Generated Code
The following is c_ida code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
/* There are a total of 44 entries in the algebraic variable array. There are a total of 15 entries in each of the rate and state variable arrays. There are a total of 48 entries in the constant variable array. */ /* * VOI is time in component environment (second). * STATES[0] is V in component membrane (millivolt). * CONSTANTS[0] is R in component membrane (joule_per_kilomole_kelvin). * CONSTANTS[1] is T in component membrane (kelvin). * CONSTANTS[2] is F in component membrane (coulomb_per_mole). * CONSTANTS[3] is C in component membrane (microF). * CONSTANTS[43] is RTONF in component membrane (millivolt). * ALGEBRAIC[4] is i_f in component hyperpolarising_activated_current (nanoA). * ALGEBRAIC[9] is i_K in component time_dependent_potassium_current (nanoA). * ALGEBRAIC[13] is i_K1 in component time_independent_potassium_current (nanoA). * ALGEBRAIC[14] is i_Na_b in component sodium_background_current (nanoA). * ALGEBRAIC[16] is i_Ca_b in component calcium_background_current (nanoA). * ALGEBRAIC[17] is i_p in component sodium_potassium_pump (nanoA). * ALGEBRAIC[18] is i_NaCa in component Na_Ca_exchanger (nanoA). * ALGEBRAIC[20] is i_Na in component fast_sodium_current (nanoA). * ALGEBRAIC[29] is i_si in component second_inward_current (nanoA). * ALGEBRAIC[2] is i_fNa in component hyperpolarising_activated_current (nanoA). * ALGEBRAIC[0] is E_Na in component hyperpolarising_activated_current (millivolt). * ALGEBRAIC[1] is E_K in component hyperpolarising_activated_current (millivolt). * ALGEBRAIC[3] is i_fK in component hyperpolarising_activated_current (nanoA). * CONSTANTS[4] is g_f_Na in component hyperpolarising_activated_current (microS). * CONSTANTS[5] is g_f_K in component hyperpolarising_activated_current (microS). * CONSTANTS[6] is Km_f in component hyperpolarising_activated_current (millimolar). * STATES[1] is Kc in component extracellular_potassium_concentration (millimolar). * STATES[2] is Ki in component intracellular_potassium_concentration (millimolar). * STATES[3] is Nai in component intracellular_sodium_concentration (millimolar). * CONSTANTS[7] is Nao in component extracellular_sodium_concentration (millimolar). * STATES[4] is y in component hyperpolarising_activated_current_y_gate (dimensionless). * ALGEBRAIC[6] is alpha_y in component hyperpolarising_activated_current_y_gate (per_second). * ALGEBRAIC[7] is beta_y in component hyperpolarising_activated_current_y_gate (per_second). * CONSTANTS[8] is delta_y in component hyperpolarising_activated_current_y_gate (millivolt). * ALGEBRAIC[5] is E0_y in component hyperpolarising_activated_current_y_gate (millivolt). * CONSTANTS[9] is speed_y in component hyperpolarising_activated_current_y_gate (dimensionless). * ALGEBRAIC[8] is I_K in component time_dependent_potassium_current (nanoA). * CONSTANTS[10] is i_K_max in component time_dependent_potassium_current (nanoA). * STATES[5] is x in component time_dependent_potassium_current_x_gate (dimensionless). * ALGEBRAIC[11] is alpha_x in component time_dependent_potassium_current_x_gate (per_second). * ALGEBRAIC[12] is beta_x in component time_dependent_potassium_current_x_gate (per_second). * CONSTANTS[11] is delta_x in component time_dependent_potassium_current_x_gate (millivolt). * ALGEBRAIC[10] is E0_x in component time_dependent_potassium_current_x_gate (millivolt). * CONSTANTS[12] is g_K1 in component time_independent_potassium_current (microS). * CONSTANTS[13] is Km_K1 in component time_independent_potassium_current (millimolar). * CONSTANTS[14] is g_Nab in component sodium_background_current (microS). * ALGEBRAIC[15] is E_Ca in component calcium_background_current (millivolt). * CONSTANTS[15] is g_Cab in component calcium_background_current (microS). * STATES[6] is Cai in component intracellular_calcium_concentration (millimolar). * CONSTANTS[16] is Cao in component extracellular_calcium_concentration (millimolar). * CONSTANTS[17] is I_p in component sodium_potassium_pump (nanoA). * CONSTANTS[18] is K_mK in component sodium_potassium_pump (millimolar). * CONSTANTS[19] is K_mNa in component sodium_potassium_pump (millimolar). * CONSTANTS[20] is n_NaCa in component Na_Ca_exchanger (dimensionless). * CONSTANTS[21] is K_NaCa in component Na_Ca_exchanger (nanoA). * CONSTANTS[22] is d_NaCa in component Na_Ca_exchanger (dimensionless). * CONSTANTS[23] is gamma in component Na_Ca_exchanger (dimensionless). * CONSTANTS[24] is g_Na in component fast_sodium_current (microS). * ALGEBRAIC[19] is E_mh in component fast_sodium_current (millivolt). * STATES[7] is m in component fast_sodium_current_m_gate (dimensionless). * STATES[8] is h in component fast_sodium_current_h_gate (dimensionless). * ALGEBRAIC[22] is alpha_m in component fast_sodium_current_m_gate (per_second). * ALGEBRAIC[23] is beta_m in component fast_sodium_current_m_gate (per_second). * CONSTANTS[25] is delta_m in component fast_sodium_current_m_gate (millivolt). * ALGEBRAIC[21] is E0_m in component fast_sodium_current_m_gate (millivolt). * ALGEBRAIC[24] is alpha_h in component fast_sodium_current_h_gate (per_second). * ALGEBRAIC[25] is beta_h in component fast_sodium_current_h_gate (per_second). * ALGEBRAIC[26] is i_siCa in component second_inward_current (nanoA). * ALGEBRAIC[27] is i_siK in component second_inward_current (nanoA). * ALGEBRAIC[28] is i_siNa in component second_inward_current (nanoA). * CONSTANTS[26] is P_si in component second_inward_current (nanoA_per_millimolar). * STATES[9] is d in component second_inward_current_d_gate (dimensionless). * STATES[10] is f in component second_inward_current_f_gate (dimensionless). * STATES[11] is f2 in component second_inward_current_f2_gate (dimensionless). * ALGEBRAIC[31] is alpha_d in component second_inward_current_d_gate (per_second). * ALGEBRAIC[32] is beta_d in component second_inward_current_d_gate (per_second). * CONSTANTS[27] is delta_d in component second_inward_current_d_gate (millivolt). * ALGEBRAIC[30] is E0_d in component second_inward_current_d_gate (millivolt). * ALGEBRAIC[34] is alpha_f in component second_inward_current_f_gate (per_second). * ALGEBRAIC[35] is beta_f in component second_inward_current_f_gate (per_second). * CONSTANTS[28] is delta_f in component second_inward_current_f_gate (millivolt). * ALGEBRAIC[33] is E0_f in component second_inward_current_f_gate (millivolt). * CONSTANTS[29] is alpha_f2 in component second_inward_current_f2_gate (per_second). * ALGEBRAIC[36] is beta_f2 in component second_inward_current_f2_gate (per_second). * CONSTANTS[30] is K_mf2 in component second_inward_current_f2_gate (millimolar). * CONSTANTS[31] is radius in component intracellular_sodium_concentration (micrometre). * CONSTANTS[32] is length in component intracellular_sodium_concentration (micrometre). * CONSTANTS[33] is V_e_ratio in component intracellular_sodium_concentration (dimensionless). * CONSTANTS[44] is V_Cell in component intracellular_sodium_concentration (micrometre3). * CONSTANTS[45] is Vi in component intracellular_sodium_concentration (micrometre3). * CONSTANTS[46] is V_up in component intracellular_calcium_concentration (micrometre3). * CONSTANTS[47] is V_rel in component intracellular_calcium_concentration (micrometre3). * ALGEBRAIC[37] is i_up in component intracellular_calcium_concentration (nanoA). * ALGEBRAIC[38] is i_tr in component intracellular_calcium_concentration (nanoA). * ALGEBRAIC[42] is i_rel in component intracellular_calcium_concentration (nanoA). * STATES[12] is Ca_up in component intracellular_calcium_concentration (millimolar). * STATES[13] is Ca_rel in component intracellular_calcium_concentration (millimolar). * CONSTANTS[34] is Ca_up_max in component intracellular_calcium_concentration (millimolar). * CONSTANTS[35] is K_mCa in component intracellular_calcium_concentration (millimolar). * STATES[14] is p in component intracellular_calcium_concentration (dimensionless). * ALGEBRAIC[40] is alpha_p in component intracellular_calcium_concentration (per_second). * ALGEBRAIC[41] is beta_p in component intracellular_calcium_concentration (per_second). * ALGEBRAIC[39] is E0_p in component intracellular_calcium_concentration (millivolt). * CONSTANTS[36] is tau_up in component intracellular_calcium_concentration (second). * CONSTANTS[37] is tau_rep in component intracellular_calcium_concentration (second). * CONSTANTS[38] is tau_rel in component intracellular_calcium_concentration (second). * CONSTANTS[39] is rCa in component intracellular_calcium_concentration (dimensionless). * CONSTANTS[40] is V_e in component extracellular_potassium_concentration (micrometre3). * CONSTANTS[41] is Kb in component extracellular_potassium_concentration (millimolar). * ALGEBRAIC[43] is i_mK in component extracellular_potassium_concentration (nanoA). * CONSTANTS[42] is pf in component extracellular_potassium_concentration (per_second). * RATES[0] is d/dt V in component membrane (millivolt). * RATES[4] is d/dt y in component hyperpolarising_activated_current_y_gate (dimensionless). * RATES[5] is d/dt x in component time_dependent_potassium_current_x_gate (dimensionless). * RATES[7] is d/dt m in component fast_sodium_current_m_gate (dimensionless). * RATES[8] is d/dt h in component fast_sodium_current_h_gate (dimensionless). * RATES[9] is d/dt d in component second_inward_current_d_gate (dimensionless). * RATES[10] is d/dt f in component second_inward_current_f_gate (dimensionless). * RATES[11] is d/dt f2 in component second_inward_current_f2_gate (dimensionless). * RATES[3] is d/dt Nai in component intracellular_sodium_concentration (millimolar). * RATES[14] is d/dt p in component intracellular_calcium_concentration (dimensionless). * RATES[12] is d/dt Ca_up in component intracellular_calcium_concentration (millimolar). * RATES[13] is d/dt Ca_rel in component intracellular_calcium_concentration (millimolar). * RATES[6] is d/dt Cai in component intracellular_calcium_concentration (millimolar). * RATES[1] is d/dt Kc in component extracellular_potassium_concentration (millimolar). * RATES[2] is d/dt Ki in component intracellular_potassium_concentration (millimolar). * There are a total of 7 condition variables. */ void initConsts(double* CONSTANTS, double* RATES, double *STATES) { STATES[0] = -60; CONSTANTS[0] = 8314.472; CONSTANTS[1] = 310; CONSTANTS[2] = 96485.3415; CONSTANTS[3] = 0.006; CONSTANTS[4] = 6; CONSTANTS[5] = 6; CONSTANTS[6] = 45; STATES[1] = 3; STATES[2] = 140; STATES[3] = 7.5; CONSTANTS[7] = 140; STATES[4] = 0.007; CONSTANTS[8] = 1e-5; CONSTANTS[9] = 2; CONSTANTS[10] = 20; STATES[5] = 0.54; CONSTANTS[11] = 0.0001; CONSTANTS[12] = 0.75; CONSTANTS[13] = 10; CONSTANTS[14] = 0.07; CONSTANTS[15] = 0.01; STATES[6] = 5.8e-5; CONSTANTS[16] = 2; CONSTANTS[17] = 50; CONSTANTS[18] = 1; CONSTANTS[19] = 40; CONSTANTS[20] = 3; CONSTANTS[21] = 0.002; CONSTANTS[22] = 0.0001; CONSTANTS[23] = 0.5; CONSTANTS[24] = 1.25; STATES[7] = 0.076; STATES[8] = 0.015; CONSTANTS[25] = 1e-5; CONSTANTS[26] = 7.5; STATES[9] = 0.0011; STATES[10] = 0.785; STATES[11] = 0.785; CONSTANTS[27] = 0.0001; CONSTANTS[28] = 0.0001; CONSTANTS[29] = 10; CONSTANTS[30] = 0.0005; CONSTANTS[31] = 0.08; CONSTANTS[32] = 0.08; CONSTANTS[33] = 0.1; STATES[12] = 1.98; STATES[13] = 0.55; CONSTANTS[34] = 5; CONSTANTS[35] = 0.002; STATES[14] = 0.785; CONSTANTS[36] = 0.005; CONSTANTS[37] = 0.2; CONSTANTS[38] = 0.01; CONSTANTS[39] = 2; CONSTANTS[40] = 0.00016077; CONSTANTS[41] = 3; CONSTANTS[42] = 1; CONSTANTS[43] = ( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2]; CONSTANTS[44] = 3.14159*pow(CONSTANTS[31], 2.00000)*CONSTANTS[32]; CONSTANTS[45] = CONSTANTS[44]*(1.00000 - CONSTANTS[33]); CONSTANTS[46] = CONSTANTS[45]*0.0500000; CONSTANTS[47] = CONSTANTS[45]*0.0200000; RATES[0] = 0.1001; RATES[4] = 0.1001; RATES[5] = 0.1001; RATES[7] = 0.1001; RATES[8] = 0.1001; RATES[9] = 0.1001; RATES[10] = 0.1001; RATES[11] = 0.1001; RATES[3] = 0.1001; RATES[14] = 0.1001; RATES[12] = 0.1001; RATES[13] = 0.1001; RATES[6] = 0.1001; RATES[1] = 0.1001; RATES[2] = 0.1001; } void computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { resid[0] = RATES[0] - - (ALGEBRAIC[4]+ALGEBRAIC[9]+ALGEBRAIC[13]+ALGEBRAIC[14]+ALGEBRAIC[16]+ALGEBRAIC[17]+ALGEBRAIC[18]+ALGEBRAIC[20]+ALGEBRAIC[29])/CONSTANTS[3]; resid[1] = RATES[4] - CONSTANTS[9]*( ALGEBRAIC[6]*(1.00000 - STATES[4]) - ALGEBRAIC[7]*STATES[4]); resid[2] = RATES[5] - ALGEBRAIC[11]*(1.00000 - STATES[5]) - ALGEBRAIC[12]*STATES[5]; resid[3] = RATES[7] - ALGEBRAIC[22]*(1.00000 - STATES[7]) - ALGEBRAIC[23]*STATES[7]; resid[4] = RATES[8] - ALGEBRAIC[24]*(1.00000 - STATES[8]) - ALGEBRAIC[25]*STATES[8]; resid[5] = RATES[9] - ALGEBRAIC[31]*(1.00000 - STATES[9]) - ALGEBRAIC[32]*STATES[9]; resid[6] = RATES[10] - ALGEBRAIC[34]*(1.00000 - STATES[10]) - ALGEBRAIC[35]*STATES[10]; resid[7] = RATES[11] - CONSTANTS[29] - STATES[11]*(CONSTANTS[29]+ALGEBRAIC[36]); resid[8] = RATES[3] - ( - 1.00000*(ALGEBRAIC[20]+ALGEBRAIC[14]+ALGEBRAIC[2]+ALGEBRAIC[28]+ ALGEBRAIC[17]*3.00000+( ALGEBRAIC[18]*CONSTANTS[20])/(CONSTANTS[20] - 2.00000)))/( 1.00000*CONSTANTS[45]*CONSTANTS[2]); resid[9] = RATES[14] - ALGEBRAIC[40]*(1.00000 - STATES[14]) - ALGEBRAIC[41]*STATES[14]; resid[10] = RATES[12] - ( 1.00000*(ALGEBRAIC[37] - ALGEBRAIC[38]))/( 2.00000*1.00000*CONSTANTS[46]*CONSTANTS[2]); resid[11] = RATES[13] - ( 1.00000*(ALGEBRAIC[38] - ALGEBRAIC[42]))/( 2.00000*1.00000*CONSTANTS[47]*CONSTANTS[2]); resid[12] = RATES[6] - ( - 1.00000*((((ALGEBRAIC[26]+ALGEBRAIC[16]) - ( 2.00000*ALGEBRAIC[18])/(CONSTANTS[20] - 2.00000)) - ALGEBRAIC[42])+ALGEBRAIC[37]))/( 2.00000*1.00000*CONSTANTS[45]*CONSTANTS[2]); resid[13] = RATES[1] - - CONSTANTS[42]*(STATES[1] - CONSTANTS[41])+( 1.00000*ALGEBRAIC[43])/( 1.00000*CONSTANTS[40]*CONSTANTS[2]); resid[14] = RATES[2] - ( - 1.00000*ALGEBRAIC[43])/( 1.00000*CONSTANTS[45]*CONSTANTS[2]); } void computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { } void computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[0] = CONSTANTS[43]*log(CONSTANTS[7]/STATES[3]); ALGEBRAIC[2] = (( STATES[4]*STATES[1])/(STATES[1]+CONSTANTS[6]))*CONSTANTS[4]*(STATES[0] - ALGEBRAIC[0]); ALGEBRAIC[1] = CONSTANTS[43]*log(STATES[1]/STATES[2]); ALGEBRAIC[3] = (( STATES[4]*STATES[1])/(STATES[1]+CONSTANTS[6]))*CONSTANTS[5]*(STATES[0] - ALGEBRAIC[1]); ALGEBRAIC[4] = ALGEBRAIC[2]+ALGEBRAIC[3]; ALGEBRAIC[5] = STATES[0]+52.0000; ALGEBRAIC[6] = 0.0500000*exp( - 0.0670000*ALGEBRAIC[5]); ALGEBRAIC[7] = (CONDVAR[0]<0.00000 ? 2.50000 : ALGEBRAIC[5]/(1.00000 - 1.00000*exp( - 0.200000*ALGEBRAIC[5]))); ALGEBRAIC[8] = ( CONSTANTS[10]*(STATES[2] - STATES[1]*exp(- STATES[0]/CONSTANTS[43])))/140.000; ALGEBRAIC[9] = STATES[5]*ALGEBRAIC[8]; ALGEBRAIC[10] = STATES[0]+22.0000; ALGEBRAIC[11] = (CONDVAR[1]<0.00000 ? 2.50000 : ( 0.500000*ALGEBRAIC[10])/(1.00000 - exp(- ALGEBRAIC[10]/5.00000))); ALGEBRAIC[12] = (CONDVAR[2]<0.00000 ? 2.50000 : ( 0.178000*ALGEBRAIC[10])/(exp(ALGEBRAIC[10]/15.0000) - 1.00000)); ALGEBRAIC[13] = ( (( CONSTANTS[12]*STATES[1])/(STATES[1]+CONSTANTS[13]))*(STATES[0] - ALGEBRAIC[1]))/(1.00000+exp(( ((STATES[0]+10.0000) - ALGEBRAIC[1])*2.00000)/CONSTANTS[43])); ALGEBRAIC[14] = CONSTANTS[14]*(STATES[0] - ALGEBRAIC[0]); ALGEBRAIC[15] = 0.500000*CONSTANTS[43]*log(CONSTANTS[16]/STATES[6]); ALGEBRAIC[16] = CONSTANTS[15]*(STATES[0] - ALGEBRAIC[15]); ALGEBRAIC[17] = ( (( CONSTANTS[17]*STATES[1])/(CONSTANTS[18]+STATES[1]))*STATES[3])/(CONSTANTS[19]+STATES[3]); ALGEBRAIC[18] = ( CONSTANTS[21]*( exp(( CONSTANTS[23]*(CONSTANTS[20] - 2.00000)*STATES[0])/CONSTANTS[43])*pow(STATES[3], CONSTANTS[20])*CONSTANTS[16] - exp(( (CONSTANTS[23] - 1.00000)*(CONSTANTS[20] - 2.00000)*STATES[0])/CONSTANTS[43])*pow(CONSTANTS[7], CONSTANTS[20])*STATES[6]))/( (1.00000+ CONSTANTS[22]*( STATES[6]*pow(CONSTANTS[7], CONSTANTS[20])+ CONSTANTS[16]*pow(STATES[3], CONSTANTS[20])))*(1.00000+STATES[6]/0.00690000)); ALGEBRAIC[19] = CONSTANTS[43]*log((CONSTANTS[7]+ 0.120000*STATES[1])/(STATES[3]+ 0.120000*STATES[2])); ALGEBRAIC[20] = CONSTANTS[24]*pow(STATES[7], 3.00000)*STATES[8]*(STATES[0] - ALGEBRAIC[19]); ALGEBRAIC[21] = STATES[0]+41.0000; ALGEBRAIC[22] = (CONDVAR[3]<0.00000 ? 2000.00 : ( 200.000*ALGEBRAIC[21])/(1.00000 - exp( - 0.100000*ALGEBRAIC[21]))); ALGEBRAIC[23] = 8000.00*exp( - 0.0560000*(STATES[0]+66.0000)); ALGEBRAIC[24] = 20.0000*exp( - 0.125000*(STATES[0]+75.0000)); ALGEBRAIC[25] = 2000.00/( 320.000*exp( - 0.100000*(STATES[0]+75.0000))+1.00000); ALGEBRAIC[26] = (( 4.00000*CONSTANTS[26]*(STATES[0] - 50.0000))/( CONSTANTS[43]*(1.00000 - exp(( - 1.00000*(STATES[0] - 50.0000)*2.00000)/CONSTANTS[43]))))*( STATES[6]*exp(100.000/CONSTANTS[43]) - CONSTANTS[16]*exp(( - 2.00000*(STATES[0] - 50.0000))/CONSTANTS[43]))*STATES[9]*STATES[10]*STATES[11]; ALGEBRAIC[28] = (( 0.0100000*CONSTANTS[26]*(STATES[0] - 50.0000))/( CONSTANTS[43]*(1.00000 - exp(( - 1.00000*(STATES[0] - 50.0000))/CONSTANTS[43]))))*( STATES[3]*exp(50.0000/CONSTANTS[43]) - CONSTANTS[7]*exp(( - 1.00000*(STATES[0] - 50.0000))/CONSTANTS[43]))*STATES[9]*STATES[10]*STATES[11]; ALGEBRAIC[27] = (( 0.0100000*CONSTANTS[26]*(STATES[0] - 50.0000))/( CONSTANTS[43]*(1.00000 - exp(( - 1.00000*(STATES[0] - 50.0000))/CONSTANTS[43]))))*( STATES[2]*exp(50.0000/CONSTANTS[43]) - STATES[1]*exp(( - 1.00000*(STATES[0] - 50.0000))/CONSTANTS[43]))*STATES[9]*STATES[10]*STATES[11]; ALGEBRAIC[29] = ALGEBRAIC[26]+ALGEBRAIC[27]+ALGEBRAIC[28]; ALGEBRAIC[30] = (STATES[0]+24.0000) - 5.00000; ALGEBRAIC[31] = (CONDVAR[4]<0.00000 ? 120.000 : ( 30.0000*ALGEBRAIC[30])/(1.00000 - exp(( - 1.00000*ALGEBRAIC[30])/4.00000))); ALGEBRAIC[32] = (CONDVAR[5]<0.00000 ? 120.000 : ( 12.0000*ALGEBRAIC[30])/(exp(ALGEBRAIC[30]/10.0000) - 1.00000)); ALGEBRAIC[33] = STATES[0]+34.0000; ALGEBRAIC[34] = (CONDVAR[6]<0.00000 ? 25.0000 : ( 6.25000*ALGEBRAIC[33])/(exp(ALGEBRAIC[33]/4.00000) - 1.00000)); ALGEBRAIC[35] = 50.0000/(1.00000+exp(( - 1.00000*(STATES[0]+34.0000))/4.00000)); ALGEBRAIC[36] = ( STATES[6]*CONSTANTS[29])/CONSTANTS[30]; ALGEBRAIC[37] = (( 2.00000*1.00000*CONSTANTS[45]*CONSTANTS[2])/( 1.00000*CONSTANTS[36]*CONSTANTS[34]))*STATES[6]*(CONSTANTS[34] - STATES[12]); ALGEBRAIC[38] = (( 2.00000*1.00000*CONSTANTS[47]*CONSTANTS[2])/( 1.00000*CONSTANTS[37]))*STATES[14]*(STATES[12] - STATES[13]); ALGEBRAIC[39] = (STATES[0]+34.0000) - - 30.0000; ALGEBRAIC[40] = ( 0.625000*ALGEBRAIC[39])/(exp(ALGEBRAIC[39]/4.00000) - 1.00000); ALGEBRAIC[41] = 5.00000/(1.00000+exp(( - 1.00000*ALGEBRAIC[39])/4.00000)); ALGEBRAIC[42] = ( (( 2.00000*1.00000*CONSTANTS[47]*CONSTANTS[2])/( 1.00000*CONSTANTS[38]))*STATES[13]*pow(STATES[6], CONSTANTS[39]))/(pow(STATES[6], CONSTANTS[39])+pow(CONSTANTS[35], CONSTANTS[39])); ALGEBRAIC[43] = (ALGEBRAIC[13]+ALGEBRAIC[9]+ALGEBRAIC[3]+ALGEBRAIC[27]) - 2.00000*ALGEBRAIC[17]; } void getStateInformation(double* SI) { SI[0] = 1.0; SI[1] = 1.0; SI[2] = 1.0; SI[3] = 1.0; SI[4] = 1.0; SI[5] = 1.0; SI[6] = 1.0; SI[7] = 1.0; SI[8] = 1.0; SI[9] = 1.0; SI[10] = 1.0; SI[11] = 1.0; SI[12] = 1.0; SI[13] = 1.0; SI[14] = 1.0; } void computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { CONDVAR[0] = fabs(ALGEBRAIC[5]) - CONSTANTS[8]; CONDVAR[1] = fabs(ALGEBRAIC[10]) - CONSTANTS[11]; CONDVAR[2] = fabs(ALGEBRAIC[10]) - CONSTANTS[11]; CONDVAR[3] = fabs(ALGEBRAIC[21]) - CONSTANTS[25]; CONDVAR[4] = fabs(ALGEBRAIC[30]) - CONSTANTS[27]; CONDVAR[5] = fabs(ALGEBRAIC[30]) - CONSTANTS[27]; CONDVAR[6] = fabs(ALGEBRAIC[33]) - CONSTANTS[28]; }