Generated Code

The following is c_ida code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

/*
   There are a total of 71 entries in the algebraic variable array.
   There are a total of 31 entries in each of the rate and state variable arrays.
   There are a total of 87 entries in the constant variable array.
 */
/*
 * VOI is time in component environment (second).
 * STATES[0] is V in component membrane (millivolt).
 * CONSTANTS[0] is R in component membrane (millijoule_per_mole_kelvin).
 * CONSTANTS[1] is T in component membrane (kelvin).
 * CONSTANTS[2] is F in component membrane (coulomb_per_mole).
 * CONSTANTS[3] is Cm in component membrane (microF).
 * ALGEBRAIC[2] is i_Na in component sodium_current (nanoA).
 * ALGEBRAIC[9] is i_Ca_L in component L_type_Ca_channel (nanoA).
 * ALGEBRAIC[18] is i_t in component Ca_independent_transient_outward_K_current (nanoA).
 * ALGEBRAIC[25] is i_ss in component steady_state_outward_K_current (nanoA).
 * ALGEBRAIC[32] is i_f in component hyperpolarisation_activated_current (nanoA).
 * ALGEBRAIC[29] is i_K1 in component inward_rectifier (nanoA).
 * ALGEBRAIC[39] is i_B in component background_currents (nanoA).
 * ALGEBRAIC[40] is i_NaK in component sodium_potassium_pump (nanoA).
 * ALGEBRAIC[42] is i_NaCa in component Na_Ca_ion_exchanger_current (nanoA).
 * ALGEBRAIC[41] is i_Ca_P in component sarcolemmal_calcium_pump_current (nanoA).
 * ALGEBRAIC[0] is i_Stim in component membrane (nanoA).
 * CONSTANTS[4] is stim_start in component membrane (second).
 * CONSTANTS[5] is stim_end in component membrane (second).
 * CONSTANTS[6] is stim_period in component membrane (second).
 * CONSTANTS[7] is stim_duration in component membrane (second).
 * CONSTANTS[8] is stim_amplitude in component membrane (nanoA).
 * ALGEBRAIC[67] is I_inter_myo in component I_inter (nanoA).
 * ALGEBRAIC[1] is E_Na in component sodium_current (millivolt).
 * CONSTANTS[9] is g_Na in component sodium_current (microS).
 * STATES[1] is Na_i in component intracellular_ion_concentrations (millimolar).
 * CONSTANTS[10] is Na_o in component standard_ionic_concentrations (millimolar).
 * STATES[2] is m in component sodium_current_m_gate (dimensionless).
 * STATES[3] is h in component sodium_current_h_gate (dimensionless).
 * STATES[4] is j in component sodium_current_j_gate (dimensionless).
 * ALGEBRAIC[3] is m_infinity in component sodium_current_m_gate (dimensionless).
 * ALGEBRAIC[4] is tau_m in component sodium_current_m_gate (second).
 * ALGEBRAIC[5] is h_infinity in component sodium_current_h_gate (dimensionless).
 * ALGEBRAIC[6] is tau_h in component sodium_current_h_gate (second).
 * ALGEBRAIC[7] is j_infinity in component sodium_current_j_gate (dimensionless).
 * ALGEBRAIC[8] is tau_j in component sodium_current_j_gate (second).
 * CONSTANTS[11] is g_Ca_L in component L_type_Ca_channel (microS).
 * CONSTANTS[12] is E_Ca_L in component L_type_Ca_channel (millivolt).
 * STATES[5] is Ca_ss in component intracellular_ion_concentrations (millimolar).
 * STATES[6] is d in component L_type_Ca_channel_d_gate (dimensionless).
 * STATES[7] is f_11 in component L_type_Ca_channel_f_11_gate (dimensionless).
 * STATES[8] is f_12 in component L_type_Ca_channel_f_12_gate (dimensionless).
 * STATES[9] is Ca_inact in component L_type_Ca_channel_Ca_inact_gate (dimensionless).
 * ALGEBRAIC[10] is d_infinity in component L_type_Ca_channel_d_gate (dimensionless).
 * ALGEBRAIC[11] is tau_d in component L_type_Ca_channel_d_gate (second).
 * ALGEBRAIC[12] is f_11_infinity in component L_type_Ca_channel_f_11_gate (dimensionless).
 * ALGEBRAIC[13] is tau_f_11 in component L_type_Ca_channel_f_11_gate (second).
 * ALGEBRAIC[14] is f_12_infinity in component L_type_Ca_channel_f_12_gate (dimensionless).
 * ALGEBRAIC[15] is tau_f_12 in component L_type_Ca_channel_f_12_gate (second).
 * CONSTANTS[13] is tau_Ca_inact in component L_type_Ca_channel_Ca_inact_gate (second).
 * ALGEBRAIC[16] is Ca_inact_infinity in component L_type_Ca_channel_Ca_inact_gate (dimensionless).
 * ALGEBRAIC[17] is E_K in component Ca_independent_transient_outward_K_current (millivolt).
 * CONSTANTS[14] is g_t in component Ca_independent_transient_outward_K_current (microS).
 * CONSTANTS[15] is a in component Ca_independent_transient_outward_K_current (dimensionless).
 * CONSTANTS[16] is b in component Ca_independent_transient_outward_K_current (dimensionless).
 * CONSTANTS[17] is K_o in component standard_ionic_concentrations (millimolar).
 * STATES[10] is K_i in component intracellular_ion_concentrations (millimolar).
 * STATES[11] is r in component Ca_independent_transient_outward_K_current_r_gate (dimensionless).
 * STATES[12] is s in component Ca_independent_transient_outward_K_current_s_gate (dimensionless).
 * STATES[13] is s_slow in component Ca_independent_transient_outward_K_current_s_slow_gate (dimensionless).
 * ALGEBRAIC[20] is tau_r in component Ca_independent_transient_outward_K_current_r_gate (second).
 * ALGEBRAIC[19] is r_infinity in component Ca_independent_transient_outward_K_current_r_gate (dimensionless).
 * ALGEBRAIC[22] is tau_s in component Ca_independent_transient_outward_K_current_s_gate (second).
 * ALGEBRAIC[21] is s_infinity in component Ca_independent_transient_outward_K_current_s_gate (dimensionless).
 * ALGEBRAIC[24] is tau_s_slow in component Ca_independent_transient_outward_K_current_s_slow_gate (second).
 * ALGEBRAIC[23] is s_slow_infinity in component Ca_independent_transient_outward_K_current_s_slow_gate (dimensionless).
 * CONSTANTS[18] is g_ss in component steady_state_outward_K_current (microS).
 * STATES[14] is r_ss in component steady_state_outward_K_current_r_ss_gate (dimensionless).
 * STATES[15] is s_ss in component steady_state_outward_K_current_s_ss_gate (dimensionless).
 * ALGEBRAIC[27] is tau_r_ss in component steady_state_outward_K_current_r_ss_gate (second).
 * ALGEBRAIC[26] is r_ss_infinity in component steady_state_outward_K_current_r_ss_gate (dimensionless).
 * CONSTANTS[84] is tau_s_ss in component steady_state_outward_K_current_s_ss_gate (second).
 * ALGEBRAIC[28] is s_ss_infinity in component steady_state_outward_K_current_s_ss_gate (dimensionless).
 * CONSTANTS[19] is g_K1 in component inward_rectifier (microS).
 * ALGEBRAIC[30] is i_f_Na in component hyperpolarisation_activated_current (nanoA).
 * ALGEBRAIC[31] is i_f_K in component hyperpolarisation_activated_current (nanoA).
 * CONSTANTS[20] is g_f in component hyperpolarisation_activated_current (microS).
 * CONSTANTS[21] is f_Na in component hyperpolarisation_activated_current (dimensionless).
 * CONSTANTS[85] is f_K in component hyperpolarisation_activated_current (dimensionless).
 * STATES[16] is y in component hyperpolarisation_activated_current_y_gate (dimensionless).
 * ALGEBRAIC[34] is tau_y in component hyperpolarisation_activated_current_y_gate (second).
 * ALGEBRAIC[33] is y_infinity in component hyperpolarisation_activated_current_y_gate (dimensionless).
 * ALGEBRAIC[36] is i_B_Na in component background_currents (nanoA).
 * ALGEBRAIC[37] is i_B_Ca in component background_currents (nanoA).
 * ALGEBRAIC[38] is i_B_K in component background_currents (nanoA).
 * CONSTANTS[22] is g_B_Na in component background_currents (microS).
 * CONSTANTS[23] is g_B_Ca in component background_currents (microS).
 * CONSTANTS[24] is g_B_K in component background_currents (microS).
 * ALGEBRAIC[35] is E_Ca in component background_currents (millivolt).
 * CONSTANTS[25] is Ca_o in component standard_ionic_concentrations (millimolar).
 * STATES[17] is Ca_i in component intracellular_ion_concentrations (millimolar).
 * CONSTANTS[26] is i_NaK_max in component sodium_potassium_pump (nanoA).
 * CONSTANTS[27] is K_m_K in component sodium_potassium_pump (millimolar).
 * CONSTANTS[28] is K_m_Na in component sodium_potassium_pump (millimolar).
 * CONSTANTS[86] is sigma in component sodium_potassium_pump (dimensionless).
 * CONSTANTS[29] is i_Ca_P_max in component sarcolemmal_calcium_pump_current (nanoA).
 * CONSTANTS[30] is K_NaCa in component Na_Ca_ion_exchanger_current (nanoA_millimolar_4).
 * CONSTANTS[31] is d_NaCa in component Na_Ca_ion_exchanger_current (millimolar_4).
 * CONSTANTS[32] is gamma_NaCa in component Na_Ca_ion_exchanger_current (dimensionless).
 * ALGEBRAIC[43] is J_rel in component SR_Ca_release_channel (millimolar_per_second).
 * CONSTANTS[33] is v1 in component SR_Ca_release_channel (per_second).
 * CONSTANTS[34] is k_a_plus in component SR_Ca_release_channel (per_second).
 * CONSTANTS[35] is k_a_minus in component SR_Ca_release_channel (per_second).
 * CONSTANTS[36] is k_b_plus in component SR_Ca_release_channel (per_second).
 * CONSTANTS[37] is k_b_minus in component SR_Ca_release_channel (per_second).
 * CONSTANTS[38] is k_c_plus in component SR_Ca_release_channel (per_second).
 * CONSTANTS[39] is k_c_minus in component SR_Ca_release_channel (per_second).
 * STATES[18] is P_O1 in component SR_Ca_release_channel (dimensionless).
 * STATES[19] is P_O2 in component SR_Ca_release_channel (dimensionless).
 * STATES[20] is P_C1 in component SR_Ca_release_channel (dimensionless).
 * STATES[21] is P_C2 in component SR_Ca_release_channel (dimensionless).
 * CONSTANTS[40] is n in component SR_Ca_release_channel (dimensionless).
 * CONSTANTS[41] is m in component SR_Ca_release_channel (dimensionless).
 * STATES[22] is Ca_JSR in component intracellular_ion_concentrations (millimolar).
 * ALGEBRAIC[46] is J_up in component SERCA2a_pump (millimolar_per_second).
 * CONSTANTS[42] is K_fb in component SERCA2a_pump (millimolar).
 * CONSTANTS[43] is K_rb in component SERCA2a_pump (millimolar).
 * ALGEBRAIC[44] is fb in component SERCA2a_pump (dimensionless).
 * ALGEBRAIC[45] is rb in component SERCA2a_pump (dimensionless).
 * CONSTANTS[44] is Vmaxf in component SERCA2a_pump (millimolar_per_second).
 * CONSTANTS[45] is Vmaxr in component SERCA2a_pump (millimolar_per_second).
 * CONSTANTS[46] is K_SR in component SERCA2a_pump (dimensionless).
 * CONSTANTS[47] is N_fb in component SERCA2a_pump (dimensionless).
 * CONSTANTS[48] is N_rb in component SERCA2a_pump (dimensionless).
 * STATES[23] is Ca_NSR in component intracellular_ion_concentrations (millimolar).
 * ALGEBRAIC[47] is J_tr in component intracellular_and_SR_Ca_fluxes (millimolar_per_second).
 * ALGEBRAIC[48] is J_xfer in component intracellular_and_SR_Ca_fluxes (millimolar_per_second).
 * ALGEBRAIC[51] is J_trpn in component intracellular_and_SR_Ca_fluxes (millimolar_per_second).
 * CONSTANTS[49] is tau_tr in component intracellular_and_SR_Ca_fluxes (second).
 * CONSTANTS[50] is tau_xfer in component intracellular_and_SR_Ca_fluxes (second).
 * CONSTANTS[51] is HTRPNCa in component intracellular_and_SR_Ca_fluxes (millimolar).
 * CONSTANTS[52] is LTRPNCa in component intracellular_and_SR_Ca_fluxes (millimolar).
 * ALGEBRAIC[49] is J_HTRPNCa in component intracellular_and_SR_Ca_fluxes (millimolar_per_second).
 * ALGEBRAIC[50] is J_LTRPNCa in component intracellular_and_SR_Ca_fluxes (millimolar_per_second).
 * CONSTANTS[53] is HTRPN_tot in component intracellular_and_SR_Ca_fluxes (millimolar).
 * CONSTANTS[54] is LTRPN_tot in component intracellular_and_SR_Ca_fluxes (millimolar).
 * CONSTANTS[55] is k_htrpn_plus in component intracellular_and_SR_Ca_fluxes (per_millimolar_per_second).
 * CONSTANTS[56] is k_htrpn_minus in component intracellular_and_SR_Ca_fluxes (per_second).
 * CONSTANTS[57] is k_ltrpn_plus in component intracellular_and_SR_Ca_fluxes (per_millimolar_per_second).
 * CONSTANTS[58] is k_ltrpn_minus in component intracellular_and_SR_Ca_fluxes (per_second).
 * CONSTANTS[59] is V_myo in component intracellular_ion_concentrations (micro_litre).
 * CONSTANTS[60] is V_JSR in component intracellular_ion_concentrations (micro_litre).
 * CONSTANTS[61] is V_NSR in component intracellular_ion_concentrations (micro_litre).
 * CONSTANTS[62] is V_SS in component intracellular_ion_concentrations (micro_litre).
 * CONSTANTS[63] is K_mCMDN in component intracellular_ion_concentrations (millimolar).
 * CONSTANTS[64] is K_mCSQN in component intracellular_ion_concentrations (millimolar).
 * CONSTANTS[65] is K_mEGTA in component intracellular_ion_concentrations (millimolar).
 * CONSTANTS[66] is CMDN_tot in component intracellular_ion_concentrations (millimolar).
 * CONSTANTS[67] is CSQN_tot in component intracellular_ion_concentrations (millimolar).
 * CONSTANTS[68] is EGTA_tot in component intracellular_ion_concentrations (millimolar).
 * ALGEBRAIC[52] is beta_i in component intracellular_ion_concentrations (dimensionless).
 * ALGEBRAIC[53] is beta_SS in component intracellular_ion_concentrations (dimensionless).
 * ALGEBRAIC[54] is beta_JSR in component intracellular_ion_concentrations (dimensionless).
 * ALGEBRAIC[55] is V_fibro in component membrane_fibro (millivolt).
 * CONSTANTS[69] is Cm in component membrane_fibro (microF).
 * ALGEBRAIC[65] is I_b in component I_b (nanoA).
 * ALGEBRAIC[70] is I_Kir in component I_Kir (nanoA).
 * ALGEBRAIC[69] is I_Shkr in component I_Shkr (nanoA).
 * ALGEBRAIC[66] is I_inter_fibro in component I_inter (nanoA).
 * STATES[24] is VmReal in component membrane_fibro (millivolt).
 * CONSTANTS[70] is GKir in component I_Kir (microS).
 * CONSTANTS[71] is aKir in component I_Kir (dimensionless).
 * CONSTANTS[72] is bKir in component I_Kir (dimensionless).
 * ALGEBRAIC[56] is EK in component I_Kir (millivolt).
 * ALGEBRAIC[68] is OKir in component I_Kir (dimensionless).
 * CONSTANTS[73] is PShkr in component I_Shkr (microlitre_per_second).
 * STATES[25] is C0ShkrReal in component I_Shkr (dimensionless).
 * STATES[26] is C1ShkrReal in component I_Shkr (dimensionless).
 * STATES[27] is C2ShkrReal in component I_Shkr (dimensionless).
 * STATES[28] is C3ShkrReal in component I_Shkr (dimensionless).
 * STATES[29] is C4ShkrReal in component I_Shkr (dimensionless).
 * STATES[30] is OShkrReal in component I_Shkr (dimensionless).
 * ALGEBRAIC[57] is C0Shkr in component I_Shkr (dimensionless).
 * ALGEBRAIC[58] is C1Shkr in component I_Shkr (dimensionless).
 * ALGEBRAIC[59] is C2Shkr in component I_Shkr (dimensionless).
 * ALGEBRAIC[60] is C3Shkr in component I_Shkr (dimensionless).
 * ALGEBRAIC[61] is C4Shkr in component I_Shkr (dimensionless).
 * ALGEBRAIC[62] is OShkr in component I_Shkr (dimensionless).
 * ALGEBRAIC[63] is kv in component I_Shkr (per_second).
 * ALGEBRAIC[64] is k_v in component I_Shkr (per_second).
 * CONSTANTS[74] is kv0 in component I_Shkr (per_second).
 * CONSTANTS[75] is zv in component I_Shkr (dimensionless).
 * CONSTANTS[76] is k_v0 in component I_Shkr (per_second).
 * CONSTANTS[77] is z_v in component I_Shkr (dimensionless).
 * CONSTANTS[78] is ko in component I_Shkr (per_second).
 * CONSTANTS[79] is k_o in component I_Shkr (per_second).
 * CONSTANTS[80] is Gb in component I_b (microS).
 * CONSTANTS[81] is Eb in component I_b (millivolt).
 * CONSTANTS[82] is R_mf in component I_inter (ohm).
 * CONSTANTS[83] is number_of_fibroblasts in component I_inter (dimensionless).
 * RATES[0] is d/dt V in component membrane (millivolt).
 * RATES[2] is d/dt m in component sodium_current_m_gate (dimensionless).
 * RATES[3] is d/dt h in component sodium_current_h_gate (dimensionless).
 * RATES[4] is d/dt j in component sodium_current_j_gate (dimensionless).
 * RATES[6] is d/dt d in component L_type_Ca_channel_d_gate (dimensionless).
 * RATES[7] is d/dt f_11 in component L_type_Ca_channel_f_11_gate (dimensionless).
 * RATES[8] is d/dt f_12 in component L_type_Ca_channel_f_12_gate (dimensionless).
 * RATES[9] is d/dt Ca_inact in component L_type_Ca_channel_Ca_inact_gate (dimensionless).
 * RATES[11] is d/dt r in component Ca_independent_transient_outward_K_current_r_gate (dimensionless).
 * RATES[12] is d/dt s in component Ca_independent_transient_outward_K_current_s_gate (dimensionless).
 * RATES[13] is d/dt s_slow in component Ca_independent_transient_outward_K_current_s_slow_gate (dimensionless).
 * RATES[14] is d/dt r_ss in component steady_state_outward_K_current_r_ss_gate (dimensionless).
 * RATES[15] is d/dt s_ss in component steady_state_outward_K_current_s_ss_gate (dimensionless).
 * RATES[16] is d/dt y in component hyperpolarisation_activated_current_y_gate (dimensionless).
 * RATES[20] is d/dt P_C1 in component SR_Ca_release_channel (dimensionless).
 * RATES[18] is d/dt P_O1 in component SR_Ca_release_channel (dimensionless).
 * RATES[19] is d/dt P_O2 in component SR_Ca_release_channel (dimensionless).
 * RATES[21] is d/dt P_C2 in component SR_Ca_release_channel (dimensionless).
 * RATES[17] is d/dt Ca_i in component intracellular_ion_concentrations (millimolar).
 * RATES[1] is d/dt Na_i in component intracellular_ion_concentrations (millimolar).
 * RATES[10] is d/dt K_i in component intracellular_ion_concentrations (millimolar).
 * RATES[5] is d/dt Ca_ss in component intracellular_ion_concentrations (millimolar).
 * RATES[22] is d/dt Ca_JSR in component intracellular_ion_concentrations (millimolar).
 * RATES[23] is d/dt Ca_NSR in component intracellular_ion_concentrations (millimolar).
 * RATES[24] is d/dt VmReal in component membrane_fibro (millivolt).
 * RATES[25] is d/dt C0ShkrReal in component I_Shkr (dimensionless).
 * RATES[26] is d/dt C1ShkrReal in component I_Shkr (dimensionless).
 * RATES[27] is d/dt C2ShkrReal in component I_Shkr (dimensionless).
 * RATES[28] is d/dt C3ShkrReal in component I_Shkr (dimensionless).
 * RATES[29] is d/dt C4ShkrReal in component I_Shkr (dimensionless).
 * RATES[30] is d/dt OShkrReal in component I_Shkr (dimensionless).
 * There are a total of 18 condition variables.
 */
void
initConsts(double* CONSTANTS, double* RATES, double *STATES)
{
STATES[0] = -80.50146;
CONSTANTS[0] = 8314.5;
CONSTANTS[1] = 295;
CONSTANTS[2] = 96487;
CONSTANTS[3] = 0.0001;
CONSTANTS[4] = 0.01;
CONSTANTS[5] = 10;
CONSTANTS[6] = 1;
CONSTANTS[7] = 0.001;
CONSTANTS[8] = -5;
CONSTANTS[9] = 0.8;
STATES[1] = 10.73519;
CONSTANTS[10] = 140;
STATES[2] = 0.004164108;
STATES[3] = 0.6735613;
STATES[4] = 0.6729362;
CONSTANTS[11] = 0.031;
CONSTANTS[12] = 65;
STATES[5] = 0.00008737212;
STATES[6] = 0.000002171081;
STATES[7] = 0.9999529;
STATES[8] = 0.9999529;
STATES[9] = 0.9913102;
CONSTANTS[13] = 0.009;
CONSTANTS[14] = 0.035;
CONSTANTS[15] = 0.886;
CONSTANTS[16] = 0.114;
CONSTANTS[17] = 5.4;
STATES[10] = 139.2751;
STATES[11] = 0.002191519;
STATES[12] = 0.9842542;
STATES[13] = 0.6421196;
CONSTANTS[18] = 0.007;
STATES[14] = 0.002907171;
STATES[15] = 0.3142767;
CONSTANTS[19] = 0.024;
CONSTANTS[20] = 0.00145;
CONSTANTS[21] = 0.2;
STATES[16] = 0.003578708;
CONSTANTS[22] = 0.00008015;
CONSTANTS[23] = 0.0000324;
CONSTANTS[24] = 0.000138;
CONSTANTS[25] = 1.2;
STATES[17] = 0.00007901351;
CONSTANTS[26] = 0.08;
CONSTANTS[27] = 1.5;
CONSTANTS[28] = 10;
CONSTANTS[29] = 0.004;
CONSTANTS[30] = 0.000009984;
CONSTANTS[31] = 0.0001;
CONSTANTS[32] = 0.5;
CONSTANTS[33] = 1.8e3;
CONSTANTS[34] = 12.15e12;
CONSTANTS[35] = 576;
CONSTANTS[36] = 4.05e9;
CONSTANTS[37] = 1930;
CONSTANTS[38] = 100;
CONSTANTS[39] = 0.8;
STATES[18] = 0.0004327548;
STATES[19] = 0.000000000606254;
STATES[20] = 0.6348229;
STATES[21] = 0.3647471;
CONSTANTS[40] = 4;
CONSTANTS[41] = 3;
STATES[22] = 0.06607948;
CONSTANTS[42] = 0.000168;
CONSTANTS[43] = 3.29;
CONSTANTS[44] = 0.04;
CONSTANTS[45] = 0.9;
CONSTANTS[46] = 1;
CONSTANTS[47] = 1.2;
CONSTANTS[48] = 1;
STATES[23] = 0.06600742;
CONSTANTS[49] = 0.0005747;
CONSTANTS[50] = 0.0267;
CONSTANTS[51] = 1.394301e-1;
CONSTANTS[52] = 5.1619e-3;
CONSTANTS[53] = 0.14;
CONSTANTS[54] = 0.07;
CONSTANTS[55] = 200000;
CONSTANTS[56] = 0.066;
CONSTANTS[57] = 40000;
CONSTANTS[58] = 40;
CONSTANTS[59] = 0.00000936;
CONSTANTS[60] = 0.00000056;
CONSTANTS[61] = 0.00000504;
CONSTANTS[62] = 0.000000012;
CONSTANTS[63] = 0.00238;
CONSTANTS[64] = 0.8;
CONSTANTS[65] = 0.00015;
CONSTANTS[66] = 0.05;
CONSTANTS[67] = 15;
CONSTANTS[68] = 10;
CONSTANTS[69] = 4.5e-6;
STATES[24] = -80.00;
CONSTANTS[70] = 1e-3;
CONSTANTS[71] = 0.94;
CONSTANTS[72] = 1.26;
CONSTANTS[73] = 5.4e-9;
STATES[25] = 9.11e-1;
STATES[26] = 8.57e-2;
STATES[27] = 3.02e-3;
STATES[28] = 4.74e-5;
STATES[29] = 2.79e-7;
STATES[30] = 0;
CONSTANTS[74] = 30;
CONSTANTS[75] = 1.28;
CONSTANTS[76] = 2;
CONSTANTS[77] = -1.53;
CONSTANTS[78] = 77;
CONSTANTS[79] = 18;
CONSTANTS[80] = 6.9e-6;
CONSTANTS[81] = 0;
CONSTANTS[82] = 100e6;
CONSTANTS[83] = 1;
CONSTANTS[84] = 2.10000;
CONSTANTS[85] = 1.00000 - CONSTANTS[21];
CONSTANTS[86] = (exp(CONSTANTS[10]/67.3000) - 1.00000)/7.00000;
RATES[0] = 0.1001;
RATES[2] = 0.1001;
RATES[3] = 0.1001;
RATES[4] = 0.1001;
RATES[6] = 0.1001;
RATES[7] = 0.1001;
RATES[8] = 0.1001;
RATES[9] = 0.1001;
RATES[11] = 0.1001;
RATES[12] = 0.1001;
RATES[13] = 0.1001;
RATES[14] = 0.1001;
RATES[15] = 0.1001;
RATES[16] = 0.1001;
RATES[20] = 0.1001;
RATES[18] = 0.1001;
RATES[19] = 0.1001;
RATES[21] = 0.1001;
RATES[17] = 0.1001;
RATES[1] = 0.1001;
RATES[10] = 0.1001;
RATES[5] = 0.1001;
RATES[22] = 0.1001;
RATES[23] = 0.1001;
RATES[24] = 0.1001;
RATES[25] = 0.1001;
RATES[26] = 0.1001;
RATES[27] = 0.1001;
RATES[28] = 0.1001;
RATES[29] = 0.1001;
RATES[30] = 0.1001;
}
void
computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
                 double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
resid[0] = RATES[0] - - (ALGEBRAIC[2]+ALGEBRAIC[9]+ALGEBRAIC[18]+ALGEBRAIC[25]+ALGEBRAIC[32]+ALGEBRAIC[29]+ALGEBRAIC[39]+ALGEBRAIC[40]+ALGEBRAIC[42]+ALGEBRAIC[41]+ALGEBRAIC[0]+ALGEBRAIC[67])/CONSTANTS[3];
resid[1] = RATES[2] - (ALGEBRAIC[3] - STATES[2])/ALGEBRAIC[4];
resid[2] = RATES[3] - (ALGEBRAIC[5] - STATES[3])/ALGEBRAIC[6];
resid[3] = RATES[4] - (ALGEBRAIC[7] - STATES[4])/ALGEBRAIC[8];
resid[4] = RATES[6] - (ALGEBRAIC[10] - STATES[6])/ALGEBRAIC[11];
resid[5] = RATES[7] - (ALGEBRAIC[12] - STATES[7])/ALGEBRAIC[13];
resid[6] = RATES[8] - (ALGEBRAIC[14] - STATES[8])/ALGEBRAIC[15];
resid[7] = RATES[9] - (ALGEBRAIC[16] - STATES[9])/CONSTANTS[13];
resid[8] = RATES[11] - (ALGEBRAIC[19] - STATES[11])/ALGEBRAIC[20];
resid[9] = RATES[12] - (ALGEBRAIC[21] - STATES[12])/ALGEBRAIC[22];
resid[10] = RATES[13] - (ALGEBRAIC[23] - STATES[13])/ALGEBRAIC[24];
resid[11] = RATES[14] - (ALGEBRAIC[26] - STATES[14])/ALGEBRAIC[27];
resid[12] = RATES[15] - (ALGEBRAIC[28] - STATES[15])/CONSTANTS[84];
resid[13] = RATES[16] - (ALGEBRAIC[33] - STATES[16])/ALGEBRAIC[34];
resid[14] = RATES[20] -  - CONSTANTS[34]*pow(STATES[5]/1.00000, CONSTANTS[40])*STATES[20]+ CONSTANTS[35]*STATES[18];
resid[15] = RATES[18] - ( CONSTANTS[34]*pow(STATES[5]/1.00000, CONSTANTS[40])*STATES[20] - ( CONSTANTS[35]*STATES[18]+ CONSTANTS[36]*pow(STATES[5]/1.00000, CONSTANTS[41])*STATES[18]+ CONSTANTS[38]*STATES[18]))+ CONSTANTS[37]*STATES[19]+ CONSTANTS[39]*STATES[21];
resid[16] = RATES[19] -  CONSTANTS[36]*pow(STATES[5]/1.00000, CONSTANTS[41])*STATES[18] -  CONSTANTS[37]*STATES[19];
resid[17] = RATES[21] -  CONSTANTS[38]*STATES[18] -  CONSTANTS[39]*STATES[21];
resid[18] = RATES[17] -  ALGEBRAIC[52]*(ALGEBRAIC[48] - (ALGEBRAIC[46]+ALGEBRAIC[51]+( ((ALGEBRAIC[37] -  2.00000*ALGEBRAIC[42])+ALGEBRAIC[41])*1.00000)/( 2.00000*CONSTANTS[59]*CONSTANTS[2])));
resid[19] = RATES[1] - ( - (ALGEBRAIC[2]+ALGEBRAIC[36]+ ALGEBRAIC[42]*3.00000+ ALGEBRAIC[40]*3.00000+ALGEBRAIC[30])*1.00000)/( CONSTANTS[59]*CONSTANTS[2]);
resid[20] = RATES[10] - ( - (ALGEBRAIC[25]+ALGEBRAIC[38]+ALGEBRAIC[18]+ALGEBRAIC[29]+ALGEBRAIC[31]+ ALGEBRAIC[40]*- 2.00000)*1.00000)/( CONSTANTS[59]*CONSTANTS[2]);
resid[21] = RATES[5] -  ALGEBRAIC[53]*((( ALGEBRAIC[43]*CONSTANTS[60])/CONSTANTS[62] - ( ALGEBRAIC[48]*CONSTANTS[59])/CONSTANTS[62]) - ( ALGEBRAIC[9]*1.00000)/( 2.00000*CONSTANTS[62]*CONSTANTS[2]));
resid[22] = RATES[22] -  ALGEBRAIC[54]*(ALGEBRAIC[47] - ALGEBRAIC[43]);
resid[23] = RATES[23] - ( ALGEBRAIC[46]*CONSTANTS[59])/CONSTANTS[61] - ( ALGEBRAIC[47]*CONSTANTS[60])/CONSTANTS[61];
resid[24] = RATES[24] - - (ALGEBRAIC[70]+ALGEBRAIC[69]+ALGEBRAIC[65]+ALGEBRAIC[66])/CONSTANTS[69];
resid[25] = RATES[25] -  ALGEBRAIC[64]*ALGEBRAIC[58] -  4.00000*ALGEBRAIC[63]*ALGEBRAIC[57];
resid[26] = RATES[26] - ( 2.00000*ALGEBRAIC[64]*ALGEBRAIC[59]+ 4.00000*ALGEBRAIC[63]*ALGEBRAIC[57]) -  ( 3.00000*ALGEBRAIC[63]+ALGEBRAIC[64])*ALGEBRAIC[58];
resid[27] = RATES[27] - ( 3.00000*ALGEBRAIC[64]*ALGEBRAIC[60]+ 3.00000*ALGEBRAIC[63]*ALGEBRAIC[58]) -  ( 2.00000*ALGEBRAIC[63]+ 2.00000*ALGEBRAIC[64])*ALGEBRAIC[59];
resid[28] = RATES[28] - ( 4.00000*ALGEBRAIC[64]*ALGEBRAIC[61]+ 2.00000*ALGEBRAIC[63]*ALGEBRAIC[59]) -  (ALGEBRAIC[63]+ 3.00000*ALGEBRAIC[64])*ALGEBRAIC[60];
resid[29] = RATES[29] - ( CONSTANTS[79]*ALGEBRAIC[62]+ ALGEBRAIC[63]*ALGEBRAIC[60]) -  (CONSTANTS[78]+ 4.00000*ALGEBRAIC[64])*ALGEBRAIC[61];
resid[30] = RATES[30] -  CONSTANTS[78]*ALGEBRAIC[61] -  CONSTANTS[79]*ALGEBRAIC[62];
}
void
computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
}
void
computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[0] = (CONDVAR[0]>=0.00000&&(CONDVAR[1]<=0.00000&&CONDVAR[2]<=0.00000) ? CONSTANTS[8] : 0.00000);
ALGEBRAIC[1] =  (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[10]/STATES[1]);
ALGEBRAIC[2] =  CONSTANTS[9]*pow(STATES[2], 3.00000)*STATES[3]*STATES[4]*(STATES[0] - ALGEBRAIC[1]);
ALGEBRAIC[3] = 1.00000/(1.00000+exp((STATES[0]+45.0000)/- 6.50000));
ALGEBRAIC[4] = 0.00136000/(( 0.320000*(STATES[0]+47.1300))/(1.00000 - exp( - 0.100000*(STATES[0]+47.1300)))+ 0.0800000*exp(- STATES[0]/11.0000));
ALGEBRAIC[5] = 1.00000/(1.00000+exp((STATES[0]+76.1000)/6.07000));
ALGEBRAIC[6] = (CONDVAR[3]>=0.00000 ?  0.000453700*(1.00000+exp(- (STATES[0]+10.6600)/11.1000)) : 0.00349000/( 0.135000*exp(- (STATES[0]+80.0000)/6.80000)+ 3.56000*exp( 0.0790000*STATES[0])+ 310000.*exp( 0.350000*STATES[0])));
ALGEBRAIC[7] = 1.00000/(1.00000+exp((STATES[0]+76.1000)/6.07000));
ALGEBRAIC[8] = (CONDVAR[4]>=0.00000 ? ( 0.0116300*(1.00000+exp( - 0.100000*(STATES[0]+32.0000))))/exp( - 2.53500e-07*STATES[0]) : 0.00349000/( ((STATES[0]+37.7800)/(1.00000+exp( 0.311000*(STATES[0]+79.2300))))*( - 127140.*exp( 0.244400*STATES[0]) -  3.47400e-05*exp( - 0.0439100*STATES[0]))+( 0.121200*exp( - 0.0105200*STATES[0]))/(1.00000+exp( - 0.137800*(STATES[0]+40.1400)))));
ALGEBRAIC[9] =  CONSTANTS[11]*STATES[6]*( (0.900000+STATES[9]/10.0000)*STATES[7]+ (0.100000 - STATES[9]/10.0000)*STATES[8])*(STATES[0] - CONSTANTS[12]);
ALGEBRAIC[10] = 1.00000/(1.00000+exp((STATES[0]+15.3000)/- 5.00000));
ALGEBRAIC[11] =  0.00305000*exp( - 0.00450000*pow(STATES[0]+7.00000, 2.00000))+ 0.00105000*exp( - 0.00200000*pow(STATES[0] - 18.0000, 2.00000))+0.000250000;
ALGEBRAIC[12] = 1.00000/(1.00000+exp((STATES[0]+26.7000)/5.40000));
ALGEBRAIC[13] =  0.105000*exp(- pow((STATES[0]+45.0000)/12.0000, 2.00000))+0.0400000/(1.00000+exp((- STATES[0]+25.0000)/25.0000))+0.0150000/(1.00000+exp((STATES[0]+75.0000)/25.0000))+0.00170000;
ALGEBRAIC[14] = 1.00000/(1.00000+exp((STATES[0]+26.7000)/5.40000));
ALGEBRAIC[15] =  0.0410000*exp(- pow((STATES[0]+47.0000)/12.0000, 2.00000))+0.0800000/(1.00000+exp((STATES[0]+55.0000)/- 5.00000))+0.0150000/(1.00000+exp((STATES[0]+75.0000)/25.0000))+0.00170000;
ALGEBRAIC[16] = 1.00000/(1.00000+STATES[5]/0.0100000);
ALGEBRAIC[17] =  (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[17]/STATES[10]);
ALGEBRAIC[18] =  CONSTANTS[14]*STATES[11]*( CONSTANTS[15]*STATES[12]+ CONSTANTS[16]*STATES[13])*(STATES[0] - ALGEBRAIC[17]);
ALGEBRAIC[19] = 1.00000/(1.00000+exp((STATES[0]+10.6000)/- 11.4200));
ALGEBRAIC[20] = 1.00000/( 45.1600*exp( 0.0357700*(STATES[0]+50.0000))+ 98.9000*exp( - 0.100000*(STATES[0]+38.0000)));
ALGEBRAIC[21] = 1.00000/(1.00000+exp((STATES[0]+45.3000)/6.88410));
ALGEBRAIC[22] =  0.350000*exp(- pow((STATES[0]+70.0000)/15.0000, 2.00000))+0.0350000;
ALGEBRAIC[23] = 1.00000/(1.00000+exp((STATES[0]+45.3000)/6.88410));
ALGEBRAIC[24] =  3.70000*exp(- pow((STATES[0]+70.0000)/30.0000, 2.00000))+0.0350000;
ALGEBRAIC[25] =  CONSTANTS[18]*STATES[14]*STATES[15]*(STATES[0] - ALGEBRAIC[17]);
ALGEBRAIC[26] = 1.00000/(1.00000+exp((STATES[0]+11.5000)/- 11.8200));
ALGEBRAIC[27] = 10.0000/( 45.1600*exp( 0.0357700*(STATES[0]+50.0000))+ 98.9000*exp( - 0.100000*(STATES[0]+38.0000)));
ALGEBRAIC[28] = 1.00000/(1.00000+exp((STATES[0]+87.5000)/10.3000));
ALGEBRAIC[29] = ( (48.0000/(exp((STATES[0]+37.0000)/25.0000)+exp((STATES[0]+37.0000)/- 25.0000))+10.0000)*0.00100000)/(1.00000+exp((STATES[0] - (ALGEBRAIC[17]+76.7700))/- 17.0000))+( CONSTANTS[19]*(STATES[0] - (ALGEBRAIC[17]+1.73000)))/( (1.00000+exp(( 1.61300*CONSTANTS[2]*(STATES[0] - (ALGEBRAIC[17]+1.73000)))/( CONSTANTS[0]*CONSTANTS[1])))*(1.00000+exp((CONSTANTS[17] - 0.998800)/- 0.124000)));
ALGEBRAIC[30] =  CONSTANTS[20]*STATES[16]*CONSTANTS[21]*(STATES[0] - ALGEBRAIC[1]);
ALGEBRAIC[31] =  CONSTANTS[20]*STATES[16]*CONSTANTS[85]*(STATES[0] - ALGEBRAIC[17]);
ALGEBRAIC[32] = ALGEBRAIC[30]+ALGEBRAIC[31];
ALGEBRAIC[33] = 1.00000/(1.00000+exp((STATES[0]+138.600)/10.4800));
ALGEBRAIC[34] = 1.00000/( 0.118850*exp((STATES[0]+80.0000)/28.3700)+ 0.562300*exp((STATES[0]+80.0000)/- 14.1900));
ALGEBRAIC[36] =  CONSTANTS[22]*(STATES[0] - ALGEBRAIC[1]);
ALGEBRAIC[35] =  (( 0.500000*CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[25]/STATES[17]);
ALGEBRAIC[37] =  CONSTANTS[23]*(STATES[0] - ALGEBRAIC[35]);
ALGEBRAIC[38] =  CONSTANTS[24]*(STATES[0] - ALGEBRAIC[17]);
ALGEBRAIC[39] = ALGEBRAIC[36]+ALGEBRAIC[37]+ALGEBRAIC[38];
ALGEBRAIC[40] = ( (( (( CONSTANTS[26]*1.00000)/(1.00000+ 0.124500*exp(( - 0.100000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))+ 0.0365000*CONSTANTS[86]*exp(( - STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))))*CONSTANTS[17])/(CONSTANTS[17]+CONSTANTS[27]))*1.00000)/(1.00000+pow(CONSTANTS[28]/STATES[1], 1.50000));
ALGEBRAIC[41] = ( CONSTANTS[29]*STATES[17])/(STATES[17]+0.000400000);
ALGEBRAIC[42] = ( CONSTANTS[30]*( pow(STATES[1], 3.00000)*CONSTANTS[25]*exp( 0.0374300*STATES[0]*CONSTANTS[32]) -  pow(CONSTANTS[10], 3.00000)*STATES[17]*exp( 0.0374300*STATES[0]*(CONSTANTS[32] - 1.00000))))/(1.00000+ CONSTANTS[31]*( STATES[17]*pow(CONSTANTS[10], 3.00000)+ CONSTANTS[25]*pow(STATES[1], 3.00000)));
ALGEBRAIC[43] =  CONSTANTS[33]*(STATES[18]+STATES[19])*(STATES[22] - STATES[5]);
ALGEBRAIC[44] = pow(STATES[17]/CONSTANTS[42], CONSTANTS[47]);
ALGEBRAIC[45] = pow(STATES[23]/CONSTANTS[43], CONSTANTS[48]);
ALGEBRAIC[46] = ( CONSTANTS[46]*( CONSTANTS[44]*ALGEBRAIC[44] -  CONSTANTS[45]*ALGEBRAIC[45]))/(1.00000+ALGEBRAIC[44]+ALGEBRAIC[45]);
ALGEBRAIC[47] = (STATES[23] - STATES[22])/CONSTANTS[49];
ALGEBRAIC[48] = (STATES[5] - STATES[17])/CONSTANTS[50];
ALGEBRAIC[49] =  CONSTANTS[55]*STATES[17]*(CONSTANTS[53] - CONSTANTS[51]) -  CONSTANTS[56]*CONSTANTS[51];
ALGEBRAIC[50] =  CONSTANTS[57]*STATES[17]*(CONSTANTS[54] - CONSTANTS[52]) -  CONSTANTS[58]*CONSTANTS[52];
ALGEBRAIC[51] = ALGEBRAIC[49]+ALGEBRAIC[50];
ALGEBRAIC[52] = 1.00000/(1.00000+( CONSTANTS[66]*CONSTANTS[63])/pow(CONSTANTS[63]+STATES[17], 2.00000)+( CONSTANTS[68]*CONSTANTS[65])/pow(CONSTANTS[65]+STATES[17], 2.00000));
ALGEBRAIC[53] = 1.00000/(1.00000+( CONSTANTS[66]*CONSTANTS[63])/pow(CONSTANTS[63]+STATES[5], 2.00000));
ALGEBRAIC[54] = 1.00000/(1.00000+( CONSTANTS[67]*CONSTANTS[64])/pow(CONSTANTS[64]+STATES[22], 2.00000));
ALGEBRAIC[57] = (CONDVAR[6]<0.00000 ? 0.00000 : CONDVAR[7]>0.00000 ? 1.00000 : STATES[25]);
ALGEBRAIC[58] = (CONDVAR[8]<0.00000 ? 0.00000 : CONDVAR[9]>0.00000 ? 1.00000 : STATES[26]);
ALGEBRAIC[59] = (CONDVAR[10]<0.00000 ? 0.00000 : CONDVAR[11]>0.00000 ? 1.00000 : STATES[27]);
ALGEBRAIC[60] = (CONDVAR[12]<0.00000 ? 0.00000 : CONDVAR[13]>0.00000 ? 1.00000 : STATES[28]);
ALGEBRAIC[61] = (CONDVAR[14]<0.00000 ? 0.00000 : CONDVAR[15]>0.00000 ? 1.00000 : STATES[29]);
ALGEBRAIC[62] = (CONDVAR[16]<0.00000 ? 0.00000 : CONDVAR[17]>0.00000 ? 1.00000 : STATES[30]);
ALGEBRAIC[55] = (CONDVAR[5]<0.00000 ? 1.00000e-07 : STATES[24]);
ALGEBRAIC[63] =  CONSTANTS[74]*exp(( ALGEBRAIC[55]*CONSTANTS[75]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]));
ALGEBRAIC[64] =  CONSTANTS[76]*exp(( ALGEBRAIC[55]*CONSTANTS[77]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]));
ALGEBRAIC[65] =  CONSTANTS[80]*(ALGEBRAIC[55] - CONSTANTS[81]);
ALGEBRAIC[66] = ( 1.00000e+06*(ALGEBRAIC[55] - STATES[0]))/CONSTANTS[82];
ALGEBRAIC[67] =  -1.00000*ALGEBRAIC[66]*CONSTANTS[83];
ALGEBRAIC[69] = ( (( CONSTANTS[73]*ALGEBRAIC[62]*ALGEBRAIC[55]*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*(STATES[10] -  CONSTANTS[17]*exp(( - ALGEBRAIC[55]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))))/(1.00000 - exp(( - ALGEBRAIC[55]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])));
ALGEBRAIC[56] =  (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[17]/STATES[10]);
ALGEBRAIC[68] = 1.00000/(CONSTANTS[71]+exp(( CONSTANTS[72]*(ALGEBRAIC[55] - ALGEBRAIC[56])*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])));
ALGEBRAIC[70] =  CONSTANTS[70]*ALGEBRAIC[68]* pow(( CONSTANTS[17]*0.00100000), 1.0 / 2)*(ALGEBRAIC[55] - ALGEBRAIC[56]);
}
void
getStateInformation(double* SI)
{
SI[0] = 1.0;
SI[1] = 1.0;
SI[2] = 1.0;
SI[3] = 1.0;
SI[4] = 1.0;
SI[5] = 1.0;
SI[6] = 1.0;
SI[7] = 1.0;
SI[8] = 1.0;
SI[9] = 1.0;
SI[10] = 1.0;
SI[11] = 1.0;
SI[12] = 1.0;
SI[13] = 1.0;
SI[14] = 1.0;
SI[15] = 1.0;
SI[16] = 1.0;
SI[17] = 1.0;
SI[18] = 1.0;
SI[19] = 1.0;
SI[20] = 1.0;
SI[21] = 1.0;
SI[22] = 1.0;
SI[23] = 1.0;
SI[24] = 1.0;
SI[25] = 1.0;
SI[26] = 1.0;
SI[27] = 1.0;
SI[28] = 1.0;
SI[29] = 1.0;
SI[30] = 1.0;
}
void
computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
             double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
CONDVAR[0] = VOI - CONSTANTS[4];
CONDVAR[1] = VOI - CONSTANTS[5];
CONDVAR[2] = ((VOI - CONSTANTS[4]) -  floor((VOI - CONSTANTS[4])/CONSTANTS[6])*CONSTANTS[6]) - CONSTANTS[7];
CONDVAR[3] = STATES[0] - - 40.0000;
CONDVAR[4] = STATES[0] - - 40.0000;
CONDVAR[5] = fabs(STATES[24]) - 1.00000e-07;
CONDVAR[6] = STATES[25] - 0.00000;
CONDVAR[7] = STATES[25] - 1.00000;
CONDVAR[8] = STATES[26] - 0.00000;
CONDVAR[9] = STATES[26] - 1.00000;
CONDVAR[10] = STATES[27] - 0.00000;
CONDVAR[11] = STATES[27] - 1.00000;
CONDVAR[12] = STATES[28] - 0.00000;
CONDVAR[13] = STATES[28] - 1.00000;
CONDVAR[14] = STATES[29] - 0.00000;
CONDVAR[15] = STATES[29] - 1.00000;
CONDVAR[16] = STATES[30] - 0.00000;
CONDVAR[17] = STATES[30] - 1.00000;
}