = 0.2 constants[29] = 0.003 constants[30] = 250 constants[31] = 1 constants[32] = 0.35 constants[33] = 0.08 constants[34] = 0.000003607 constants[35] = 0.01 constants[36] = constants[23]/(constants[23]+constants[28]) return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic algebraic[0] = 1.00000/(1.00000+exp((constants[3]-states[0])/constants[4])) algebraic[3] = 9.09000/(1.00000+exp((states[0]-constants[3])/constants[4])) rates[1] = (constants[5]*(algebraic[0]-states[1]))/algebraic[3] algebraic[2] = 1.00000-1.00000/(1.00000+exp((states[0]-constants[14])/constants[15])) algebraic[5] = 50000.0/(exp((states[0]-constants[14])/4.00000)+exp((constants[14]-states[0])/4.00000))+1500.00 rates[2] = (algebraic[2]-states[2])/algebraic[5] algebraic[1] = constants[2]*states[1]*(states[0]-constants[1]) algebraic[11] = ((constants[16]*(power(states[3], 5.00000)))/(power(states[3], 5.00000)+power(constants[17], 5.00000)))*(states[0]-constants[1]) algebraic[4] = constants[6]*(states[0]-constants[1]) algebraic[13] = 1.00000/(1.00000+exp((states[4]-constants[20])/constants[21])) algebraic[15] = constants[18]*algebraic[13]*(states[0]-constants[19]) algebraic[6] = 1.00000/(1.00000+exp((constants[9]-states[0])/constants[10])) algebraic[7] = constants[8]*algebraic[6]*(states[0]-constants[7]) algebraic[8] = 1.00000/(1.00000+exp((constants[12]-states[0])/constants[13])) algebraic[9] = constants[11]*algebraic[8]*(1.00000-states[2])*(states[0]-constants[7]) algebraic[10] = algebraic[7]+algebraic[9] algebraic[17] = constants[22]*(states[0]-constants[19]) rates[0] = -(algebraic[10]+algebraic[1]+algebraic[4]+algebraic[11]+algebraic[15]+algebraic[17])/constants[0] algebraic[12] = (constants[25]*(power(states[3], 2.00000)))/(power(states[3], 2.00000)+power(constants[24], 2.00000)) algebraic[14] = 1.00000/(1.00000+constants[26]/states[3]) algebraic[16] = 1.00000/(1.00000+states[3]/constants[27]) algebraic[18] = (power(algebraic[14], 3.00000))*(power(constants[36], 3.00000))*(power(algebraic[16], 3.00000))*1.00000 algebraic[20] = algebraic[18]*(states[4]-states[3]) algebraic[19] = constants[29]*(states[4]-states[3]) algebraic[21] = (algebraic[19]+algebraic[20])-algebraic[12] rates[4] = -algebraic[21]/(constants[30]*constants[31]) algebraic[22] = (constants[33]*(power(states[3], 2.00000)))/(power(states[3], 2.00000)+power(constants[32], 2.00000)) algebraic[23] = -constants[35]*(constants[34]*algebraic[10]+algebraic[22]) rates[3] = algebraic[21]/constants[30]+algebraic[23] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[0] = 1.00000/(1.00000+exp((constants[3]-states[0])/constants[4])) algebraic[3] = 9.09000/(1.00000+exp((states[0]-constants[3])/constants[4])) algebraic[2] = 1.00000-1.00000/(1.00000+exp((states[0]-constants[14])/constants[15])) algebraic[5] = 50000.0/(exp((states[0]-constants[14])/4.00000)+exp((constants[14]-states[0])/4.00000))+1500.00 algebraic[1] = constants[2]*states[1]*(states[0]-constants[1]) algebraic[11] = ((constants[16]*(power(states[3], 5.00000)))/(power(states[3], 5.00000)+power(constants[17], 5.00000)))*(states[0]-constants[1]) algebraic[4] = constants[6]*(states[0]-constants[1]) algebraic[13] = 1.00000/(1.00000+exp((states[4]-constants[20])/constants[21])) algebraic[15] = constants[18]*algebraic[13]*(states[0]-constants[19]) algebraic[6] = 1.00000/(1.00000+exp((constants[9]-states[0])/constants[10])) algebraic[7] = constants[8]*algebraic[6]*(states[0]-constants[7]) algebraic[8] = 1.00000/(1.00000+exp((constants[12]-states[0])/constants[13])) algebraic[9] = constants[11]*algebraic[8]*(1.00000-states[2])*(states[0]-constants[7]) algebraic[10] = algebraic[7]+algebraic[9] algebraic[17] = constants[22]*(states[0]-constants[19]) algebraic[12] = (constants[25]*(power(states[3], 2.00000)))/(power(states[3], 2.00000)+power(constants[24], 2.00000)) algebraic[14] = 1.00000/(1.00000+constants[26]/states[3]) algebraic[16] = 1.00000/(1.00000+states[3]/constants[27]) algebraic[18] = (power(algebraic[14], 3.00000))*(power(constants[36], 3.00000))*(power(algebraic[16], 3.00000))*1.00000 algebraic[20] = algebraic[18]*(states[4]-states[3]) algebraic[19] = constants[29]*(states[4]-states[3]) algebraic[21] = (algebraic[19]+algebraic[20])-algebraic[12] algebraic[22] = (constants[33]*(power(states[3], 2.00000)))/(power(states[3], 2.00000)+power(constants[32], 2.00000)) algebraic[23] = -constants[35]*(constants[34]*algebraic[10]+algebraic[22]) return algebraic def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)