# Size of variable arrays: sizeAlgebraic = 52 sizeStates = 21 sizeConstants = 70 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (second)" legend_states[0] = "V in component membrane (millivolt)" legend_constants[0] = "R in component membrane (millijoule_per_mole_kelvin)" legend_constants[1] = "T in component membrane (kelvin)" legend_constants[2] = "F in component membrane (coulomb_per_mole)" legend_constants[3] = "Cm in component membrane (microF)" legend_algebraic[26] = "i_K1 in component time_independent_potassium_current (nanoA)" legend_algebraic[43] = "i_to in component transient_outward_current (nanoA)" legend_algebraic[30] = "i_K in component time_dependent_potassium_current (nanoA)" legend_algebraic[36] = "i_Ca_L_K_cyt in component L_type_Ca_channel (nanoA)" legend_algebraic[39] = "i_Ca_L_K_ds in component L_type_Ca_channel (nanoA)" legend_algebraic[44] = "i_NaK in component sodium_potassium_pump (nanoA)" legend_algebraic[32] = "i_Na in component fast_sodium_current (nanoA)" legend_algebraic[33] = "i_b_Na in component sodium_background_current (nanoA)" legend_algebraic[37] = "i_Ca_L_Na_cyt in component L_type_Ca_channel (nanoA)" legend_algebraic[40] = "i_Ca_L_Na_ds in component L_type_Ca_channel (nanoA)" legend_algebraic[45] = "i_NaCa_cyt in component sodium_calcium_exchanger (nanoA)" legend_algebraic[46] = "i_NaCa_ds in component sodium_calcium_exchanger (nanoA)" legend_algebraic[35] = "i_Ca_L_Ca_cyt in component L_type_Ca_channel (nanoA)" legend_algebraic[38] = "i_Ca_L_Ca_ds in component L_type_Ca_channel (nanoA)" legend_algebraic[42] = "i_b_Ca in component calcium_background_current (nanoA)" legend_algebraic[34] = "i_b_K in component potassium_background_current (nanoA)" legend_algebraic[6] = "i_Stim in component membrane (nanoA)" legend_constants[4] = "stim_start in component membrane (second)" legend_constants[5] = "stim_end in component membrane (second)" legend_constants[6] = "stim_period in component membrane (second)" legend_constants[7] = "stim_duration in component membrane (second)" legend_constants[8] = "stim_amplitude in component membrane (nanoA)" legend_algebraic[14] = "E_Na in component reversal_potentials (millivolt)" legend_algebraic[20] = "E_K in component reversal_potentials (millivolt)" legend_algebraic[22] = "E_Ca in component reversal_potentials (millivolt)" legend_algebraic[24] = "E_mh in component reversal_potentials (millivolt)" legend_states[1] = "K_o in component extracellular_potassium_concentration (millimolar)" legend_constants[9] = "Na_o in component extracellular_sodium_concentration (millimolar)" legend_states[2] = "K_i in component intracellular_potassium_concentration (millimolar)" legend_states[3] = "Na_i in component intracellular_sodium_concentration (millimolar)" legend_constants[10] = "Ca_o in component extracellular_calcium_concentration (millimolar)" legend_states[4] = "Ca_i in component intracellular_calcium_concentration (millimolar)" legend_constants[11] = "K_mk1 in component time_independent_potassium_current (millimolar)" legend_constants[12] = "g_K1 in component time_independent_potassium_current (microS)" legend_algebraic[28] = "I_K in component time_dependent_potassium_current (nanoA)" legend_constants[13] = "i_K_max in component time_dependent_potassium_current (nanoA)" legend_states[5] = "x in component time_dependent_potassium_current_x_gate (dimensionless)" legend_algebraic[8] = "alpha_x in component time_dependent_potassium_current_x_gate (per_second)" legend_algebraic[16] = "beta_x in component time_dependent_potassium_current_x_gate (per_second)" legend_constants[14] = "delta_x in component time_dependent_potassium_current_x_gate (millivolt)" legend_algebraic[0] = "E0_x in component time_dependent_potassium_current_x_gate (millivolt)" legend_constants[15] = "g_Na in component fast_sodium_current (microS)" legend_states[6] = "m in component fast_sodium_current_m_gate (dimensionless)" legend_states[7] = "h in component fast_sodium_current_h_gate (dimensionless)" legend_algebraic[9] = "alpha_m in component fast_sodium_current_m_gate (per_second)" legend_algebraic[17] = "beta_m in component fast_sodium_current_m_gate (per_second)" legend_constants[16] = "delta_m in component fast_sodium_current_m_gate (millivolt)" legend_algebraic[1] = "E0_m in component fast_sodium_current_m_gate (millivolt)" legend_algebraic[2] = "alpha_h in component fast_sodium_current_h_gate (per_second)" legend_algebraic[10] = "beta_h in component fast_sodium_current_h_gate (per_second)" legend_constants[17] = "shift_h in component fast_sodium_current_h_gate (millivolt)" legend_constants[18] = "g_bna in component sodium_background_current (microS)" legend_constants[19] = "g_bk in component potassium_background_current (microS)" legend_algebraic[41] = "i_Ca_L in component L_type_Ca_channel (nanoA)" legend_constants[20] = "P_Ca_L in component L_type_Ca_channel (nanoA_per_millimolar)" legend_constants[21] = "P_CaK in component L_type_Ca_channel (dimensionless)" legend_constants[22] = "P_CaNa in component L_type_Ca_channel (dimensionless)" legend_states[8] = "Ca_ds in component intracellular_calcium_concentration (millimolar)" legend_states[9] = "d in component L_type_Ca_channel_d_gate (dimensionless)" legend_states[10] = "f in component L_type_Ca_channel_f_gate (dimensionless)" legend_states[11] = "f2 in component L_type_Ca_channel_f2_gate (dimensionless)" legend_states[12] = "f2ds in component L_type_Ca_channel_f2ds_gate (dimensionless)" legend_constants[23] = "Km_f2 in component L_type_Ca_channel (millimolar)" legend_constants[24] = "Km_f2ds in component L_type_Ca_channel (millimolar)" legend_constants[25] = "R_decay in component L_type_Ca_channel (per_second)" legend_constants[26] = "FrICa in component L_type_Ca_channel (dimensionless)" legend_algebraic[11] = "alpha_d in component L_type_Ca_channel_d_gate (per_second)" legend_algebraic[18] = "beta_d in component L_type_Ca_channel_d_gate (per_second)" legend_algebraic[3] = "E0_d in component L_type_Ca_channel_d_gate (millivolt)" legend_constants[27] = "speed_d in component L_type_Ca_channel_d_gate (dimensionless)" legend_algebraic[12] = "alpha_f in component L_type_Ca_channel_f_gate (per_second)" legend_algebraic[19] = "beta_f in component L_type_Ca_channel_f_gate (per_second)" legend_constants[28] = "speed_f in component L_type_Ca_channel_f_gate (dimensionless)" legend_constants[29] = "delta_f in component L_type_Ca_channel_f_gate (millivolt)" legend_algebraic[4] = "E0_f in component L_type_Ca_channel_f_gate (millivolt)" legend_constants[30] = "g_bca in component calcium_background_current (microS)" legend_constants[31] = "g_to in component transient_outward_current (microS)" legend_constants[32] = "g_tos in component transient_outward_current (dimensionless)" legend_states[13] = "s in component transient_outward_current_s_gate (dimensionless)" legend_states[14] = "r in component transient_outward_current_r_gate (dimensionless)" legend_algebraic[5] = "alpha_s in component transient_outward_current_s_gate (per_second)" legend_algebraic[13] = "beta_s in component transient_outward_current_s_gate (per_second)" legend_constants[33] = "i_NaK_max in component sodium_potassium_pump (nanoA)" legend_constants[34] = "K_mK in component sodium_potassium_pump (millimolar)" legend_constants[35] = "K_mNa in component sodium_potassium_pump (millimolar)" legend_algebraic[48] = "i_NaCa in component sodium_calcium_exchanger (nanoA)" legend_constants[36] = "k_NaCa in component sodium_calcium_exchanger (nanoA)" legend_constants[37] = "n_NaCa in component sodium_calcium_exchanger (dimensionless)" legend_constants[38] = "d_NaCa in component sodium_calcium_exchanger (dimensionless)" legend_constants[39] = "gamma in component sodium_calcium_exchanger (dimensionless)" legend_constants[40] = "FRiNaCa in component sodium_calcium_exchanger (dimensionless)" legend_algebraic[49] = "i_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second)" legend_constants[66] = "K_1 in component sarcoplasmic_reticulum_calcium_pump (dimensionless)" legend_algebraic[47] = "K_2 in component sarcoplasmic_reticulum_calcium_pump (millimolar)" legend_constants[41] = "K_cyca in component sarcoplasmic_reticulum_calcium_pump (millimolar)" legend_constants[42] = "K_xcs in component sarcoplasmic_reticulum_calcium_pump (dimensionless)" legend_constants[43] = "K_srca in component sarcoplasmic_reticulum_calcium_pump (millimolar)" legend_constants[44] = "alpha_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second)" legend_constants[45] = "beta_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second)" legend_states[15] = "Ca_up in component intracellular_calcium_concentration (millimolar)" legend_algebraic[50] = "i_trans in component calcium_translocation (millimolar_per_second)" legend_states[16] = "Ca_rel in component intracellular_calcium_concentration (millimolar)" legend_algebraic[51] = "i_rel in component calcium_release (millimolar_per_second)" legend_algebraic[7] = "VoltDep in component calcium_release (dimensionless)" legend_algebraic[23] = "RegBindSite in component calcium_release (dimensionless)" legend_algebraic[15] = "CaiReg in component calcium_release (dimensionless)" legend_algebraic[21] = "CadsReg in component calcium_release (dimensionless)" legend_algebraic[25] = "ActRate in component calcium_release (per_second)" legend_algebraic[27] = "InactRate in component calcium_release (per_second)" legend_constants[46] = "K_leak_rate in component calcium_release (per_second)" legend_constants[47] = "K_m_rel in component calcium_release (per_second)" legend_constants[48] = "K_m_Ca_cyt in component calcium_release (millimolar)" legend_constants[49] = "K_m_Ca_ds in component calcium_release (millimolar)" legend_algebraic[31] = "PrecFrac in component calcium_release (dimensionless)" legend_states[17] = "ActFrac in component calcium_release (dimensionless)" legend_states[18] = "ProdFrac in component calcium_release (dimensionless)" legend_algebraic[29] = "SpeedRel in component calcium_release (dimensionless)" legend_constants[69] = "V_i in component intracellular_calcium_concentration (micrometre3)" legend_constants[50] = "K_b in component extracellular_potassium_concentration (millimolar)" legend_constants[51] = "pf in component extracellular_potassium_concentration (per_second)" legend_constants[68] = "V_e in component intracellular_calcium_concentration (micrometre3)" legend_states[19] = "Ca_Calmod in component intracellular_calcium_concentration (millimolar)" legend_states[20] = "Ca_Trop in component intracellular_calcium_concentration (millimolar)" legend_constants[52] = "Calmod in component intracellular_calcium_concentration (millimolar)" legend_constants[53] = "Trop in component intracellular_calcium_concentration (millimolar)" legend_constants[54] = "alpha_Calmod in component intracellular_calcium_concentration (per_millimolar_second)" legend_constants[55] = "beta_Calmod in component intracellular_calcium_concentration (per_second)" legend_constants[56] = "alpha_Trop in component intracellular_calcium_concentration (per_millimolar_second)" legend_constants[57] = "beta_Trop in component intracellular_calcium_concentration (per_second)" legend_constants[58] = "radius in component intracellular_calcium_concentration (micrometre)" legend_constants[59] = "length in component intracellular_calcium_concentration (micrometre)" legend_constants[65] = "V_Cell in component intracellular_calcium_concentration (micrometre3)" legend_constants[67] = "V_i_ratio in component intracellular_calcium_concentration (dimensionless)" legend_constants[60] = "V_ds_ratio in component intracellular_calcium_concentration (dimensionless)" legend_constants[61] = "V_rel_ratio in component intracellular_calcium_concentration (dimensionless)" legend_constants[62] = "V_e_ratio in component intracellular_calcium_concentration (dimensionless)" legend_constants[63] = "V_up_ratio in component intracellular_calcium_concentration (dimensionless)" legend_constants[64] = "Kdecay in component intracellular_calcium_concentration (per_second)" legend_rates[0] = "d/dt V in component membrane (millivolt)" legend_rates[5] = "d/dt x in component time_dependent_potassium_current_x_gate (dimensionless)" legend_rates[6] = "d/dt m in component fast_sodium_current_m_gate (dimensionless)" legend_rates[7] = "d/dt h in component fast_sodium_current_h_gate (dimensionless)" legend_rates[9] = "d/dt d in component L_type_Ca_channel_d_gate (dimensionless)" legend_rates[10] = "d/dt f in component L_type_Ca_channel_f_gate (dimensionless)" legend_rates[11] = "d/dt f2 in component L_type_Ca_channel_f2_gate (dimensionless)" legend_rates[12] = "d/dt f2ds in component L_type_Ca_channel_f2ds_gate (dimensionless)" legend_rates[13] = "d/dt s in component transient_outward_current_s_gate (dimensionless)" legend_rates[14] = "d/dt r in component transient_outward_current_r_gate (dimensionless)" legend_rates[17] = "d/dt ActFrac in component calcium_release (dimensionless)" legend_rates[18] = "d/dt ProdFrac in component calcium_release (dimensionless)" legend_rates[3] = "d/dt Na_i in component intracellular_sodium_concentration (millimolar)" legend_rates[1] = "d/dt K_o in component extracellular_potassium_concentration (millimolar)" legend_rates[2] = "d/dt K_i in component intracellular_potassium_concentration (millimolar)" legend_rates[4] = "d/dt Ca_i in component intracellular_calcium_concentration (millimolar)" legend_rates[19] = "d/dt Ca_Calmod in component intracellular_calcium_concentration (millimolar)" legend_rates[20] = "d/dt Ca_Trop in component intracellular_calcium_concentration (millimolar)" legend_rates[8] = "d/dt Ca_ds in component intracellular_calcium_concentration (millimolar)" legend_rates[15] = "d/dt Ca_up in component intracellular_calcium_concentration (millimolar)" legend_rates[16] = "d/dt Ca_rel in component intracellular_calcium_concentration (millimolar)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; states[0] = -85.35765 constants[0] = 8314.472 constants[1] = 310 constants[2] = 96485.3415 constants[3] = 9.5e-5 constants[4] = 0.02 constants[5] = 9 constants[6] = 0.5 constants[7] = 0.002 constants[8] = -1.8 states[1] = 5.3367 constants[9] = 148.5 states[2] = 140.096 states[3] = 6.9366 constants[10] = 2.5 states[4] = 3.792e-5 constants[11] = 10 constants[12] = 0.12 constants[13] = 1.5 states[5] = 3.5095e-6 constants[14] = 0.0001 constants[15] = 0.6 states[6] = 0.00448 states[7] = 0.9704 constants[16] = 1e-5 constants[17] = 0 constants[18] = 0.0001 constants[19] = 0.004 constants[20] = 0.045 constants[21] = 0.003 constants[22] = 0.01 states[8] = 0.00077 states[9] = 4.171e-12 states[10] = 0.999997 states[11] = 0.99279 states[12] = 0.459 constants[23] = 100000 constants[24] = 0.001 constants[25] = 20 constants[26] = 1 constants[27] = 10 constants[28] = 2 constants[29] = 0.0001 constants[30] = 0.00025 constants[31] = 0.048 constants[32] = 0.15 states[13] = 0.9379 states[14] = 2.6578e-5 constants[33] = 0.7 constants[34] = 1 constants[35] = 40 constants[36] = 0.0002 constants[37] = 3 constants[38] = 0.001 constants[39] = 0.5 constants[40] = 0.001 constants[41] = 0.0003 constants[42] = 0.4 constants[43] = 0.5 constants[44] = 0.4 constants[45] = 0.03 states[15] = 0.3342 states[16] = 0.31007 constants[46] = 0.05 constants[47] = 250 constants[48] = 0.0005 constants[49] = 0.01 states[17] = 0.0112 states[18] = 0.9059 constants[50] = 5.4 constants[51] = 0.7 states[19] = 0.001419 states[20] = 0.000932 constants[52] = 0.02 constants[53] = 0.05 constants[54] = 100000 constants[55] = 50 constants[56] = 100000 constants[57] = 200 constants[58] = 12 constants[59] = 74 constants[60] = 0.1 constants[61] = 0.1 constants[62] = 0.4 constants[63] = 0.01 constants[64] = 10 constants[65] = (3.14159*(power(constants[58]/1000.00, 2.00000))*constants[59])/1000.00 constants[66] = (constants[41]*constants[42])/constants[43] constants[67] = ((1.00000-constants[62])-constants[63])-constants[61] constants[68] = constants[65]*constants[62] constants[69] = constants[65]*constants[67] return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic rates[11] = 1.00000-1.00000*(states[4]/(constants[23]+states[4])+states[11]) rates[12] = constants[25]*(1.00000-(states[8]/(constants[24]+states[8])+states[12])) rates[14] = 333.000*(1.00000/(1.00000+exp(-((states[0]+4.00000)-24.0000)/10.0000))-states[14]) algebraic[2] = 20.0000*exp(-0.125000*((states[0]+75.0000)-constants[17])) algebraic[10] = 2000.00/(1.00000+320.000*exp(-0.100000*((states[0]+75.0000)-constants[17]))) rates[7] = algebraic[2]*(1.00000-states[7])-algebraic[10]*states[7] algebraic[5] = 0.260000*0.0330000*exp(-states[0]/14.8750) algebraic[13] = (0.260000*33.0000)/(1.00000+exp(-(states[0]+10.0000)/7.00000)) rates[13] = algebraic[5]*(1.00000-states[13])-algebraic[13]*states[13] algebraic[0] = (states[0]+22.0000)-40.0000 algebraic[8] = custom_piecewise([less(fabs(algebraic[0]) , constants[14]), 2.50000 , True, (3.00000*0.500000*algebraic[0])/(1.00000-exp(-algebraic[0]/5.00000))]) algebraic[16] = custom_piecewise([less(fabs(algebraic[0]) , constants[14]), 2.50000 , True, (3.00000*0.178000*algebraic[0])/(exp(algebraic[0]/15.0000)-1.00000)]) rates[5] = algebraic[8]*(1.00000-states[5])-algebraic[16]*states[5] algebraic[1] = states[0]+41.0000 algebraic[9] = custom_piecewise([less(fabs(algebraic[1]) , constants[16]), 2000.00 , True, (200.000*algebraic[1])/(1.00000-exp(-0.100000*algebraic[1]))]) algebraic[17] = 8000.00*exp(-0.0560000*(states[0]+66.0000)) rates[6] = algebraic[9]*(1.00000-states[6])-algebraic[17]*states[6] algebraic[3] = (states[0]+24.0000)-20.0000 algebraic[11] = custom_piecewise([less(fabs(algebraic[3]) , 0.000100000), 120.000 , True, (30.0000*algebraic[3])/(1.00000-exp(-algebraic[3]/3.00000))]) algebraic[18] = custom_piecewise([less(fabs(algebraic[3]) , 0.000100000), 120.000 , True, (12.0000*algebraic[3])/(exp(algebraic[3]/7.50000)-1.00000)]) rates[9] = constants[27]*(algebraic[11]*(1.00000-states[9])-algebraic[18]*states[9]) algebraic[4] = (states[0]+34.0000)-10.0000 algebraic[12] = custom_piecewise([less(fabs(algebraic[4]) , constants[29]), 25.0000 , True, (6.25000*algebraic[4])/(exp(algebraic[4]/5.50000)-1.00000)]) algebraic[19] = 12.0000/(1.00000+exp((-1.00000*(states[0]+34.0000))/5.50000)) rates[10] = constants[28]*(algebraic[12]*(1.00000-states[10])-algebraic[19]*states[10]) algebraic[15] = states[4]/(states[4]+constants[48]) algebraic[21] = states[8]/(states[8]+constants[49]) algebraic[23] = algebraic[15]+(1.00000-algebraic[15])*algebraic[21] algebraic[27] = 60.0000+500.000*(power(algebraic[23], 2.00000)) algebraic[29] = custom_piecewise([less(states[0] , -50.0000), 5.00000 , True, 1.00000]) rates[18] = states[17]*algebraic[29]*algebraic[27]-algebraic[29]*1.00000*states[18] algebraic[7] = exp(0.0800000*(states[0]-40.0000)) algebraic[25] = 0.00000*algebraic[7]+500.000*(power(algebraic[23], 2.00000)) algebraic[31] = (1.00000-states[17])-states[18] rates[17] = algebraic[31]*algebraic[29]*algebraic[25]-states[17]*algebraic[29]*algebraic[27] algebraic[38] = (((constants[26]*4.00000*constants[20]*states[9]*states[10]*states[12]*(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))/(1.00000-exp((-(states[0]-50.0000)*constants[2]*2.00000)/(constants[0]*constants[1]))))*(states[4]*exp((100.000*constants[2])/(constants[0]*constants[1]))-constants[10]*exp((-(states[0]-50.0000)*constants[2]*2.00000)/(constants[0]*constants[1]))) rates[8] = (-1.00000*algebraic[38])/(2.00000*constants[60]*1.00000*constants[69]*constants[2])-states[8]*constants[64] algebraic[20] = ((constants[0]*constants[1])/constants[2])*log(states[1]/states[2]) algebraic[26] = (((constants[12]*states[1])/(states[1]+constants[11]))*(states[0]-algebraic[20]))/(1.00000+exp((((states[0]-algebraic[20])+10.0000)*constants[2]*1.67000)/(constants[0]*constants[1]))) algebraic[43] = constants[31]*(constants[32]+states[13]*(1.00000-constants[32]))*states[14]*(states[0]-algebraic[20]) algebraic[28] = (constants[13]*(states[2]-states[1]*exp((-states[0]*constants[2])/(constants[0]*constants[1]))))/140.000 algebraic[30] = states[5]*algebraic[28] algebraic[36] = ((((1.00000-constants[26])*constants[21]*constants[20]*states[9]*states[10]*states[11]*(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))/(1.00000-exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))))*(states[2]*exp((50.0000*constants[2])/(constants[0]*constants[1]))-states[1]*exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))) algebraic[39] = (((constants[26]*constants[21]*constants[20]*states[9]*states[10]*states[12]*(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))/(1.00000-exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))))*(states[2]*exp((50.0000*constants[2])/(constants[0]*constants[1]))-states[1]*exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))) algebraic[44] = (((constants[33]*states[1])/(constants[34]+states[1]))*states[3])/(constants[35]+states[3]) algebraic[34] = constants[19]*(states[0]-algebraic[20]) rates[1] = (1.00000*(algebraic[26]+algebraic[43]+algebraic[36]+algebraic[39]+-2.00000*algebraic[44]+algebraic[30]+algebraic[34]))/(1.00000*constants[68]*constants[2])-constants[51]*(states[1]-constants[50]) rates[2] = (-1.00000/(1.00000*constants[69]*constants[2]))*((algebraic[26]+algebraic[30]+algebraic[36]+algebraic[39]+algebraic[43]+algebraic[34])-2.00000*algebraic[44]) algebraic[24] = ((constants[0]*constants[1])/constants[2])*log((constants[9]+0.120000*states[1])/(states[3]+0.120000*states[2])) algebraic[32] = constants[15]*(power(states[6], 3.00000))*states[7]*(states[0]-algebraic[24]) algebraic[14] = ((constants[0]*constants[1])/constants[2])*log(constants[9]/states[3]) algebraic[33] = constants[18]*(states[0]-algebraic[14]) algebraic[37] = ((((1.00000-constants[26])*constants[22]*constants[20]*states[9]*states[10]*states[11]*(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))/(1.00000-exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))))*(states[3]*exp((50.0000*constants[2])/(constants[0]*constants[1]))-constants[9]*exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))) algebraic[40] = (((constants[26]*constants[22]*constants[20]*states[9]*states[10]*states[12]*(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))/(1.00000-exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))))*(states[3]*exp((50.0000*constants[2])/(constants[0]*constants[1]))-constants[9]*exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))) algebraic[45] = ((1.00000-constants[40])*constants[36]*(exp((constants[39]*(constants[37]-2.00000)*states[0]*constants[2])/(constants[0]*constants[1]))*(power(states[3], constants[37]))*constants[10]-exp(((constants[39]-1.00000)*(constants[37]-2.00000)*states[0]*constants[2])/(constants[0]*constants[1]))*(power(constants[9], constants[37]))*states[4]))/((1.00000+constants[38]*(states[4]*(power(constants[9], constants[37]))+constants[10]*(power(states[3], constants[37]))))*(1.00000+states[4]/0.00690000)) rates[3] = (-1.00000/(1.00000*constants[69]*constants[2]))*(algebraic[32]+algebraic[33]+3.00000*algebraic[44]+3.00000*algebraic[45]+algebraic[37]+algebraic[40]) algebraic[46] = (constants[40]*constants[36]*(exp((constants[39]*(constants[37]-2.00000)*states[0]*constants[2])/(constants[0]*constants[1]))*(power(states[3], constants[37]))*constants[10]-exp(((constants[39]-1.00000)*(constants[37]-2.00000)*states[0]*constants[2])/(constants[0]*constants[1]))*(power(constants[9], constants[37]))*states[8]))/((1.00000+constants[38]*(states[8]*(power(constants[9], constants[37]))+constants[10]*(power(states[3], constants[37]))))*(1.00000+states[8]/0.00690000)) algebraic[35] = ((((1.00000-constants[26])*4.00000*constants[20]*states[9]*states[10]*states[11]*(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))/(1.00000-exp((-(states[0]-50.0000)*constants[2]*2.00000)/(constants[0]*constants[1]))))*(states[4]*exp((100.000*constants[2])/(constants[0]*constants[1]))-constants[10]*exp((-(states[0]-50.0000)*constants[2]*2.00000)/(constants[0]*constants[1]))) algebraic[22] = ((0.500000*constants[0]*constants[1])/constants[2])*log(constants[10]/states[4]) algebraic[42] = constants[30]*(states[0]-algebraic[22]) algebraic[6] = custom_piecewise([greater_equal(voi , constants[4]) & less_equal(voi , constants[5]) & less_equal((voi-constants[4])-floor((voi-constants[4])/constants[6])*constants[6] , constants[7]), constants[8] , True, 0.00000]) rates[0] = (-1.00000/constants[3])*(algebraic[6]+algebraic[26]+algebraic[43]+algebraic[30]+algebraic[44]+algebraic[32]+algebraic[33]+algebraic[37]+algebraic[40]+algebraic[45]+algebraic[46]+algebraic[35]+algebraic[38]+algebraic[36]+algebraic[39]+algebraic[42]+algebraic[34]) algebraic[47] = states[4]+states[15]*constants[66]+constants[41]*constants[42]+constants[41] algebraic[49] = (states[4]/algebraic[47])*constants[44]-((states[15]*constants[66])/algebraic[47])*constants[45] algebraic[50] = 50.0000*(states[15]-states[16]) rates[15] = (constants[67]/constants[63])*algebraic[49]-algebraic[50] rates[19] = constants[54]*states[4]*(constants[52]-states[19])-constants[55]*states[19] algebraic[51] = ((power(states[17]/(states[17]+0.250000), 2.00000))*constants[47]+constants[46])*states[16] rates[16] = (constants[63]/constants[61])*algebraic[50]-algebraic[51] rates[20] = constants[56]*states[4]*(constants[53]-states[20])-constants[57]*states[20] rates[4] = ((((-1.00000/(2.00000*1.00000*constants[69]*constants[2]))*((algebraic[35]+algebraic[42])-2.00000*algebraic[45])+states[8]*constants[60]*constants[64]+(algebraic[51]*constants[61])/constants[67])-rates[19])-rates[20])-algebraic[49] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[2] = 20.0000*exp(-0.125000*((states[0]+75.0000)-constants[17])) algebraic[10] = 2000.00/(1.00000+320.000*exp(-0.100000*((states[0]+75.0000)-constants[17]))) algebraic[5] = 0.260000*0.0330000*exp(-states[0]/14.8750) algebraic[13] = (0.260000*33.0000)/(1.00000+exp(-(states[0]+10.0000)/7.00000)) algebraic[0] = (states[0]+22.0000)-40.0000 algebraic[8] = custom_piecewise([less(fabs(algebraic[0]) , constants[14]), 2.50000 , True, (3.00000*0.500000*algebraic[0])/(1.00000-exp(-algebraic[0]/5.00000))]) algebraic[16] = custom_piecewise([less(fabs(algebraic[0]) , constants[14]), 2.50000 , True, (3.00000*0.178000*algebraic[0])/(exp(algebraic[0]/15.0000)-1.00000)]) algebraic[1] = states[0]+41.0000 algebraic[9] = custom_piecewise([less(fabs(algebraic[1]) , constants[16]), 2000.00 , True, (200.000*algebraic[1])/(1.00000-exp(-0.100000*algebraic[1]))]) algebraic[17] = 8000.00*exp(-0.0560000*(states[0]+66.0000)) algebraic[3] = (states[0]+24.0000)-20.0000 algebraic[11] = custom_piecewise([less(fabs(algebraic[3]) , 0.000100000), 120.000 , True, (30.0000*algebraic[3])/(1.00000-exp(-algebraic[3]/3.00000))]) algebraic[18] = custom_piecewise([less(fabs(algebraic[3]) , 0.000100000), 120.000 , True, (12.0000*algebraic[3])/(exp(algebraic[3]/7.50000)-1.00000)]) algebraic[4] = (states[0]+34.0000)-10.0000 algebraic[12] = custom_piecewise([less(fabs(algebraic[4]) , constants[29]), 25.0000 , True, (6.25000*algebraic[4])/(exp(algebraic[4]/5.50000)-1.00000)]) algebraic[19] = 12.0000/(1.00000+exp((-1.00000*(states[0]+34.0000))/5.50000)) algebraic[15] = states[4]/(states[4]+constants[48]) algebraic[21] = states[8]/(states[8]+constants[49]) algebraic[23] = algebraic[15]+(1.00000-algebraic[15])*algebraic[21] algebraic[27] = 60.0000+500.000*(power(algebraic[23], 2.00000)) algebraic[29] = custom_piecewise([less(states[0] , -50.0000), 5.00000 , True, 1.00000]) algebraic[7] = exp(0.0800000*(states[0]-40.0000)) algebraic[25] = 0.00000*algebraic[7]+500.000*(power(algebraic[23], 2.00000)) algebraic[31] = (1.00000-states[17])-states[18] algebraic[38] = (((constants[26]*4.00000*constants[20]*states[9]*states[10]*states[12]*(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))/(1.00000-exp((-(states[0]-50.0000)*constants[2]*2.00000)/(constants[0]*constants[1]))))*(states[4]*exp((100.000*constants[2])/(constants[0]*constants[1]))-constants[10]*exp((-(states[0]-50.0000)*constants[2]*2.00000)/(constants[0]*constants[1]))) algebraic[20] = ((constants[0]*constants[1])/constants[2])*log(states[1]/states[2]) algebraic[26] = (((constants[12]*states[1])/(states[1]+constants[11]))*(states[0]-algebraic[20]))/(1.00000+exp((((states[0]-algebraic[20])+10.0000)*constants[2]*1.67000)/(constants[0]*constants[1]))) algebraic[43] = constants[31]*(constants[32]+states[13]*(1.00000-constants[32]))*states[14]*(states[0]-algebraic[20]) algebraic[28] = (constants[13]*(states[2]-states[1]*exp((-states[0]*constants[2])/(constants[0]*constants[1]))))/140.000 algebraic[30] = states[5]*algebraic[28] algebraic[36] = ((((1.00000-constants[26])*constants[21]*constants[20]*states[9]*states[10]*states[11]*(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))/(1.00000-exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))))*(states[2]*exp((50.0000*constants[2])/(constants[0]*constants[1]))-states[1]*exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))) algebraic[39] = (((constants[26]*constants[21]*constants[20]*states[9]*states[10]*states[12]*(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))/(1.00000-exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))))*(states[2]*exp((50.0000*constants[2])/(constants[0]*constants[1]))-states[1]*exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))) algebraic[44] = (((constants[33]*states[1])/(constants[34]+states[1]))*states[3])/(constants[35]+states[3]) algebraic[34] = constants[19]*(states[0]-algebraic[20]) algebraic[24] = ((constants[0]*constants[1])/constants[2])*log((constants[9]+0.120000*states[1])/(states[3]+0.120000*states[2])) algebraic[32] = constants[15]*(power(states[6], 3.00000))*states[7]*(states[0]-algebraic[24]) algebraic[14] = ((constants[0]*constants[1])/constants[2])*log(constants[9]/states[3]) algebraic[33] = constants[18]*(states[0]-algebraic[14]) algebraic[37] = ((((1.00000-constants[26])*constants[22]*constants[20]*states[9]*states[10]*states[11]*(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))/(1.00000-exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))))*(states[3]*exp((50.0000*constants[2])/(constants[0]*constants[1]))-constants[9]*exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))) algebraic[40] = (((constants[26]*constants[22]*constants[20]*states[9]*states[10]*states[12]*(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))/(1.00000-exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))))*(states[3]*exp((50.0000*constants[2])/(constants[0]*constants[1]))-constants[9]*exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))) algebraic[45] = ((1.00000-constants[40])*constants[36]*(exp((constants[39]*(constants[37]-2.00000)*states[0]*constants[2])/(constants[0]*constants[1]))*(power(states[3], constants[37]))*constants[10]-exp(((constants[39]-1.00000)*(constants[37]-2.00000)*states[0]*constants[2])/(constants[0]*constants[1]))*(power(constants[9], constants[37]))*states[4]))/((1.00000+constants[38]*(states[4]*(power(constants[9], constants[37]))+constants[10]*(power(states[3], constants[37]))))*(1.00000+states[4]/0.00690000)) algebraic[46] = (constants[40]*constants[36]*(exp((constants[39]*(constants[37]-2.00000)*states[0]*constants[2])/(constants[0]*constants[1]))*(power(states[3], constants[37]))*constants[10]-exp(((constants[39]-1.00000)*(constants[37]-2.00000)*states[0]*constants[2])/(constants[0]*constants[1]))*(power(constants[9], constants[37]))*states[8]))/((1.00000+constants[38]*(states[8]*(power(constants[9], constants[37]))+constants[10]*(power(states[3], constants[37]))))*(1.00000+states[8]/0.00690000)) algebraic[35] = ((((1.00000-constants[26])*4.00000*constants[20]*states[9]*states[10]*states[11]*(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))/(1.00000-exp((-(states[0]-50.0000)*constants[2]*2.00000)/(constants[0]*constants[1]))))*(states[4]*exp((100.000*constants[2])/(constants[0]*constants[1]))-constants[10]*exp((-(states[0]-50.0000)*constants[2]*2.00000)/(constants[0]*constants[1]))) algebraic[22] = ((0.500000*constants[0]*constants[1])/constants[2])*log(constants[10]/states[4]) algebraic[42] = constants[30]*(states[0]-algebraic[22]) algebraic[6] = custom_piecewise([greater_equal(voi , constants[4]) & less_equal(voi , constants[5]) & less_equal((voi-constants[4])-floor((voi-constants[4])/constants[6])*constants[6] , constants[7]), constants[8] , True, 0.00000]) algebraic[47] = states[4]+states[15]*constants[66]+constants[41]*constants[42]+constants[41] algebraic[49] = (states[4]/algebraic[47])*constants[44]-((states[15]*constants[66])/algebraic[47])*constants[45] algebraic[50] = 50.0000*(states[15]-states[16]) algebraic[51] = ((power(states[17]/(states[17]+0.250000), 2.00000))*constants[47]+constants[46])*states[16] algebraic[41] = algebraic[35]+algebraic[36]+algebraic[37]+algebraic[38]+algebraic[39]+algebraic[40] algebraic[48] = algebraic[45]+algebraic[46] return algebraic def custom_piecewise(cases): """Compute result of a piecewise function""" return select(cases[0::2],cases[1::2]) def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)