Generated Code

The following is c_ida code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

/*
   There are a total of 89 entries in the algebraic variable array.
   There are a total of 19 entries in each of the rate and state variable arrays.
   There are a total of 79 entries in the constant variable array.
 */
/*
 * VOI is time in component environment (ms).
 * STATES[0] is V in component cell (millivolt).
 * CONSTANTS[0] is R in component cell (joule_per_kilomole_kelvin).
 * CONSTANTS[1] is T in component cell (kelvin).
 * CONSTANTS[2] is F in component cell (coulomb_per_mole).
 * ALGEBRAIC[0] is I_st in component cell (microA_per_microF).
 * ALGEBRAIC[2] is i_Na in component fast_sodium_current (microA_per_microF).
 * ALGEBRAIC[85] is i_Ca_L in component L_type_Ca_channel (microA_per_microF).
 * ALGEBRAIC[86] is i_Ca_T in component T_type_Ca_channel (microA_per_microF).
 * ALGEBRAIC[69] is i_Kr in component rapid_delayed_rectifier_potassium_current (microA_per_microF).
 * ALGEBRAIC[71] is i_Ks in component slow_delayed_rectifier_potassium_current (microA_per_microF).
 * ALGEBRAIC[50] is i_K_Na in component sodium_activated_potassium_current (microA_per_microF).
 * ALGEBRAIC[81] is i_NaCa in component Na_Ca_exchanger (microA_per_microF).
 * ALGEBRAIC[74] is i_K1 in component time_independent_potassium_current (microA_per_microF).
 * ALGEBRAIC[72] is i_K_ATP in component ATP_sensitive_potassium_current (microA_per_microF).
 * ALGEBRAIC[73] is i_to in component transient_outward_current (microA_per_microF).
 * ALGEBRAIC[47] is i_Kp in component plateau_potassium_current (microA_per_microF).
 * ALGEBRAIC[75] is i_p_Ca in component sarcolemmal_calcium_pump (microA_per_microF).
 * ALGEBRAIC[51] is i_Na_b in component sodium_background_current (microA_per_microF).
 * ALGEBRAIC[77] is i_Ca_b in component calcium_background_current (microA_per_microF).
 * ALGEBRAIC[53] is i_NaK in component sodium_potassium_pump (microA_per_microF).
 * ALGEBRAIC[80] is i_ns_Ca in component non_specific_calcium_activated_current (microA_per_microF).
 * ALGEBRAIC[88] is dVdt in component cell (microA_per_microF).
 * CONSTANTS[3] is stim_start in component cell (ms).
 * CONSTANTS[4] is stim_end in component cell (ms).
 * CONSTANTS[5] is stim_period in component cell (ms).
 * CONSTANTS[6] is stim_duration in component cell (ms).
 * CONSTANTS[7] is stim_amplitude in component cell (microA_per_microF).
 * ALGEBRAIC[1] is E_Na in component fast_sodium_current (millivolt).
 * CONSTANTS[8] is g_Na in component fast_sodium_current (milliS_per_microF).
 * STATES[1] is Nai in component ionic_concentrations (millimolar).
 * CONSTANTS[9] is Nao in component ionic_concentrations (millimolar).
 * STATES[2] is m in component fast_sodium_current_m_gate (dimensionless).
 * STATES[3] is h in component fast_sodium_current_h_gate (dimensionless).
 * STATES[4] is j in component fast_sodium_current_j_gate (dimensionless).
 * ALGEBRAIC[4] is alpha_m in component fast_sodium_current_m_gate (per_ms).
 * ALGEBRAIC[5] is beta_m in component fast_sodium_current_m_gate (per_ms).
 * ALGEBRAIC[3] is E0_m in component fast_sodium_current_m_gate (millivolt).
 * ALGEBRAIC[6] is alpha_h in component fast_sodium_current_h_gate (per_ms).
 * ALGEBRAIC[7] is beta_h in component fast_sodium_current_h_gate (per_ms).
 * ALGEBRAIC[8] is alpha_j in component fast_sodium_current_j_gate (per_ms).
 * ALGEBRAIC[9] is beta_j in component fast_sodium_current_j_gate (per_ms).
 * ALGEBRAIC[82] is i_CaCa in component L_type_Ca_channel (microA_per_microF).
 * ALGEBRAIC[84] is i_CaK in component L_type_Ca_channel (microA_per_microF).
 * ALGEBRAIC[83] is i_CaNa in component L_type_Ca_channel (microA_per_microF).
 * CONSTANTS[10] is gamma_Nai in component L_type_Ca_channel (dimensionless).
 * CONSTANTS[11] is gamma_Nao in component L_type_Ca_channel (dimensionless).
 * CONSTANTS[12] is gamma_Ki in component L_type_Ca_channel (dimensionless).
 * CONSTANTS[13] is gamma_Ko in component L_type_Ca_channel (dimensionless).
 * CONSTANTS[14] is gamma_Cai in component L_type_Ca_channel (dimensionless).
 * CONSTANTS[15] is gamma_Cao in component L_type_Ca_channel (dimensionless).
 * ALGEBRAIC[67] is I_CaCa in component L_type_Ca_channel (microA_per_microF).
 * ALGEBRAIC[11] is I_CaK in component L_type_Ca_channel (microA_per_microF).
 * ALGEBRAIC[10] is I_CaNa in component L_type_Ca_channel (microA_per_microF).
 * CONSTANTS[16] is P_Ca in component L_type_Ca_channel (litre_per_farad_millisecond).
 * CONSTANTS[17] is P_Na in component L_type_Ca_channel (litre_per_farad_millisecond).
 * CONSTANTS[18] is P_K in component L_type_Ca_channel (litre_per_farad_millisecond).
 * ALGEBRAIC[62] is Cai in component calcium_dynamics (millimolar).
 * CONSTANTS[19] is Cao in component calcium_dynamics (millimolar).
 * CONSTANTS[20] is Ko in component ionic_concentrations (millimolar).
 * STATES[5] is Ki in component ionic_concentrations (millimolar).
 * STATES[6] is d in component L_type_Ca_channel_d_gate (dimensionless).
 * STATES[7] is f in component L_type_Ca_channel_f_gate (dimensionless).
 * ALGEBRAIC[68] is f_Ca in component L_type_Ca_channel_f_Ca_gate (dimensionless).
 * ALGEBRAIC[15] is alpha_d in component L_type_Ca_channel_d_gate (per_ms).
 * ALGEBRAIC[16] is beta_d in component L_type_Ca_channel_d_gate (per_ms).
 * ALGEBRAIC[13] is d_infinity in component L_type_Ca_channel_d_gate (dimensionless).
 * ALGEBRAIC[14] is tau_d in component L_type_Ca_channel_d_gate (ms).
 * ALGEBRAIC[12] is E0_d in component L_type_Ca_channel_d_gate (millivolt).
 * ALGEBRAIC[19] is alpha_f in component L_type_Ca_channel_f_gate (per_ms).
 * ALGEBRAIC[20] is beta_f in component L_type_Ca_channel_f_gate (per_ms).
 * ALGEBRAIC[17] is f_infinity in component L_type_Ca_channel_f_gate (dimensionless).
 * ALGEBRAIC[18] is tau_f in component L_type_Ca_channel_f_gate (ms).
 * CONSTANTS[21] is Km_Ca in component L_type_Ca_channel_f_Ca_gate (millimolar).
 * CONSTANTS[22] is g_CaT in component T_type_Ca_channel (milliS_per_microF).
 * ALGEBRAIC[76] is E_Ca in component calcium_background_current (millivolt).
 * STATES[8] is b in component T_type_Ca_channel_b_gate (dimensionless).
 * STATES[9] is g in component T_type_Ca_channel_g_gate (dimensionless).
 * ALGEBRAIC[21] is b_inf in component T_type_Ca_channel_b_gate (dimensionless).
 * ALGEBRAIC[22] is tau_b in component T_type_Ca_channel_b_gate (ms).
 * ALGEBRAIC[23] is g_inf in component T_type_Ca_channel_g_gate (dimensionless).
 * ALGEBRAIC[24] is tau_g in component T_type_Ca_channel_g_gate (ms).
 * CONSTANTS[66] is g_Kr in component rapid_delayed_rectifier_potassium_current (milliS_per_microF).
 * CONSTANTS[23] is G_Kr in component rapid_delayed_rectifier_potassium_current (milliS_per_microF).
 * ALGEBRAIC[25] is Rect in component rapid_delayed_rectifier_potassium_current (dimensionless).
 * ALGEBRAIC[42] is E_K in component time_independent_potassium_current (millivolt).
 * STATES[10] is xr in component rapid_delayed_rectifier_potassium_current_xr_gate (dimensionless).
 * ALGEBRAIC[26] is xr_infinity in component rapid_delayed_rectifier_potassium_current_xr_gate (dimensionless).
 * ALGEBRAIC[27] is tau_xr in component rapid_delayed_rectifier_potassium_current_xr_gate (ms).
 * ALGEBRAIC[70] is g_Ks in component slow_delayed_rectifier_potassium_current (milliS_per_microF).
 * CONSTANTS[24] is G_Ks in component slow_delayed_rectifier_potassium_current (milliS_per_microF).
 * ALGEBRAIC[28] is E_Ks in component slow_delayed_rectifier_potassium_current (millivolt).
 * CONSTANTS[25] is PNaK in component slow_delayed_rectifier_potassium_current (dimensionless).
 * STATES[11] is xs1 in component slow_delayed_rectifier_potassium_current_xs1_gate (dimensionless).
 * STATES[12] is xs2 in component slow_delayed_rectifier_potassium_current_xs2_gate (dimensionless).
 * ALGEBRAIC[29] is xs1_infinity in component slow_delayed_rectifier_potassium_current_xs1_gate (dimensionless).
 * ALGEBRAIC[30] is tau_xs1 in component slow_delayed_rectifier_potassium_current_xs1_gate (ms).
 * ALGEBRAIC[31] is xs2_infinity in component slow_delayed_rectifier_potassium_current_xs2_gate (dimensionless).
 * ALGEBRAIC[32] is tau_xs2 in component slow_delayed_rectifier_potassium_current_xs2_gate (ms).
 * CONSTANTS[67] is g_K_ATP in component ATP_sensitive_potassium_current (milliS_per_microF).
 * CONSTANTS[26] is i_K_ATP_on in component ATP_sensitive_potassium_current (dimensionless).
 * CONSTANTS[27] is nATP in component ATP_sensitive_potassium_current (dimensionless).
 * CONSTANTS[28] is nicholsarea in component ATP_sensitive_potassium_current (dimensionless).
 * CONSTANTS[29] is ATPi in component ATP_sensitive_potassium_current (millimolar).
 * CONSTANTS[30] is hATP in component ATP_sensitive_potassium_current (dimensionless).
 * CONSTANTS[31] is kATP in component ATP_sensitive_potassium_current (millimolar).
 * CONSTANTS[74] is pATP in component ATP_sensitive_potassium_current (dimensionless).
 * CONSTANTS[76] is GKbaraATP in component ATP_sensitive_potassium_current (milliS_per_microF).
 * CONSTANTS[68] is g_to in component transient_outward_current (milliS_per_microF).
 * ALGEBRAIC[33] is rvdv in component transient_outward_current (dimensionless).
 * STATES[13] is zdv in component transient_outward_current_zdv_gate (dimensionless).
 * STATES[14] is ydv in component transient_outward_current_ydv_gate (dimensionless).
 * ALGEBRAIC[34] is alpha_zdv in component transient_outward_current_zdv_gate (per_ms).
 * ALGEBRAIC[35] is beta_zdv in component transient_outward_current_zdv_gate (per_ms).
 * ALGEBRAIC[36] is tau_zdv in component transient_outward_current_zdv_gate (ms).
 * ALGEBRAIC[37] is zdv_ss in component transient_outward_current_zdv_gate (dimensionless).
 * ALGEBRAIC[38] is alpha_ydv in component transient_outward_current_ydv_gate (per_ms).
 * ALGEBRAIC[39] is beta_ydv in component transient_outward_current_ydv_gate (per_ms).
 * ALGEBRAIC[40] is tau_ydv in component transient_outward_current_ydv_gate (ms).
 * ALGEBRAIC[41] is ydv_ss in component transient_outward_current_ydv_gate (dimensionless).
 * CONSTANTS[69] is g_K1 in component time_independent_potassium_current (milliS_per_microF).
 * CONSTANTS[32] is G_K1 in component time_independent_potassium_current (milliS_per_microF).
 * ALGEBRAIC[45] is K1_infinity in component time_independent_potassium_current_K1_gate (dimensionless).
 * ALGEBRAIC[43] is alpha_K1 in component time_independent_potassium_current_K1_gate (per_ms).
 * ALGEBRAIC[44] is beta_K1 in component time_independent_potassium_current_K1_gate (per_ms).
 * CONSTANTS[33] is g_Kp in component plateau_potassium_current (milliS_per_microF).
 * ALGEBRAIC[46] is Kp in component plateau_potassium_current (dimensionless).
 * CONSTANTS[34] is g_K_Na in component sodium_activated_potassium_current (milliS_per_microF).
 * CONSTANTS[35] is nKNa in component sodium_activated_potassium_current (dimensionless).
 * ALGEBRAIC[48] is pona in component sodium_activated_potassium_current (dimensionless).
 * ALGEBRAIC[49] is pov in component sodium_activated_potassium_current (dimensionless).
 * CONSTANTS[36] is kdKNa in component sodium_activated_potassium_current (millimolar).
 * CONSTANTS[37] is K_mpCa in component sarcolemmal_calcium_pump (millimolar).
 * CONSTANTS[38] is I_pCa in component sarcolemmal_calcium_pump (microA_per_microF).
 * CONSTANTS[39] is g_Nab in component sodium_background_current (milliS_per_microF).
 * CONSTANTS[40] is g_Cab in component calcium_background_current (milliS_per_microF).
 * CONSTANTS[41] is I_NaK in component sodium_potassium_pump (microA_per_microF).
 * ALGEBRAIC[52] is f_NaK in component sodium_potassium_pump (dimensionless).
 * CONSTANTS[42] is K_mNai in component sodium_potassium_pump (millimolar).
 * CONSTANTS[43] is K_mKo in component sodium_potassium_pump (millimolar).
 * CONSTANTS[70] is sigma in component sodium_potassium_pump (dimensionless).
 * ALGEBRAIC[78] is i_ns_Na in component non_specific_calcium_activated_current (microA_per_microF).
 * ALGEBRAIC[79] is i_ns_K in component non_specific_calcium_activated_current (microA_per_microF).
 * CONSTANTS[71] is P_ns_Ca in component non_specific_calcium_activated_current (litre_per_farad_millisecond).
 * ALGEBRAIC[54] is I_ns_Na in component non_specific_calcium_activated_current (microA_per_microF).
 * ALGEBRAIC[55] is I_ns_K in component non_specific_calcium_activated_current (microA_per_microF).
 * CONSTANTS[44] is K_m_ns_Ca in component non_specific_calcium_activated_current (millimolar).
 * CONSTANTS[45] is c1 in component Na_Ca_exchanger (microA_per_microF).
 * CONSTANTS[46] is c2 in component Na_Ca_exchanger (dimensionless).
 * CONSTANTS[47] is gamma in component Na_Ca_exchanger (dimensionless).
 * STATES[15] is i_rel in component CICR_current (millimolar_per_ms).
 * ALGEBRAIC[63] is i_up in component calcium_dynamics (millimolar_per_ms).
 * ALGEBRAIC[64] is i_leak in component calcium_dynamics (millimolar_per_ms).
 * ALGEBRAIC[65] is i_tr in component calcium_dynamics (millimolar_per_ms).
 * CONSTANTS[48] is tau_tr in component calcium_dynamics (ms).
 * CONSTANTS[49] is CSQN_max in component calcium_dynamics (millimolar).
 * CONSTANTS[50] is K_mCSQN in component calcium_dynamics (millimolar).
 * CONSTANTS[51] is K_mup in component calcium_dynamics (millimolar).
 * CONSTANTS[72] is K_leak in component calcium_dynamics (per_ms).
 * CONSTANTS[52] is I_up in component calcium_dynamics (millimolar_per_ms).
 * CONSTANTS[53] is Ca_NSR_max in component calcium_dynamics (millimolar).
 * STATES[16] is CaT in component calcium_dynamics (millimolar).
 * ALGEBRAIC[58] is Ca_JSR in component calcium_dynamics (millimolar).
 * STATES[17] is JSR in component calcium_dynamics (millimolar).
 * STATES[18] is NSR in component calcium_dynamics (millimolar).
 * ALGEBRAIC[56] is bjsr in component calcium_dynamics (millimolar).
 * ALGEBRAIC[57] is cjsr in component calcium_dynamics (millimolar2).
 * ALGEBRAIC[59] is bmyo in component calcium_dynamics (millimolar).
 * ALGEBRAIC[60] is cmyo in component calcium_dynamics (millimolar2).
 * ALGEBRAIC[61] is dmyo in component calcium_dynamics (millimolar3).
 * CONSTANTS[75] is V_myo in component geometry (micro_litre).
 * CONSTANTS[54] is A_cap in component geometry (cm2).
 * CONSTANTS[77] is V_JSR in component geometry (micro_litre).
 * CONSTANTS[78] is V_NSR in component geometry (micro_litre).
 * CONSTANTS[55] is K_mTRPN in component calcium_dynamics (millimolar).
 * CONSTANTS[56] is K_mCMDN in component calcium_dynamics (millimolar).
 * CONSTANTS[57] is TRPN_max in component calcium_dynamics (millimolar).
 * CONSTANTS[58] is CMDN_max in component calcium_dynamics (millimolar).
 * CONSTANTS[59] is kappa in component CICR_current (mM_per_millivolt_ms).
 * CONSTANTS[60] is tau in component CICR_current (ms).
 * CONSTANTS[61] is K_relss in component CICR_current (millimolar).
 * CONSTANTS[62] is qn in component CICR_current (dimensionless).
 * CONSTANTS[65] is alpha_rel in component CICR_current (millimolar_per_mV).
 * ALGEBRAIC[66] is tau_rel in component CICR_current (ms).
 * ALGEBRAIC[87] is I_relss in component CICR_current (millimolar_per_ms).
 * CONSTANTS[63] is preplength in component geometry (mm).
 * CONSTANTS[64] is radius in component geometry (mm).
 * CONSTANTS[73] is volume in component geometry (micro_litre).
 * RATES[0] is d/dt V in component cell (millivolt).
 * RATES[2] is d/dt m in component fast_sodium_current_m_gate (dimensionless).
 * RATES[3] is d/dt h in component fast_sodium_current_h_gate (dimensionless).
 * RATES[4] is d/dt j in component fast_sodium_current_j_gate (dimensionless).
 * RATES[6] is d/dt d in component L_type_Ca_channel_d_gate (dimensionless).
 * RATES[7] is d/dt f in component L_type_Ca_channel_f_gate (dimensionless).
 * RATES[8] is d/dt b in component T_type_Ca_channel_b_gate (dimensionless).
 * RATES[9] is d/dt g in component T_type_Ca_channel_g_gate (dimensionless).
 * RATES[10] is d/dt xr in component rapid_delayed_rectifier_potassium_current_xr_gate (dimensionless).
 * RATES[11] is d/dt xs1 in component slow_delayed_rectifier_potassium_current_xs1_gate (dimensionless).
 * RATES[12] is d/dt xs2 in component slow_delayed_rectifier_potassium_current_xs2_gate (dimensionless).
 * RATES[13] is d/dt zdv in component transient_outward_current_zdv_gate (dimensionless).
 * RATES[14] is d/dt ydv in component transient_outward_current_ydv_gate (dimensionless).
 * RATES[17] is d/dt JSR in component calcium_dynamics (millimolar).
 * RATES[18] is d/dt NSR in component calcium_dynamics (millimolar).
 * RATES[16] is d/dt CaT in component calcium_dynamics (millimolar).
 * RATES[15] is d/dt i_rel in component CICR_current (millimolar_per_ms).
 * RATES[1] is d/dt Nai in component ionic_concentrations (millimolar).
 * RATES[5] is d/dt Ki in component ionic_concentrations (millimolar).
 * There are a total of 8 condition variables.
 */
void
initConsts(double* CONSTANTS, double* RATES, double *STATES)
{
STATES[0] = -85.126196430406;
CONSTANTS[0] = 8314;
CONSTANTS[1] = 310;
CONSTANTS[2] = 96485;
CONSTANTS[3] = 10;
CONSTANTS[4] = 9e6;
CONSTANTS[5] = 300;
CONSTANTS[6] = 0.5;
CONSTANTS[7] = -80;
CONSTANTS[8] = 16;
STATES[1] = 10;
CONSTANTS[9] = 140;
STATES[2] = 0.001513296212;
STATES[3] = 0.985318710339;
STATES[4] = 0.990731711845;
CONSTANTS[10] = 0.75;
CONSTANTS[11] = 0.75;
CONSTANTS[12] = 0.75;
CONSTANTS[13] = 0.75;
CONSTANTS[14] = 1;
CONSTANTS[15] = 0.341;
CONSTANTS[16] = 0.00054;
CONSTANTS[17] = 6.75e-7;
CONSTANTS[18] = 1.93e-7;
CONSTANTS[19] = 1.8;
CONSTANTS[20] = 5.4;
STATES[5] = 144.473230653346;
STATES[6] = 0.000005906564;
STATES[7] = 0.999390880784;
CONSTANTS[21] = 0.0006;
CONSTANTS[22] = 0.05;
STATES[8] = 0.001378275288;
STATES[9] = 0.988597502434;
CONSTANTS[23] = 0.02614;
STATES[10] = 0.000207067204;
CONSTANTS[24] = 0.433;
CONSTANTS[25] = 0.01833;
STATES[11] = 0.007136102382;
STATES[12] = 0.039518996812;
CONSTANTS[26] = 1;
CONSTANTS[27] = 0.24;
CONSTANTS[28] = 5e-5;
CONSTANTS[29] = 3;
CONSTANTS[30] = 2;
CONSTANTS[31] = 0.00025;
STATES[13] = 0.014537782303;
STATES[14] = 0.99993940527;
CONSTANTS[32] = 0.75;
CONSTANTS[33] = 0.00552;
CONSTANTS[34] = 0.12848;
CONSTANTS[35] = 2.8;
CONSTANTS[36] = 66;
CONSTANTS[37] = 0.0005;
CONSTANTS[38] = 1.15;
CONSTANTS[39] = 0.004;
CONSTANTS[40] = 0.003016;
CONSTANTS[41] = 2.25;
CONSTANTS[42] = 10;
CONSTANTS[43] = 1.5;
CONSTANTS[44] = 0.0012;
CONSTANTS[45] = 0.00025;
CONSTANTS[46] = 0.0001;
CONSTANTS[47] = 0.15;
STATES[15] = -0.000000000000000000474565;
CONSTANTS[48] = 120;
CONSTANTS[49] = 10;
CONSTANTS[50] = 0.8;
CONSTANTS[51] = 0.00092;
CONSTANTS[52] = 0.00875;
CONSTANTS[53] = 15;
STATES[16] = 0.01544711;
STATES[17] = 8.290468;
STATES[18] = 1.516756041281;
CONSTANTS[54] = 1.534e-4;
CONSTANTS[55] = 0.0005;
CONSTANTS[56] = 0.00238;
CONSTANTS[57] = 0.07;
CONSTANTS[58] = 0.05;
CONSTANTS[59] = 0.125;
CONSTANTS[60] = 4.75;
CONSTANTS[61] = 1;
CONSTANTS[62] = 9;
CONSTANTS[63] = 0.1;
CONSTANTS[64] = 0.011;
CONSTANTS[65] =  CONSTANTS[59]*CONSTANTS[60];
CONSTANTS[66] =  CONSTANTS[23]* pow((CONSTANTS[20]/5.40000), 1.0 / 2);
CONSTANTS[67] = ( CONSTANTS[26]*0.000193000)/CONSTANTS[28];
CONSTANTS[68] =  0.00000*0.500000;
CONSTANTS[69] =  CONSTANTS[32]* pow((CONSTANTS[20]/5.40000), 1.0 / 2);
CONSTANTS[70] =  (1.00000/7.00000)*(exp(CONSTANTS[9]/67.3000) - 1.00000);
CONSTANTS[71] = 1.75000e-07;
CONSTANTS[72] = CONSTANTS[52]/CONSTANTS[53];
CONSTANTS[73] =   3.14159265358979*CONSTANTS[63]*pow(CONSTANTS[64], 2.00000);
CONSTANTS[74] = 1.00000/(1.00000+pow(CONSTANTS[29]/CONSTANTS[31], CONSTANTS[30]));
CONSTANTS[75] =  0.680000*CONSTANTS[73];
CONSTANTS[76] =  CONSTANTS[67]*CONSTANTS[74]*pow(CONSTANTS[20]/4.00000, CONSTANTS[27]);
CONSTANTS[77] =  0.00480000*CONSTANTS[73];
CONSTANTS[78] =  0.0552000*CONSTANTS[73];
RATES[0] = 0.1001;
RATES[2] = 0.1001;
RATES[3] = 0.1001;
RATES[4] = 0.1001;
RATES[6] = 0.1001;
RATES[7] = 0.1001;
RATES[8] = 0.1001;
RATES[9] = 0.1001;
RATES[10] = 0.1001;
RATES[11] = 0.1001;
RATES[12] = 0.1001;
RATES[13] = 0.1001;
RATES[14] = 0.1001;
RATES[17] = 0.1001;
RATES[18] = 0.1001;
RATES[16] = 0.1001;
RATES[15] = 0.1001;
RATES[1] = 0.1001;
RATES[5] = 0.1001;
}
void
computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
                 double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
resid[0] = RATES[0] - ALGEBRAIC[88];
resid[1] = RATES[2] -  ALGEBRAIC[4]*(1.00000 - STATES[2]) -  ALGEBRAIC[5]*STATES[2];
resid[2] = RATES[3] -  ALGEBRAIC[6]*(1.00000 - STATES[3]) -  ALGEBRAIC[7]*STATES[3];
resid[3] = RATES[4] -  ALGEBRAIC[8]*(1.00000 - STATES[4]) -  ALGEBRAIC[9]*STATES[4];
resid[4] = RATES[6] -  ALGEBRAIC[15]*(1.00000 - STATES[6]) -  ALGEBRAIC[16]*STATES[6];
resid[5] = RATES[7] -  ALGEBRAIC[19]*(1.00000 - STATES[7]) -  ALGEBRAIC[20]*STATES[7];
resid[6] = RATES[8] - (ALGEBRAIC[21] - STATES[8])/ALGEBRAIC[22];
resid[7] = RATES[9] - (ALGEBRAIC[23] - STATES[9])/ALGEBRAIC[24];
resid[8] = RATES[10] - (ALGEBRAIC[26] - STATES[10])/ALGEBRAIC[27];
resid[9] = RATES[11] - (ALGEBRAIC[29] - STATES[11])/ALGEBRAIC[30];
resid[10] = RATES[12] - (ALGEBRAIC[31] - STATES[12])/ALGEBRAIC[32];
resid[11] = RATES[13] - (ALGEBRAIC[37] - STATES[13])/ALGEBRAIC[36];
resid[12] = RATES[14] - (ALGEBRAIC[41] - STATES[14])/ALGEBRAIC[40];
resid[13] = RATES[17] - ALGEBRAIC[65] - STATES[15];
resid[14] = RATES[18] - (( - ALGEBRAIC[65]*CONSTANTS[77])/CONSTANTS[78] - ALGEBRAIC[64])+ALGEBRAIC[63];
resid[15] = RATES[16] - ( - 1.00000*CONSTANTS[54]*(ALGEBRAIC[82]+ALGEBRAIC[86]+ALGEBRAIC[75]+ALGEBRAIC[77]+ - 2.00000*ALGEBRAIC[81]))/( 2.00000*CONSTANTS[75]*CONSTANTS[2])+( STATES[15]*CONSTANTS[77])/CONSTANTS[75]+( (ALGEBRAIC[64] - ALGEBRAIC[63])*CONSTANTS[78])/CONSTANTS[75];
resid[16] = RATES[15] - - (ALGEBRAIC[87]+STATES[15])/ALGEBRAIC[66];
resid[17] = RATES[1] - ( - 1.00000*(ALGEBRAIC[2]+ALGEBRAIC[83]+ALGEBRAIC[51]+ALGEBRAIC[78]+ ALGEBRAIC[81]*3.00000+ ALGEBRAIC[53]*3.00000)*CONSTANTS[54])/( CONSTANTS[75]*CONSTANTS[2]);
resid[18] = RATES[5] - ( - 1.00000*(ALGEBRAIC[0]+ALGEBRAIC[84]+ALGEBRAIC[69]+ALGEBRAIC[71]+ALGEBRAIC[74]+ALGEBRAIC[72]+ALGEBRAIC[73]+ALGEBRAIC[47]+ALGEBRAIC[50]+ALGEBRAIC[79]+ - ALGEBRAIC[53]*2.00000)*CONSTANTS[54])/( CONSTANTS[75]*CONSTANTS[2]);
}
void
computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
}
void
computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[0] = (CONDVAR[0]>=0.00000&&CONDVAR[1]<=0.00000&&CONDVAR[2]<=0.00000 ? CONSTANTS[7] : 0.00000);
ALGEBRAIC[1] =  (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[9]/STATES[1]);
ALGEBRAIC[2] =  CONSTANTS[8]*pow(STATES[2], 3.00000)*STATES[3]*STATES[4]*(STATES[0] - ALGEBRAIC[1]);
ALGEBRAIC[3] = STATES[0]+47.1300;
ALGEBRAIC[4] = ( 0.320000*ALGEBRAIC[3])/(1.00000 - exp( - 0.100000*ALGEBRAIC[3]));
ALGEBRAIC[5] =  0.0800000*exp(- STATES[0]/11.0000);
ALGEBRAIC[6] = (CONDVAR[3]<0.00000 ?  0.135000*exp((80.0000+STATES[0])/- 6.80000) : 0.00000);
ALGEBRAIC[7] = (CONDVAR[4]<0.00000 ?  3.56000*exp( 0.0790000*STATES[0])+ 310000.*exp( 0.350000*STATES[0]) : 1.00000/( 0.130000*(1.00000+exp((STATES[0]+10.6600)/- 11.1000))));
ALGEBRAIC[8] = (CONDVAR[5]<0.00000 ? ( - ( 127140.*exp( 0.244400*STATES[0])+ 3.47400e-05*exp( - 0.0439100*STATES[0]))*(STATES[0]+37.7800))/(1.00000+exp( 0.311000*(STATES[0]+79.2300))) : 0.00000);
ALGEBRAIC[9] = (CONDVAR[6]<0.00000 ? ( 0.121200*exp( - 0.0105200*STATES[0]))/(1.00000+exp( - 0.137800*(STATES[0]+40.1400))) : ( 0.300000*exp( - 2.53500e-07*STATES[0]))/(1.00000+exp( - 0.100000*(STATES[0]+32.0000))));
ALGEBRAIC[12] = STATES[0]+10.0000;
ALGEBRAIC[13] = 1.00000/(1.00000+exp(- ALGEBRAIC[12]/6.24000));
ALGEBRAIC[14] = ( 1.00000*ALGEBRAIC[13]*(1.00000 - exp(- ALGEBRAIC[12]/6.24000)))/( 0.0350000*ALGEBRAIC[12]);
ALGEBRAIC[15] = ALGEBRAIC[13]/ALGEBRAIC[14];
ALGEBRAIC[16] = (1.00000 - ALGEBRAIC[13])/ALGEBRAIC[14];
ALGEBRAIC[17] = 1.00000/(1.00000+exp((STATES[0]+32.0000)/8.00000))+0.600000/(1.00000+exp((50.0000 - STATES[0])/20.0000));
ALGEBRAIC[18] = 1.00000/( 0.0197000*exp(- pow( 0.0337000*(STATES[0]+10.0000), 2.00000))+0.0200000);
ALGEBRAIC[19] = ALGEBRAIC[17]/ALGEBRAIC[18];
ALGEBRAIC[20] = (1.00000 - ALGEBRAIC[17])/ALGEBRAIC[18];
ALGEBRAIC[21] = 1.00000/(1.00000+exp(- (STATES[0]+14.0000)/10.8000));
ALGEBRAIC[22] = 3.70000+6.10000/(1.00000+exp((STATES[0]+25.0000)/4.50000));
ALGEBRAIC[23] = 1.00000/(1.00000+exp((STATES[0]+60.0000)/5.60000));
ALGEBRAIC[24] = (CONDVAR[7]<=0.00000 ?  - 0.875000*STATES[0]+12.0000 : 12.0000);
ALGEBRAIC[26] = 1.00000/(1.00000+exp(- (STATES[0]+21.5000)/7.50000));
ALGEBRAIC[27] = 1.00000/(( 0.00138000*(STATES[0]+14.2000))/(1.00000 - exp( - 0.123000*(STATES[0]+14.2000)))+( 0.000610000*(STATES[0]+38.9000))/(exp( 0.145000*(STATES[0]+38.9000)) - 1.00000));
ALGEBRAIC[29] = 1.00000/(1.00000+exp(- (STATES[0] - 1.50000)/16.7000));
ALGEBRAIC[30] = 1.00000/(( 7.19000e-05*(STATES[0]+30.0000))/(1.00000 - exp( - 0.148000*(STATES[0]+30.0000)))+( 0.000131000*(STATES[0]+30.0000))/(exp( 0.0687000*(STATES[0]+30.0000)) - 1.00000));
ALGEBRAIC[31] = 1.00000/(1.00000+exp(- (STATES[0] - 1.50000)/16.7000));
ALGEBRAIC[32] = 4.00000/(( 7.19000e-05*(STATES[0]+30.0000))/(1.00000 - exp( - 0.148000*(STATES[0]+30.0000)))+( 0.000131000*(STATES[0]+30.0000))/(exp( 0.0687000*(STATES[0]+30.0000)) - 1.00000));
ALGEBRAIC[34] = ( 10.0000*exp((STATES[0] - 40.0000)/25.0000))/(1.00000+exp((STATES[0] - 40.0000)/25.0000));
ALGEBRAIC[35] = ( 10.0000*exp(- (STATES[0]+90.0000)/25.0000))/(1.00000+exp(- (STATES[0]+90.0000)/25.0000));
ALGEBRAIC[36] = 1.00000/(ALGEBRAIC[34]+ALGEBRAIC[35]);
ALGEBRAIC[37] = ALGEBRAIC[34]/(ALGEBRAIC[34]+ALGEBRAIC[35]);
ALGEBRAIC[38] = 0.0150000/(1.00000+exp((STATES[0]+60.0000)/5.00000));
ALGEBRAIC[39] = ( 0.100000*exp((STATES[0]+25.0000)/5.00000))/(1.00000+exp((STATES[0]+25.0000)/5.00000));
ALGEBRAIC[40] = 1.00000/(ALGEBRAIC[38]+ALGEBRAIC[39]);
ALGEBRAIC[41] = ALGEBRAIC[38]/(ALGEBRAIC[38]+ALGEBRAIC[39]);
ALGEBRAIC[42] =  (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[20]/STATES[5]);
ALGEBRAIC[46] = 1.00000/(1.00000+exp((7.48800 - STATES[0])/5.98000));
ALGEBRAIC[47] =  CONSTANTS[33]*ALGEBRAIC[46]*(STATES[0] - ALGEBRAIC[42]);
ALGEBRAIC[48] = 0.850000/(1.00000+pow(CONSTANTS[36]/STATES[1], CONSTANTS[35]));
ALGEBRAIC[49] = 0.800000 - 0.650000/(1.00000+exp((STATES[0]+125.000)/15.0000));
ALGEBRAIC[50] =  CONSTANTS[34]*ALGEBRAIC[48]*ALGEBRAIC[49]*(STATES[0] - ALGEBRAIC[42]);
ALGEBRAIC[51] =  CONSTANTS[39]*(STATES[0] - ALGEBRAIC[1]);
ALGEBRAIC[52] = 1.00000/(1.00000+ 0.124500*exp(( - 0.100000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))+ 0.0365000*CONSTANTS[70]*exp(( - STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])));
ALGEBRAIC[53] = (( CONSTANTS[41]*ALGEBRAIC[52])/(1.00000+pow(CONSTANTS[42]/STATES[1], 2.00000)))/(1.00000+CONSTANTS[43]/CONSTANTS[20]);
ALGEBRAIC[59] = CONSTANTS[58]+CONSTANTS[57]+CONSTANTS[56]+CONSTANTS[55]+- STATES[16];
ALGEBRAIC[60] =  CONSTANTS[56]*CONSTANTS[55]+ CONSTANTS[57]*CONSTANTS[56]+ CONSTANTS[58]*CONSTANTS[55]+ - STATES[16]*(CONSTANTS[55]+CONSTANTS[56]);
ALGEBRAIC[61] =  - CONSTANTS[55]*CONSTANTS[56]*STATES[16];
ALGEBRAIC[62] =  (2.00000/3.00000)* pow((pow(ALGEBRAIC[59], 2.00000) -  3.00000*ALGEBRAIC[60]), 1.0 / 2)*cos(acos(( 9.00000*ALGEBRAIC[59]*ALGEBRAIC[60] - ( 2.00000*pow(ALGEBRAIC[59], 3.00000)+ 27.0000*ALGEBRAIC[61]))/( 2.00000* pow(pow(pow(ALGEBRAIC[59], 2.00000) -  3.00000*ALGEBRAIC[60], 3.00000), 1.0 / 2)))/3.00000) - ALGEBRAIC[59]/3.00000;
ALGEBRAIC[63] = ( CONSTANTS[52]*ALGEBRAIC[62])/(ALGEBRAIC[62]+CONSTANTS[51]);
ALGEBRAIC[64] =  CONSTANTS[72]*STATES[18];
ALGEBRAIC[56] = CONSTANTS[49]+CONSTANTS[50]+- STATES[17];
ALGEBRAIC[57] =  CONSTANTS[50]*STATES[17];
ALGEBRAIC[58] = ( pow((pow(ALGEBRAIC[56], 2.00000)+ 4.00000*ALGEBRAIC[57]), 1.0 / 2) - ALGEBRAIC[56])/2.00000;
ALGEBRAIC[65] = (STATES[18] - ALGEBRAIC[58])/CONSTANTS[48];
ALGEBRAIC[66] = CONSTANTS[60]/(1.00000+0.0123000/ALGEBRAIC[58]);
ALGEBRAIC[25] = 1.00000/(1.00000+exp((STATES[0]+9.00000)/22.4000));
ALGEBRAIC[69] =  CONSTANTS[66]*STATES[10]*ALGEBRAIC[25]*(STATES[0] - ALGEBRAIC[42]);
ALGEBRAIC[70] =  CONSTANTS[24]*(1.00000+0.600000/(1.00000+pow(3.80000e-05/ALGEBRAIC[62], 1.40000)));
ALGEBRAIC[28] =  (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log((CONSTANTS[20]+ CONSTANTS[25]*CONSTANTS[9])/(STATES[5]+ CONSTANTS[25]*STATES[1]));
ALGEBRAIC[71] =  ALGEBRAIC[70]*STATES[11]*STATES[12]*(STATES[0] - ALGEBRAIC[28]);
ALGEBRAIC[72] =  CONSTANTS[76]*(STATES[0] - ALGEBRAIC[42]);
ALGEBRAIC[33] = exp(STATES[0]/100.000);
ALGEBRAIC[73] =  CONSTANTS[68]*pow(STATES[13], 3.00000)*STATES[14]*ALGEBRAIC[33]*(STATES[0] - ALGEBRAIC[42]);
ALGEBRAIC[43] = 1.02000/(1.00000+exp( 0.238500*((STATES[0] - ALGEBRAIC[42]) - 59.2150)));
ALGEBRAIC[44] = ( 1.00000*( 0.491240*exp( 0.0803200*((STATES[0] - ALGEBRAIC[42])+5.47600))+exp( 0.0617500*((STATES[0] - ALGEBRAIC[42]) - 594.310))))/(1.00000+exp( - 0.514300*((STATES[0] - ALGEBRAIC[42])+4.75300)));
ALGEBRAIC[45] = ALGEBRAIC[43]/(ALGEBRAIC[43]+ALGEBRAIC[44]);
ALGEBRAIC[74] =  CONSTANTS[69]*ALGEBRAIC[45]*(STATES[0] - ALGEBRAIC[42]);
ALGEBRAIC[75] = ( CONSTANTS[38]*ALGEBRAIC[62])/(CONSTANTS[37]+ALGEBRAIC[62]);
ALGEBRAIC[76] =  (( CONSTANTS[0]*CONSTANTS[1])/( 2.00000*CONSTANTS[2]))*log(CONSTANTS[19]/ALGEBRAIC[62]);
ALGEBRAIC[77] =  CONSTANTS[40]*(STATES[0] - ALGEBRAIC[76]);
ALGEBRAIC[54] = ( (( CONSTANTS[71]*pow(1.00000, 2.00000)*STATES[0]*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*( CONSTANTS[10]*STATES[1]*exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) -  CONSTANTS[11]*CONSTANTS[9]))/(exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000);
ALGEBRAIC[78] = ( ALGEBRAIC[54]*1.00000)/(1.00000+pow(CONSTANTS[44]/ALGEBRAIC[62], 3.00000));
ALGEBRAIC[55] = ( (( CONSTANTS[71]*pow(1.00000, 2.00000)*STATES[0]*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*( CONSTANTS[12]*STATES[5]*exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) -  CONSTANTS[13]*CONSTANTS[20]))/(exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000);
ALGEBRAIC[79] = ( ALGEBRAIC[55]*1.00000)/(1.00000+pow(CONSTANTS[44]/ALGEBRAIC[62], 3.00000));
ALGEBRAIC[81] = ( CONSTANTS[45]*exp(( (CONSTANTS[47] - 1.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*( exp(( STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(STATES[1], 3.00000)*CONSTANTS[19] -  pow(CONSTANTS[9], 3.00000)*ALGEBRAIC[62]))/(1.00000+ CONSTANTS[46]*exp(( (CONSTANTS[47] - 1.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*( exp(( STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(STATES[1], 3.00000)*CONSTANTS[19]+ pow(CONSTANTS[9], 3.00000)*ALGEBRAIC[62]));
ALGEBRAIC[67] = ( (( CONSTANTS[16]*pow(2.00000, 2.00000)*STATES[0]*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*( CONSTANTS[14]*ALGEBRAIC[62]*exp(( 2.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) -  CONSTANTS[15]*CONSTANTS[19]))/(exp(( 2.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000);
ALGEBRAIC[68] = 1.00000/(1.00000+ALGEBRAIC[62]/CONSTANTS[21]);
ALGEBRAIC[82] =  STATES[6]*STATES[7]*ALGEBRAIC[68]*ALGEBRAIC[67];
ALGEBRAIC[10] = ( (( CONSTANTS[17]*pow(1.00000, 2.00000)*STATES[0]*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*( CONSTANTS[10]*STATES[1]*exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) -  CONSTANTS[11]*CONSTANTS[9]))/(exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000);
ALGEBRAIC[83] =  STATES[6]*STATES[7]*ALGEBRAIC[68]*ALGEBRAIC[10];
ALGEBRAIC[11] = ( (( CONSTANTS[18]*pow(1.00000, 2.00000)*STATES[0]*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*( CONSTANTS[12]*STATES[5]*exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) -  CONSTANTS[13]*CONSTANTS[20]))/(exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000);
ALGEBRAIC[84] =  STATES[6]*STATES[7]*ALGEBRAIC[68]*ALGEBRAIC[11];
ALGEBRAIC[86] =  CONSTANTS[22]*STATES[8]*STATES[8]*STATES[9]*(STATES[0] - ALGEBRAIC[76]);
ALGEBRAIC[87] = ( ALGEBRAIC[82]*CONSTANTS[65])/(1.00000+pow(CONSTANTS[61]/ALGEBRAIC[58], CONSTANTS[62]));
ALGEBRAIC[85] = ALGEBRAIC[82]+ALGEBRAIC[84]+ALGEBRAIC[83];
ALGEBRAIC[80] = ALGEBRAIC[78]+ALGEBRAIC[79];
ALGEBRAIC[88] = - (ALGEBRAIC[2]+ALGEBRAIC[85]+ALGEBRAIC[86]+ALGEBRAIC[69]+ALGEBRAIC[71]+ALGEBRAIC[50]+ALGEBRAIC[74]+ALGEBRAIC[72]+ALGEBRAIC[73]+ALGEBRAIC[47]+ALGEBRAIC[81]+ALGEBRAIC[75]+ALGEBRAIC[51]+ALGEBRAIC[77]+ALGEBRAIC[53]+ALGEBRAIC[80]+ALGEBRAIC[0]);
}
void
getStateInformation(double* SI)
{
SI[0] = 1.0;
SI[1] = 1.0;
SI[2] = 1.0;
SI[3] = 1.0;
SI[4] = 1.0;
SI[5] = 1.0;
SI[6] = 1.0;
SI[7] = 1.0;
SI[8] = 1.0;
SI[9] = 1.0;
SI[10] = 1.0;
SI[11] = 1.0;
SI[12] = 1.0;
SI[13] = 1.0;
SI[14] = 1.0;
SI[15] = 1.0;
SI[16] = 1.0;
SI[17] = 1.0;
SI[18] = 1.0;
}
void
computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
             double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
CONDVAR[0] = VOI - CONSTANTS[3];
CONDVAR[1] = VOI - CONSTANTS[4];
CONDVAR[2] = ((VOI - CONSTANTS[3]) -  floor((VOI - CONSTANTS[3])/CONSTANTS[5])*CONSTANTS[5]) - CONSTANTS[6];
CONDVAR[3] = STATES[0] - - 40.0000;
CONDVAR[4] = STATES[0] - - 40.0000;
CONDVAR[5] = STATES[0] - - 40.0000;
CONDVAR[6] = STATES[0] - - 40.0000;
CONDVAR[7] = STATES[0] - 0.00000;
}