Generated Code

The following is python code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

# Size of variable arrays:
sizeAlgebraic = 54
sizeStates = 21
sizeConstants = 72
from math import *
from numpy import *

def createLegends():
    legend_states = [""] * sizeStates
    legend_rates = [""] * sizeStates
    legend_algebraic = [""] * sizeAlgebraic
    legend_voi = ""
    legend_constants = [""] * sizeConstants
    legend_voi = "time in component environment (second)"
    legend_states[0] = "V in component membrane (millivolt)"
    legend_constants[0] = "R in component membrane (joule_per_kilomole_kelvin)"
    legend_constants[1] = "T in component membrane (kelvin)"
    legend_constants[2] = "F in component membrane (coulomb_per_mole)"
    legend_constants[3] = "Cm in component membrane (microF)"
    legend_algebraic[29] = "i_K1 in component time_independent_potassium_current (nanoA)"
    legend_algebraic[45] = "i_to in component transient_outward_current (nanoA)"
    legend_algebraic[31] = "i_Kr in component rapid_delayed_rectifier_potassium_current (nanoA)"
    legend_algebraic[33] = "i_Ks in component slow_delayed_rectifier_potassium_current (nanoA)"
    legend_algebraic[38] = "i_Ca_L_K_cyt in component L_type_Ca_channel (nanoA)"
    legend_algebraic[41] = "i_Ca_L_K_ds in component L_type_Ca_channel (nanoA)"
    legend_algebraic[46] = "i_NaK in component sodium_potassium_pump (nanoA)"
    legend_algebraic[34] = "i_Na in component fast_sodium_current (nanoA)"
    legend_algebraic[36] = "i_b_Na in component sodium_background_current (nanoA)"
    legend_algebraic[35] = "i_p_Na in component persistent_sodium_current (nanoA)"
    legend_algebraic[39] = "i_Ca_L_Na_cyt in component L_type_Ca_channel (nanoA)"
    legend_algebraic[42] = "i_Ca_L_Na_ds in component L_type_Ca_channel (nanoA)"
    legend_algebraic[47] = "i_NaCa_cyt in component sodium_calcium_exchanger (nanoA)"
    legend_algebraic[48] = "i_NaCa_ds in component sodium_calcium_exchanger (nanoA)"
    legend_algebraic[37] = "i_Ca_L_Ca_cyt in component L_type_Ca_channel (nanoA)"
    legend_algebraic[40] = "i_Ca_L_Ca_ds in component L_type_Ca_channel (nanoA)"
    legend_algebraic[44] = "i_b_Ca in component calcium_background_current (nanoA)"
    legend_algebraic[7] = "i_Stim in component membrane (nanoA)"
    legend_constants[4] = "stim_start in component membrane (second)"
    legend_constants[5] = "stim_end in component membrane (second)"
    legend_constants[6] = "stim_period in component membrane (second)"
    legend_constants[7] = "stim_duration in component membrane (second)"
    legend_constants[8] = "stim_amplitude in component membrane (nanoA)"
    legend_algebraic[16] = "E_Na in component reversal_potentials (millivolt)"
    legend_algebraic[21] = "E_K in component reversal_potentials (millivolt)"
    legend_algebraic[23] = "E_Ks in component reversal_potentials (millivolt)"
    legend_algebraic[25] = "E_Ca in component reversal_potentials (millivolt)"
    legend_algebraic[27] = "E_mh in component reversal_potentials (millivolt)"
    legend_constants[9] = "P_kna in component reversal_potentials (dimensionless)"
    legend_constants[10] = "K_o in component extracellular_potassium_concentration (millimolar)"
    legend_constants[11] = "Na_o in component extracellular_sodium_concentration (millimolar)"
    legend_states[1] = "K_i in component intracellular_potassium_concentration (millimolar)"
    legend_states[2] = "Na_i in component intracellular_sodium_concentration (millimolar)"
    legend_constants[12] = "Ca_o in component extracellular_calcium_concentration (millimolar)"
    legend_states[3] = "Ca_i in component intracellular_calcium_concentration (millimolar)"
    legend_constants[13] = "K_mk1 in component time_independent_potassium_current (millimolar)"
    legend_constants[14] = "g_K1 in component time_independent_potassium_current (microS)"
    legend_constants[65] = "g_Kr in component rapid_delayed_rectifier_potassium_current (microS)"
    legend_states[4] = "xr in component rapid_delayed_rectifier_potassium_current_xr_gate (dimensionless)"
    legend_algebraic[0] = "xr_inf in component rapid_delayed_rectifier_potassium_current_xr_gate (dimensionless)"
    legend_algebraic[9] = "tau_xr in component rapid_delayed_rectifier_potassium_current_xr_gate (second)"
    legend_constants[66] = "g_Ks in component slow_delayed_rectifier_potassium_current (microS)"
    legend_states[5] = "xs in component slow_delayed_rectifier_potassium_current_xs_gate (dimensionless)"
    legend_algebraic[1] = "xs_inf in component slow_delayed_rectifier_potassium_current_xs_gate (dimensionless)"
    legend_algebraic[10] = "tau_xs in component slow_delayed_rectifier_potassium_current_xs_gate (second)"
    legend_constants[67] = "g_Na in component fast_sodium_current (microS)"
    legend_constants[15] = "nachanneldensity in component fast_sodium_current (per_microF)"
    legend_constants[16] = "gnachannel in component fast_sodium_current (microS)"
    legend_states[6] = "m in component fast_sodium_current_m_gate (dimensionless)"
    legend_states[7] = "h in component fast_sodium_current_h_gate (dimensionless)"
    legend_constants[17] = "proton in component fast_sodium_current_h_gate (dimensionless)"
    legend_algebraic[11] = "alpha_m in component fast_sodium_current_m_gate (per_second)"
    legend_algebraic[18] = "beta_m in component fast_sodium_current_m_gate (per_second)"
    legend_constants[18] = "delta_m in component fast_sodium_current_m_gate (millivolt)"
    legend_algebraic[2] = "E0_m in component fast_sodium_current_m_gate (millivolt)"
    legend_algebraic[3] = "alpha_h in component fast_sodium_current_h_gate (per_second)"
    legend_algebraic[12] = "beta_h in component fast_sodium_current_h_gate (per_second)"
    legend_constants[68] = "shifth in component fast_sodium_current_h_gate (millivolt)"
    legend_constants[19] = "g_pna in component persistent_sodium_current (microS)"
    legend_constants[20] = "g_bna in component sodium_background_current (microS)"
    legend_algebraic[43] = "i_Ca_L in component L_type_Ca_channel (nanoA)"
    legend_constants[21] = "P_Ca_L in component L_type_Ca_channel (nanoA_per_millimolar)"
    legend_constants[22] = "P_CaK in component L_type_Ca_channel (dimensionless)"
    legend_constants[23] = "P_CaNa in component L_type_Ca_channel (dimensionless)"
    legend_states[8] = "Ca_ds in component intracellular_calcium_concentration (millimolar)"
    legend_states[9] = "d in component L_type_Ca_channel_d_gate (dimensionless)"
    legend_states[10] = "f in component L_type_Ca_channel_f_gate (dimensionless)"
    legend_states[11] = "f2 in component L_type_Ca_channel_f2_gate (dimensionless)"
    legend_states[12] = "f2ds in component L_type_Ca_channel_f2ds_gate (dimensionless)"
    legend_constants[24] = "Km_f2 in component L_type_Ca_channel (millimolar)"
    legend_constants[25] = "Km_f2ds in component L_type_Ca_channel (millimolar)"
    legend_constants[26] = "R_decay in component L_type_Ca_channel (per_second)"
    legend_constants[27] = "FrICa in component L_type_Ca_channel (dimensionless)"
    legend_algebraic[13] = "alpha_d in component L_type_Ca_channel_d_gate (per_second)"
    legend_algebraic[19] = "beta_d in component L_type_Ca_channel_d_gate (per_second)"
    legend_algebraic[4] = "E0_d in component L_type_Ca_channel_d_gate (millivolt)"
    legend_constants[28] = "speed_d in component L_type_Ca_channel_d_gate (dimensionless)"
    legend_algebraic[14] = "alpha_f in component L_type_Ca_channel_f_gate (per_second)"
    legend_algebraic[20] = "beta_f in component L_type_Ca_channel_f_gate (per_second)"
    legend_constants[29] = "speed_f in component L_type_Ca_channel_f_gate (dimensionless)"
    legend_constants[30] = "delta_f in component L_type_Ca_channel_f_gate (millivolt)"
    legend_algebraic[5] = "E0_f in component L_type_Ca_channel_f_gate (millivolt)"
    legend_constants[31] = "g_bca in component calcium_background_current (microS)"
    legend_constants[32] = "g_to in component transient_outward_current (microS)"
    legend_constants[33] = "g_tos in component transient_outward_current (dimensionless)"
    legend_states[13] = "s in component transient_outward_current_s_gate (dimensionless)"
    legend_states[14] = "r in component transient_outward_current_r_gate (dimensionless)"
    legend_algebraic[6] = "alpha_s in component transient_outward_current_s_gate (per_second)"
    legend_algebraic[15] = "beta_s in component transient_outward_current_s_gate (per_second)"
    legend_constants[34] = "i_NaK_max in component sodium_potassium_pump (nanoA)"
    legend_constants[35] = "K_mK in component sodium_potassium_pump (millimolar)"
    legend_constants[36] = "K_mNa in component sodium_potassium_pump (millimolar)"
    legend_algebraic[50] = "i_NaCa in component sodium_calcium_exchanger (nanoA)"
    legend_constants[37] = "k_NaCa in component sodium_calcium_exchanger (nanoA)"
    legend_constants[38] = "n_NaCa in component sodium_calcium_exchanger (dimensionless)"
    legend_constants[39] = "d_NaCa in component sodium_calcium_exchanger (dimensionless)"
    legend_constants[40] = "gamma in component sodium_calcium_exchanger (dimensionless)"
    legend_constants[41] = "FRiNaCa in component sodium_calcium_exchanger (dimensionless)"
    legend_algebraic[51] = "i_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second)"
    legend_constants[69] = "K_1 in component sarcoplasmic_reticulum_calcium_pump (dimensionless)"
    legend_algebraic[49] = "K_2 in component sarcoplasmic_reticulum_calcium_pump (millimolar)"
    legend_constants[42] = "K_cyca in component sarcoplasmic_reticulum_calcium_pump (millimolar)"
    legend_constants[43] = "K_xcs in component sarcoplasmic_reticulum_calcium_pump (dimensionless)"
    legend_constants[44] = "K_srca in component sarcoplasmic_reticulum_calcium_pump (millimolar)"
    legend_constants[45] = "alpha_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second)"
    legend_constants[46] = "beta_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second)"
    legend_states[15] = "Ca_up in component intracellular_calcium_concentration (millimolar)"
    legend_algebraic[52] = "i_trans in component calcium_translocation (millimolar_per_second)"
    legend_states[16] = "Ca_rel in component intracellular_calcium_concentration (millimolar)"
    legend_algebraic[53] = "i_rel in component calcium_release (millimolar_per_second)"
    legend_algebraic[8] = "VoltDep in component calcium_release (dimensionless)"
    legend_algebraic[24] = "RegBindSite in component calcium_release (dimensionless)"
    legend_algebraic[17] = "CaiReg in component calcium_release (dimensionless)"
    legend_algebraic[22] = "CadsReg in component calcium_release (dimensionless)"
    legend_algebraic[26] = "ActRate in component calcium_release (per_second)"
    legend_algebraic[28] = "InactRate in component calcium_release (per_second)"
    legend_constants[47] = "K_leak_rate in component calcium_release (per_second)"
    legend_constants[48] = "K_m_rel in component calcium_release (per_second)"
    legend_constants[49] = "K_m_Ca_cyt in component calcium_release (millimolar)"
    legend_constants[50] = "K_m_Ca_ds in component calcium_release (millimolar)"
    legend_algebraic[32] = "PrecFrac in component calcium_release (dimensionless)"
    legend_states[17] = "ActFrac in component calcium_release (dimensionless)"
    legend_states[18] = "ProdFrac in component calcium_release (dimensionless)"
    legend_algebraic[30] = "SpeedRel in component calcium_release (dimensionless)"
    legend_constants[71] = "V_i in component intracellular_calcium_concentration (micrometre3)"
    legend_states[19] = "Ca_Calmod in component intracellular_calcium_concentration (millimolar)"
    legend_states[20] = "Ca_Trop in component intracellular_calcium_concentration (millimolar)"
    legend_constants[51] = "Calmod in component intracellular_calcium_concentration (millimolar)"
    legend_constants[52] = "Trop in component intracellular_calcium_concentration (millimolar)"
    legend_constants[53] = "alpha_Calmod in component intracellular_calcium_concentration (per_millimolar_second)"
    legend_constants[54] = "beta_Calmod in component intracellular_calcium_concentration (per_second)"
    legend_constants[55] = "alpha_Trop in component intracellular_calcium_concentration (per_millimolar_second)"
    legend_constants[56] = "beta_Trop in component intracellular_calcium_concentration (per_second)"
    legend_constants[57] = "radius in component intracellular_calcium_concentration (micrometre)"
    legend_constants[58] = "length in component intracellular_calcium_concentration (micrometre)"
    legend_constants[64] = "V_Cell in component intracellular_calcium_concentration (micrometre3)"
    legend_constants[70] = "V_i_ratio in component intracellular_calcium_concentration (dimensionless)"
    legend_constants[59] = "V_ds_ratio in component intracellular_calcium_concentration (dimensionless)"
    legend_constants[60] = "V_rel_ratio in component intracellular_calcium_concentration (dimensionless)"
    legend_constants[61] = "V_e_ratio in component intracellular_calcium_concentration (dimensionless)"
    legend_constants[62] = "V_up_ratio in component intracellular_calcium_concentration (dimensionless)"
    legend_constants[63] = "Kdecay in component intracellular_calcium_concentration (per_second)"
    legend_rates[0] = "d/dt V in component membrane (millivolt)"
    legend_rates[4] = "d/dt xr in component rapid_delayed_rectifier_potassium_current_xr_gate (dimensionless)"
    legend_rates[5] = "d/dt xs in component slow_delayed_rectifier_potassium_current_xs_gate (dimensionless)"
    legend_rates[6] = "d/dt m in component fast_sodium_current_m_gate (dimensionless)"
    legend_rates[7] = "d/dt h in component fast_sodium_current_h_gate (dimensionless)"
    legend_rates[9] = "d/dt d in component L_type_Ca_channel_d_gate (dimensionless)"
    legend_rates[10] = "d/dt f in component L_type_Ca_channel_f_gate (dimensionless)"
    legend_rates[11] = "d/dt f2 in component L_type_Ca_channel_f2_gate (dimensionless)"
    legend_rates[12] = "d/dt f2ds in component L_type_Ca_channel_f2ds_gate (dimensionless)"
    legend_rates[13] = "d/dt s in component transient_outward_current_s_gate (dimensionless)"
    legend_rates[14] = "d/dt r in component transient_outward_current_r_gate (dimensionless)"
    legend_rates[17] = "d/dt ActFrac in component calcium_release (dimensionless)"
    legend_rates[18] = "d/dt ProdFrac in component calcium_release (dimensionless)"
    legend_rates[2] = "d/dt Na_i in component intracellular_sodium_concentration (millimolar)"
    legend_rates[1] = "d/dt K_i in component intracellular_potassium_concentration (millimolar)"
    legend_rates[3] = "d/dt Ca_i in component intracellular_calcium_concentration (millimolar)"
    legend_rates[19] = "d/dt Ca_Calmod in component intracellular_calcium_concentration (millimolar)"
    legend_rates[20] = "d/dt Ca_Trop in component intracellular_calcium_concentration (millimolar)"
    legend_rates[8] = "d/dt Ca_ds in component intracellular_calcium_concentration (millimolar)"
    legend_rates[15] = "d/dt Ca_up in component intracellular_calcium_concentration (millimolar)"
    legend_rates[16] = "d/dt Ca_rel in component intracellular_calcium_concentration (millimolar)"
    return (legend_states, legend_algebraic, legend_voi, legend_constants)

def initConsts():
    constants = [0.0] * sizeConstants; states = [0.0] * sizeStates;
    states[0] = -89.1374183
    constants[0] = 8314.472
    constants[1] = 310
    constants[2] = 96485.3415
    constants[3] = 0.000121
    constants[4] = 0.1
    constants[5] = 9
    constants[6] = 1
    constants[7] = 0.003
    constants[8] = -2
    constants[9] = 0.03
    constants[10] = 4
    constants[11] = 140
    states[1] = 138.7963753
    states[2] = 5.6633707
    constants[12] = 2
    states[3] = 5.44e-5
    constants[13] = 10
    constants[14] = 0.2
    states[4] = 1.98e-5
    states[5] = 0.0381477
    constants[15] = 1075
    constants[16] = 20
    states[6] = 0.0026891
    states[7] = 0.9873107
    constants[17] = 3.98e-5
    constants[18] = 1e-5
    constants[19] = 0.005
    constants[20] = 0.0006
    constants[21] = 0.11
    constants[22] = 0.002
    constants[23] = 0.01
    states[8] = 0.0018991
    states[9] = 1.44e-4
    states[10] = 0.9999993
    states[11] = 0.254433
    states[12] = 0.9292189
    constants[24] = 100000
    constants[25] = 0.001
    constants[26] = 20
    constants[27] = 1
    constants[28] = 3
    constants[29] = 0.3
    constants[30] = 0.0001
    constants[31] = 0.00025
    constants[32] = 0.005
    constants[33] = 0
    states[13] = 0.7352365
    states[14] = 0
    constants[34] = 0.7
    constants[35] = 1
    constants[36] = 40
    constants[37] = 0.00012
    constants[38] = 3
    constants[39] = 0
    constants[40] = 0.5
    constants[41] = 0.001
    constants[42] = 0.0003
    constants[43] = 0.4
    constants[44] = 0.5
    constants[45] = 0.4
    constants[46] = 0.03
    states[15] = 0.7625025
    states[16] = 0.7368094
    constants[47] = 0.05
    constants[48] = 250
    constants[49] = 0.0005
    constants[50] = 0.01
    states[17] = 0.0101647
    states[18] = 0.9584464
    states[19] = 0.0018544
    states[20] = 0.0012852
    constants[51] = 0.02
    constants[52] = 0.05
    constants[53] = 100000
    constants[54] = 50
    constants[55] = 100000
    constants[56] = 200
    constants[57] = 12
    constants[58] = 74
    constants[59] = 0.1
    constants[60] = 0.1
    constants[61] = 0.4
    constants[62] = 0.01
    constants[63] = 10
    constants[64] = (3.14159*(power(constants[57]/1000.00, 2.00000))*constants[58])/1000.00
    constants[65] = constants[3]*7.70000*(power(constants[10]/5.40000, 1.0/2))
    constants[66] = constants[3]*26.6000
    constants[67] = (constants[15]*constants[3]*constants[16]*(1.26000/(1.00000+constants[17]/(1000.00*2.51190e-06))+0.340000))/1.58000
    constants[68] = 32.7000/(1.00000+(constants[17]/1000.00)/2.51190e-06)-32.1800
    constants[69] = (constants[42]*constants[43])/constants[44]
    constants[70] = ((1.00000-constants[61])-constants[62])-constants[60]
    constants[71] = constants[64]*constants[70]
    return (states, constants)

def computeRates(voi, states, constants):
    rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic
    rates[11] = 1.00000-1.00000*(states[3]/(constants[24]+states[3])+states[11])
    rates[12] = constants[26]*(1.00000-(states[8]/(constants[25]+states[8])+states[12]))
    rates[14] = 333.000*(1.00000/(1.00000+exp(-(states[0]+4.00000)/5.00000))-states[14])
    algebraic[0] = 1.00000/(1.00000+exp(-(states[0]+21.5000)/7.50000))
    algebraic[9] = 0.00100000/((0.00138000*(states[0]+14.2000))/(1.00000-exp(-0.123000*(states[0]+14.2000)))+(0.000610000*(states[0]+38.9000))/(exp(0.145000*(states[0]+38.9000))-1.00000))
    rates[4] = (algebraic[0]-states[4])/algebraic[9]
    algebraic[1] = 1.00000/(1.00000+exp(-(states[0]-1.50000)/16.7000))
    algebraic[10] = 0.00100000/((7.19000e-05*(states[0]+30.0000))/(1.00000-exp(-0.148000*(states[0]+30.0000)))+(0.000131000*(states[0]+30.0000))/(exp(0.0687000*(states[0]+30.0000))-1.00000))
    rates[5] = (algebraic[1]-states[5])/algebraic[10]
    algebraic[3] = 20.0000*exp(-0.125000*((states[0]+75.0000)-constants[68]))
    algebraic[12] = 2000.00/(1.00000+320.000*exp(-0.100000*((states[0]+75.0000)-constants[68])))
    rates[7] = algebraic[3]*(1.00000-states[7])-algebraic[12]*states[7]
    algebraic[6] = 0.0330000*exp(-states[0]/17.0000)
    algebraic[15] = 33.0000/(1.00000+exp(-0.125000*(states[0]+10.0000)))
    rates[13] = algebraic[6]*(1.00000-states[13])-algebraic[15]*states[13]
    algebraic[2] = states[0]+41.0000
    algebraic[11] = custom_piecewise([less(fabs(algebraic[2]) , constants[18]), 2000.00 , True, (200.000*algebraic[2])/(1.00000-exp(-0.100000*algebraic[2]))])
    algebraic[18] = 8000.00*exp(-0.0560000*(states[0]+66.0000))
    rates[6] = algebraic[11]*(1.00000-states[6])-algebraic[18]*states[6]
    algebraic[4] = (states[0]+24.0000)-5.00000
    algebraic[13] = custom_piecewise([less(fabs(algebraic[4]) , 0.000100000), 120.000 , True, (30.0000*algebraic[4])/(1.00000-exp(-algebraic[4]/7.20000))])
    algebraic[19] = custom_piecewise([less(fabs(algebraic[4]) , 0.000100000), 120.000 , True, (12.0000*algebraic[4])/(exp(algebraic[4]/(2.50000*7.20000))-1.00000)])
    rates[9] = constants[28]*(algebraic[13]*(1.00000-states[9])-algebraic[19]*states[9])
    algebraic[5] = states[0]+34.0000
    algebraic[14] = custom_piecewise([less(fabs(algebraic[5]) , constants[30]), 25.0000 , True, (6.25000*algebraic[5])/(exp(algebraic[5]/5.10000)-1.00000)])
    algebraic[20] = 12.0000/(1.00000+exp((-1.00000*(states[0]+34.0000))/5.10000))
    rates[10] = constants[29]*(algebraic[14]*(1.00000-states[10])-algebraic[20]*states[10])
    algebraic[17] = states[3]/(states[3]+constants[49])
    algebraic[22] = states[8]/(states[8]+constants[50])
    algebraic[24] = algebraic[17]+(1.00000-algebraic[17])*algebraic[22]
    algebraic[28] = 60.0000+500.000*(power(algebraic[24], 2.00000))
    algebraic[30] = custom_piecewise([less(states[0] , -50.0000), 5.00000 , True, 1.00000])
    rates[18] = states[17]*algebraic[30]*algebraic[28]-algebraic[30]*1.00000*states[18]
    algebraic[8] = exp(0.0800000*(states[0]-40.0000))
    algebraic[26] = 0.00000*algebraic[8]+500.000*(power(algebraic[24], 2.00000))
    algebraic[32] = (1.00000-states[17])-states[18]
    rates[17] = algebraic[32]*algebraic[30]*algebraic[26]-states[17]*algebraic[30]*algebraic[28]
    algebraic[40] = (((constants[27]*4.00000*constants[21]*states[9]*states[10]*states[12]*(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))/(1.00000-exp((-(states[0]-50.0000)*constants[2]*2.00000)/(constants[0]*constants[1]))))*(states[3]*exp((100.000*constants[2])/(constants[0]*constants[1]))-constants[12]*exp((-(states[0]-50.0000)*constants[2]*2.00000)/(constants[0]*constants[1])))
    rates[8] = (-1.00000*algebraic[40])/(2.00000*1.00000*constants[59]*constants[71]*constants[2])-states[8]*constants[63]
    algebraic[21] = ((constants[0]*constants[1])/constants[2])*log(constants[10]/states[1])
    algebraic[29] = (((constants[14]*constants[10])/(constants[10]+constants[13]))*(states[0]-algebraic[21]))/(1.00000+exp((((states[0]-algebraic[21])-10.0000)*constants[2]*1.50000)/(constants[0]*constants[1])))
    algebraic[45] = constants[32]*(constants[33]+states[13]*(1.00000-constants[33]))*states[14]*(states[0]-algebraic[21])
    algebraic[31] = ((constants[65]*states[4]*1.00000)/(1.00000+exp((states[0]+9.00000)/22.4000)))*(states[0]-algebraic[21])
    algebraic[23] = ((constants[0]*constants[1])/constants[2])*log((constants[10]+constants[9]*constants[11])/(states[1]+constants[9]*states[2]))
    algebraic[33] = constants[66]*(power(states[5], 2.00000))*(states[0]-algebraic[23])
    algebraic[38] = ((((1.00000-constants[27])*constants[22]*constants[21]*states[9]*states[10]*states[11]*(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))/(1.00000-exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))))*(states[1]*exp((50.0000*constants[2])/(constants[0]*constants[1]))-constants[10]*exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1])))
    algebraic[41] = (((constants[27]*constants[22]*constants[21]*states[9]*states[10]*states[12]*(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))/(1.00000-exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))))*(states[1]*exp((50.0000*constants[2])/(constants[0]*constants[1]))-constants[10]*exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1])))
    algebraic[46] = (((constants[34]*constants[10])/(constants[35]+constants[10]))*states[2])/(constants[36]+states[2])
    rates[1] = (-1.00000/(1.00000*constants[71]*constants[2]))*((algebraic[29]+algebraic[31]+algebraic[33]+algebraic[38]+algebraic[41]+algebraic[45])-2.00000*algebraic[46])
    algebraic[27] = ((constants[0]*constants[1])/constants[2])*log((constants[11]+0.120000*constants[10])/(states[2]+0.120000*states[1]))
    algebraic[34] = constants[67]*(power(states[6], 3.00000))*states[7]*(states[0]-algebraic[27])
    algebraic[16] = ((constants[0]*constants[1])/constants[2])*log(constants[11]/states[2])
    algebraic[36] = constants[20]*(states[0]-algebraic[16])
    algebraic[35] = ((constants[3]*1.00000e+06*constants[19]*(states[0]-51.5397))/(1.00000+exp(-(states[0]+58.0111)/7.03320)))/1000.00
    algebraic[39] = ((((1.00000-constants[27])*constants[23]*constants[21]*states[9]*states[10]*states[11]*(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))/(1.00000-exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))))*(states[2]*exp((50.0000*constants[2])/(constants[0]*constants[1]))-constants[11]*exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1])))
    algebraic[42] = (((constants[27]*constants[23]*constants[21]*states[9]*states[10]*states[12]*(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))/(1.00000-exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))))*(states[2]*exp((50.0000*constants[2])/(constants[0]*constants[1]))-constants[11]*exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1])))
    algebraic[47] = ((1.00000-constants[41])*constants[37]*(exp((constants[40]*(constants[38]-2.00000)*states[0]*constants[2])/(constants[0]*constants[1]))*(power(states[2], constants[38]))*constants[12]-exp(((constants[40]-1.00000)*(constants[38]-2.00000)*states[0]*constants[2])/(constants[0]*constants[1]))*(power(constants[11], constants[38]))*states[3]))/((1.00000+constants[39]*(states[3]*(power(constants[11], constants[38]))+constants[12]*(power(states[2], constants[38]))))*(1.00000+states[3]/0.00690000))
    rates[2] = (-1.00000/(1.00000*constants[71]*constants[2]))*(algebraic[34]+algebraic[35]+algebraic[36]+3.00000*algebraic[46]+3.00000*algebraic[47]+algebraic[39]+algebraic[42])
    algebraic[48] = (constants[41]*constants[37]*(exp((constants[40]*(constants[38]-2.00000)*states[0]*constants[2])/(constants[0]*constants[1]))*(power(states[2], constants[38]))*constants[12]-exp(((constants[40]-1.00000)*(constants[38]-2.00000)*states[0]*constants[2])/(constants[0]*constants[1]))*(power(constants[11], constants[38]))*states[8]))/((1.00000+constants[39]*(states[8]*(power(constants[11], constants[38]))+constants[12]*(power(states[2], constants[38]))))*(1.00000+states[8]/0.00690000))
    algebraic[37] = ((((1.00000-constants[27])*4.00000*constants[21]*states[9]*states[10]*states[11]*(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))/(1.00000-exp((-(states[0]-50.0000)*constants[2]*2.00000)/(constants[0]*constants[1]))))*(states[3]*exp((100.000*constants[2])/(constants[0]*constants[1]))-constants[12]*exp((-(states[0]-50.0000)*constants[2]*2.00000)/(constants[0]*constants[1])))
    algebraic[25] = ((0.500000*constants[0]*constants[1])/constants[2])*log(constants[12]/states[3])
    algebraic[44] = constants[31]*(states[0]-algebraic[25])
    algebraic[7] = custom_piecewise([greater_equal(voi , constants[4]) & less_equal(voi , constants[5]) & less_equal((voi-constants[4])-floor((voi-constants[4])/constants[6])*constants[6] , constants[7]), constants[8] , True, 0.00000])
    rates[0] = (-1.00000/constants[3])*(algebraic[7]+algebraic[29]+algebraic[45]+algebraic[31]+algebraic[33]+algebraic[46]+algebraic[34]+algebraic[36]+algebraic[35]+algebraic[39]+algebraic[42]+algebraic[47]+algebraic[48]+algebraic[37]+algebraic[40]+algebraic[38]+algebraic[41]+algebraic[44])
    algebraic[49] = states[3]+states[15]*constants[69]+constants[42]*constants[43]+constants[42]
    algebraic[51] = (states[3]/algebraic[49])*constants[45]-((states[15]*constants[69])/algebraic[49])*constants[46]
    algebraic[52] = 50.0000*(states[15]-states[16])
    rates[15] = (constants[70]/constants[62])*algebraic[51]-algebraic[52]
    rates[19] = constants[53]*states[3]*(constants[51]-states[19])-constants[54]*states[19]
    algebraic[53] = ((power(states[17]/(states[17]+0.250000), 2.00000))*constants[48]+constants[47])*states[16]
    rates[16] = (constants[62]/constants[60])*algebraic[52]-algebraic[53]
    rates[20] = constants[55]*states[3]*(constants[52]-states[20])-constants[56]*states[20]
    rates[3] = ((((-1.00000/(2.00000*1.00000*constants[71]*constants[2]))*((algebraic[37]+algebraic[44])-2.00000*algebraic[47])+states[8]*constants[59]*constants[63]+(algebraic[53]*constants[60])/constants[70])-rates[19])-rates[20])-algebraic[51]
    return(rates)

def computeAlgebraic(constants, states, voi):
    algebraic = array([[0.0] * len(voi)] * sizeAlgebraic)
    states = array(states)
    voi = array(voi)
    algebraic[0] = 1.00000/(1.00000+exp(-(states[0]+21.5000)/7.50000))
    algebraic[9] = 0.00100000/((0.00138000*(states[0]+14.2000))/(1.00000-exp(-0.123000*(states[0]+14.2000)))+(0.000610000*(states[0]+38.9000))/(exp(0.145000*(states[0]+38.9000))-1.00000))
    algebraic[1] = 1.00000/(1.00000+exp(-(states[0]-1.50000)/16.7000))
    algebraic[10] = 0.00100000/((7.19000e-05*(states[0]+30.0000))/(1.00000-exp(-0.148000*(states[0]+30.0000)))+(0.000131000*(states[0]+30.0000))/(exp(0.0687000*(states[0]+30.0000))-1.00000))
    algebraic[3] = 20.0000*exp(-0.125000*((states[0]+75.0000)-constants[68]))
    algebraic[12] = 2000.00/(1.00000+320.000*exp(-0.100000*((states[0]+75.0000)-constants[68])))
    algebraic[6] = 0.0330000*exp(-states[0]/17.0000)
    algebraic[15] = 33.0000/(1.00000+exp(-0.125000*(states[0]+10.0000)))
    algebraic[2] = states[0]+41.0000
    algebraic[11] = custom_piecewise([less(fabs(algebraic[2]) , constants[18]), 2000.00 , True, (200.000*algebraic[2])/(1.00000-exp(-0.100000*algebraic[2]))])
    algebraic[18] = 8000.00*exp(-0.0560000*(states[0]+66.0000))
    algebraic[4] = (states[0]+24.0000)-5.00000
    algebraic[13] = custom_piecewise([less(fabs(algebraic[4]) , 0.000100000), 120.000 , True, (30.0000*algebraic[4])/(1.00000-exp(-algebraic[4]/7.20000))])
    algebraic[19] = custom_piecewise([less(fabs(algebraic[4]) , 0.000100000), 120.000 , True, (12.0000*algebraic[4])/(exp(algebraic[4]/(2.50000*7.20000))-1.00000)])
    algebraic[5] = states[0]+34.0000
    algebraic[14] = custom_piecewise([less(fabs(algebraic[5]) , constants[30]), 25.0000 , True, (6.25000*algebraic[5])/(exp(algebraic[5]/5.10000)-1.00000)])
    algebraic[20] = 12.0000/(1.00000+exp((-1.00000*(states[0]+34.0000))/5.10000))
    algebraic[17] = states[3]/(states[3]+constants[49])
    algebraic[22] = states[8]/(states[8]+constants[50])
    algebraic[24] = algebraic[17]+(1.00000-algebraic[17])*algebraic[22]
    algebraic[28] = 60.0000+500.000*(power(algebraic[24], 2.00000))
    algebraic[30] = custom_piecewise([less(states[0] , -50.0000), 5.00000 , True, 1.00000])
    algebraic[8] = exp(0.0800000*(states[0]-40.0000))
    algebraic[26] = 0.00000*algebraic[8]+500.000*(power(algebraic[24], 2.00000))
    algebraic[32] = (1.00000-states[17])-states[18]
    algebraic[40] = (((constants[27]*4.00000*constants[21]*states[9]*states[10]*states[12]*(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))/(1.00000-exp((-(states[0]-50.0000)*constants[2]*2.00000)/(constants[0]*constants[1]))))*(states[3]*exp((100.000*constants[2])/(constants[0]*constants[1]))-constants[12]*exp((-(states[0]-50.0000)*constants[2]*2.00000)/(constants[0]*constants[1])))
    algebraic[21] = ((constants[0]*constants[1])/constants[2])*log(constants[10]/states[1])
    algebraic[29] = (((constants[14]*constants[10])/(constants[10]+constants[13]))*(states[0]-algebraic[21]))/(1.00000+exp((((states[0]-algebraic[21])-10.0000)*constants[2]*1.50000)/(constants[0]*constants[1])))
    algebraic[45] = constants[32]*(constants[33]+states[13]*(1.00000-constants[33]))*states[14]*(states[0]-algebraic[21])
    algebraic[31] = ((constants[65]*states[4]*1.00000)/(1.00000+exp((states[0]+9.00000)/22.4000)))*(states[0]-algebraic[21])
    algebraic[23] = ((constants[0]*constants[1])/constants[2])*log((constants[10]+constants[9]*constants[11])/(states[1]+constants[9]*states[2]))
    algebraic[33] = constants[66]*(power(states[5], 2.00000))*(states[0]-algebraic[23])
    algebraic[38] = ((((1.00000-constants[27])*constants[22]*constants[21]*states[9]*states[10]*states[11]*(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))/(1.00000-exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))))*(states[1]*exp((50.0000*constants[2])/(constants[0]*constants[1]))-constants[10]*exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1])))
    algebraic[41] = (((constants[27]*constants[22]*constants[21]*states[9]*states[10]*states[12]*(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))/(1.00000-exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))))*(states[1]*exp((50.0000*constants[2])/(constants[0]*constants[1]))-constants[10]*exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1])))
    algebraic[46] = (((constants[34]*constants[10])/(constants[35]+constants[10]))*states[2])/(constants[36]+states[2])
    algebraic[27] = ((constants[0]*constants[1])/constants[2])*log((constants[11]+0.120000*constants[10])/(states[2]+0.120000*states[1]))
    algebraic[34] = constants[67]*(power(states[6], 3.00000))*states[7]*(states[0]-algebraic[27])
    algebraic[16] = ((constants[0]*constants[1])/constants[2])*log(constants[11]/states[2])
    algebraic[36] = constants[20]*(states[0]-algebraic[16])
    algebraic[35] = ((constants[3]*1.00000e+06*constants[19]*(states[0]-51.5397))/(1.00000+exp(-(states[0]+58.0111)/7.03320)))/1000.00
    algebraic[39] = ((((1.00000-constants[27])*constants[23]*constants[21]*states[9]*states[10]*states[11]*(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))/(1.00000-exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))))*(states[2]*exp((50.0000*constants[2])/(constants[0]*constants[1]))-constants[11]*exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1])))
    algebraic[42] = (((constants[27]*constants[23]*constants[21]*states[9]*states[10]*states[12]*(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))/(1.00000-exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))))*(states[2]*exp((50.0000*constants[2])/(constants[0]*constants[1]))-constants[11]*exp((-(states[0]-50.0000)*constants[2])/(constants[0]*constants[1])))
    algebraic[47] = ((1.00000-constants[41])*constants[37]*(exp((constants[40]*(constants[38]-2.00000)*states[0]*constants[2])/(constants[0]*constants[1]))*(power(states[2], constants[38]))*constants[12]-exp(((constants[40]-1.00000)*(constants[38]-2.00000)*states[0]*constants[2])/(constants[0]*constants[1]))*(power(constants[11], constants[38]))*states[3]))/((1.00000+constants[39]*(states[3]*(power(constants[11], constants[38]))+constants[12]*(power(states[2], constants[38]))))*(1.00000+states[3]/0.00690000))
    algebraic[48] = (constants[41]*constants[37]*(exp((constants[40]*(constants[38]-2.00000)*states[0]*constants[2])/(constants[0]*constants[1]))*(power(states[2], constants[38]))*constants[12]-exp(((constants[40]-1.00000)*(constants[38]-2.00000)*states[0]*constants[2])/(constants[0]*constants[1]))*(power(constants[11], constants[38]))*states[8]))/((1.00000+constants[39]*(states[8]*(power(constants[11], constants[38]))+constants[12]*(power(states[2], constants[38]))))*(1.00000+states[8]/0.00690000))
    algebraic[37] = ((((1.00000-constants[27])*4.00000*constants[21]*states[9]*states[10]*states[11]*(states[0]-50.0000)*constants[2])/(constants[0]*constants[1]))/(1.00000-exp((-(states[0]-50.0000)*constants[2]*2.00000)/(constants[0]*constants[1]))))*(states[3]*exp((100.000*constants[2])/(constants[0]*constants[1]))-constants[12]*exp((-(states[0]-50.0000)*constants[2]*2.00000)/(constants[0]*constants[1])))
    algebraic[25] = ((0.500000*constants[0]*constants[1])/constants[2])*log(constants[12]/states[3])
    algebraic[44] = constants[31]*(states[0]-algebraic[25])
    algebraic[7] = custom_piecewise([greater_equal(voi , constants[4]) & less_equal(voi , constants[5]) & less_equal((voi-constants[4])-floor((voi-constants[4])/constants[6])*constants[6] , constants[7]), constants[8] , True, 0.00000])
    algebraic[49] = states[3]+states[15]*constants[69]+constants[42]*constants[43]+constants[42]
    algebraic[51] = (states[3]/algebraic[49])*constants[45]-((states[15]*constants[69])/algebraic[49])*constants[46]
    algebraic[52] = 50.0000*(states[15]-states[16])
    algebraic[53] = ((power(states[17]/(states[17]+0.250000), 2.00000))*constants[48]+constants[47])*states[16]
    algebraic[43] = algebraic[37]+algebraic[38]+algebraic[39]+algebraic[40]+algebraic[41]+algebraic[42]
    algebraic[50] = algebraic[47]+algebraic[48]
    return algebraic

def custom_piecewise(cases):
    """Compute result of a piecewise function"""
    return select(cases[0::2],cases[1::2])

def solve_model():
    """Solve model with ODE solver"""
    from scipy.integrate import ode
    # Initialise constants and state variables
    (init_states, constants) = initConsts()

    # Set timespan to solve over
    voi = linspace(0, 10, 500)

    # Construct ODE object to solve
    r = ode(computeRates)
    r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1)
    r.set_initial_value(init_states, voi[0])
    r.set_f_params(constants)

    # Solve model
    states = array([[0.0] * len(voi)] * sizeStates)
    states[:,0] = init_states
    for (i,t) in enumerate(voi[1:]):
        if r.successful():
            r.integrate(t)
            states[:,i+1] = r.y
        else:
            break

    # Compute algebraic variables
    algebraic = computeAlgebraic(constants, states, voi)
    return (voi, states, algebraic)

def plot_model(voi, states, algebraic):
    """Plot variables against variable of integration"""
    import pylab
    (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends()
    pylab.figure(1)
    pylab.plot(voi,vstack((states,algebraic)).T)
    pylab.xlabel(legend_voi)
    pylab.legend(legend_states + legend_algebraic, loc='best')
    pylab.show()

if __name__ == "__main__":
    (voi, states, algebraic) = solve_model()
    plot_model(voi, states, algebraic)