Generated Code
The following is python code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
# Size of variable arrays: sizeAlgebraic = 0 sizeStates = 4 sizeConstants = 10 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (day)" legend_states[0] = "x in component x (dimensionless)" legend_constants[0] = "d1 in component model_parameters (first_order_rate_constant)" legend_constants[1] = "a in component model_parameters (first_order_rate_constant)" legend_constants[8] = "alpha in component model_parameters (first_order_rate_constant)" legend_constants[2] = "mu in component model_parameters (first_order_rate_constant)" legend_constants[3] = "r in component model_parameters (first_order_rate_constant)" legend_states[1] = "y in component y (dimensionless)" legend_states[2] = "w in component w (dimensionless)" legend_constants[4] = "kappa in component model_parameters (dimensionless)" legend_constants[9] = "d2 in component y (first_order_rate_constant)" legend_constants[5] = "p in component model_parameters (first_order_rate_constant)" legend_states[3] = "z in component z (dimensionless)" legend_constants[6] = "f in component w (dimensionless)" legend_constants[7] = "v in component z (first_order_rate_constant)" legend_rates[0] = "d/dt x in component x (dimensionless)" legend_rates[1] = "d/dt y in component y (dimensionless)" legend_rates[2] = "d/dt w in component w (dimensionless)" legend_rates[3] = "d/dt z in component z (dimensionless)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; states[0] = 10E-1 constants[0] = 0.005 constants[1] = 0.03333 constants[2] = 0.023 constants[3] = 1.0 states[1] = 0.0 states[2] = 0.0 constants[4] = 1.0 constants[5] = 200.0 states[3] = 0.01 constants[6] = 100.0 constants[7] = 0.5 constants[8] = 0.0100000*constants[1] constants[9] = (-(99.0000*constants[1]*constants[0])+constants[1]*constants[3]+constants[0]*constants[3])/(constants[1]-constants[0]) return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic rates[0] = (2.00000*constants[3]*states[1]+0.100000*constants[2]*states[2])-(constants[1]*states[0]*(1.00000-states[0]/constants[4])+constants[0]*states[0]*(states[0]/constants[4])+constants[8]*states[0]) rates[1] = constants[1]*states[0]*(1.00000-states[0]/constants[4])-((constants[3]+constants[9])*states[1]+constants[5]*states[3]*states[1]) rates[2] = constants[6]*constants[8]*states[0]-(constants[2]*states[2]+constants[5]*states[2]*states[3]) rates[3] = constants[5]*states[3]*(states[1]+states[2])-constants[7]*states[3] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) return algebraic def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)