Generated Code
The following is c_ida code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
/* There are a total of 89 entries in the algebraic variable array. There are a total of 19 entries in each of the rate and state variable arrays. There are a total of 79 entries in the constant variable array. */ /* * VOI is time in component environment (ms). * STATES[0] is V in component cell (millivolt). * CONSTANTS[0] is R in component cell (joule_per_kilomole_kelvin). * CONSTANTS[1] is T in component cell (kelvin). * CONSTANTS[2] is F in component cell (coulomb_per_mole). * ALGEBRAIC[0] is I_st in component cell (microA_per_microF). * ALGEBRAIC[2] is i_Na in component fast_sodium_current (microA_per_microF). * ALGEBRAIC[85] is i_Ca_L in component L_type_Ca_channel (microA_per_microF). * ALGEBRAIC[86] is i_Ca_T in component T_type_Ca_channel (microA_per_microF). * ALGEBRAIC[69] is i_Kr in component rapid_delayed_rectifier_potassium_current (microA_per_microF). * ALGEBRAIC[71] is i_Ks in component slow_delayed_rectifier_potassium_current (microA_per_microF). * ALGEBRAIC[50] is i_K_Na in component sodium_activated_potassium_current (microA_per_microF). * ALGEBRAIC[81] is i_NaCa in component Na_Ca_exchanger (microA_per_microF). * ALGEBRAIC[74] is i_K1 in component time_independent_potassium_current (microA_per_microF). * ALGEBRAIC[72] is i_K_ATP in component ATP_sensitive_potassium_current (microA_per_microF). * ALGEBRAIC[73] is i_to in component transient_outward_current (microA_per_microF). * ALGEBRAIC[47] is i_Kp in component plateau_potassium_current (microA_per_microF). * ALGEBRAIC[75] is i_p_Ca in component sarcolemmal_calcium_pump (microA_per_microF). * ALGEBRAIC[51] is i_Na_b in component sodium_background_current (microA_per_microF). * ALGEBRAIC[77] is i_Ca_b in component calcium_background_current (microA_per_microF). * ALGEBRAIC[53] is i_NaK in component sodium_potassium_pump (microA_per_microF). * ALGEBRAIC[80] is i_ns_Ca in component non_specific_calcium_activated_current (microA_per_microF). * ALGEBRAIC[88] is dVdt in component cell (microA_per_microF). * CONSTANTS[3] is stim_start in component cell (ms). * CONSTANTS[4] is stim_end in component cell (ms). * CONSTANTS[5] is stim_period in component cell (ms). * CONSTANTS[6] is stim_duration in component cell (ms). * CONSTANTS[7] is stim_amplitude in component cell (microA_per_microF). * ALGEBRAIC[1] is E_Na in component fast_sodium_current (millivolt). * CONSTANTS[8] is g_Na in component fast_sodium_current (milliS_per_microF). * STATES[1] is Nai in component ionic_concentrations (millimolar). * CONSTANTS[9] is Nao in component ionic_concentrations (millimolar). * STATES[2] is m in component fast_sodium_current_m_gate (dimensionless). * STATES[3] is h in component fast_sodium_current_h_gate (dimensionless). * STATES[4] is j in component fast_sodium_current_j_gate (dimensionless). * ALGEBRAIC[4] is alpha_m in component fast_sodium_current_m_gate (per_ms). * ALGEBRAIC[5] is beta_m in component fast_sodium_current_m_gate (per_ms). * ALGEBRAIC[3] is E0_m in component fast_sodium_current_m_gate (millivolt). * ALGEBRAIC[6] is alpha_h in component fast_sodium_current_h_gate (per_ms). * ALGEBRAIC[7] is beta_h in component fast_sodium_current_h_gate (per_ms). * ALGEBRAIC[8] is alpha_j in component fast_sodium_current_j_gate (per_ms). * ALGEBRAIC[9] is beta_j in component fast_sodium_current_j_gate (per_ms). * ALGEBRAIC[82] is i_CaCa in component L_type_Ca_channel (microA_per_microF). * ALGEBRAIC[84] is i_CaK in component L_type_Ca_channel (microA_per_microF). * ALGEBRAIC[83] is i_CaNa in component L_type_Ca_channel (microA_per_microF). * CONSTANTS[10] is gamma_Nai in component L_type_Ca_channel (dimensionless). * CONSTANTS[11] is gamma_Nao in component L_type_Ca_channel (dimensionless). * CONSTANTS[12] is gamma_Ki in component L_type_Ca_channel (dimensionless). * CONSTANTS[13] is gamma_Ko in component L_type_Ca_channel (dimensionless). * CONSTANTS[14] is gamma_Cai in component L_type_Ca_channel (dimensionless). * CONSTANTS[15] is gamma_Cao in component L_type_Ca_channel (dimensionless). * ALGEBRAIC[67] is I_CaCa in component L_type_Ca_channel (microA_per_microF). * ALGEBRAIC[11] is I_CaK in component L_type_Ca_channel (microA_per_microF). * ALGEBRAIC[10] is I_CaNa in component L_type_Ca_channel (microA_per_microF). * CONSTANTS[16] is P_Ca in component L_type_Ca_channel (litre_per_farad_millisecond). * CONSTANTS[17] is P_Na in component L_type_Ca_channel (litre_per_farad_millisecond). * CONSTANTS[18] is P_K in component L_type_Ca_channel (litre_per_farad_millisecond). * ALGEBRAIC[62] is Cai in component calcium_dynamics (millimolar). * CONSTANTS[19] is Cao in component calcium_dynamics (millimolar). * CONSTANTS[20] is Ko in component ionic_concentrations (millimolar). * STATES[5] is Ki in component ionic_concentrations (millimolar). * STATES[6] is d in component L_type_Ca_channel_d_gate (dimensionless). * STATES[7] is f in component L_type_Ca_channel_f_gate (dimensionless). * ALGEBRAIC[68] is f_Ca in component L_type_Ca_channel_f_Ca_gate (dimensionless). * ALGEBRAIC[15] is alpha_d in component L_type_Ca_channel_d_gate (per_ms). * ALGEBRAIC[16] is beta_d in component L_type_Ca_channel_d_gate (per_ms). * ALGEBRAIC[13] is d_infinity in component L_type_Ca_channel_d_gate (dimensionless). * ALGEBRAIC[14] is tau_d in component L_type_Ca_channel_d_gate (ms). * ALGEBRAIC[12] is E0_d in component L_type_Ca_channel_d_gate (millivolt). * ALGEBRAIC[19] is alpha_f in component L_type_Ca_channel_f_gate (per_ms). * ALGEBRAIC[20] is beta_f in component L_type_Ca_channel_f_gate (per_ms). * ALGEBRAIC[17] is f_infinity in component L_type_Ca_channel_f_gate (dimensionless). * ALGEBRAIC[18] is tau_f in component L_type_Ca_channel_f_gate (ms). * CONSTANTS[21] is Km_Ca in component L_type_Ca_channel_f_Ca_gate (millimolar). * CONSTANTS[22] is g_CaT in component T_type_Ca_channel (milliS_per_microF). * ALGEBRAIC[76] is E_Ca in component calcium_background_current (millivolt). * STATES[8] is b in component T_type_Ca_channel_b_gate (dimensionless). * STATES[9] is g in component T_type_Ca_channel_g_gate (dimensionless). * ALGEBRAIC[21] is b_inf in component T_type_Ca_channel_b_gate (dimensionless). * ALGEBRAIC[22] is tau_b in component T_type_Ca_channel_b_gate (ms). * ALGEBRAIC[23] is g_inf in component T_type_Ca_channel_g_gate (dimensionless). * ALGEBRAIC[24] is tau_g in component T_type_Ca_channel_g_gate (ms). * CONSTANTS[66] is g_Kr in component rapid_delayed_rectifier_potassium_current (milliS_per_microF). * CONSTANTS[23] is G_Kr in component rapid_delayed_rectifier_potassium_current (milliS_per_microF). * ALGEBRAIC[25] is Rect in component rapid_delayed_rectifier_potassium_current (dimensionless). * ALGEBRAIC[42] is E_K in component time_independent_potassium_current (millivolt). * STATES[10] is xr in component rapid_delayed_rectifier_potassium_current_xr_gate (dimensionless). * ALGEBRAIC[26] is xr_infinity in component rapid_delayed_rectifier_potassium_current_xr_gate (dimensionless). * ALGEBRAIC[27] is tau_xr in component rapid_delayed_rectifier_potassium_current_xr_gate (ms). * ALGEBRAIC[70] is g_Ks in component slow_delayed_rectifier_potassium_current (milliS_per_microF). * CONSTANTS[24] is G_Ks in component slow_delayed_rectifier_potassium_current (milliS_per_microF). * ALGEBRAIC[28] is E_Ks in component slow_delayed_rectifier_potassium_current (millivolt). * CONSTANTS[25] is PNaK in component slow_delayed_rectifier_potassium_current (dimensionless). * STATES[11] is xs1 in component slow_delayed_rectifier_potassium_current_xs1_gate (dimensionless). * STATES[12] is xs2 in component slow_delayed_rectifier_potassium_current_xs2_gate (dimensionless). * ALGEBRAIC[29] is xs1_infinity in component slow_delayed_rectifier_potassium_current_xs1_gate (dimensionless). * ALGEBRAIC[30] is tau_xs1 in component slow_delayed_rectifier_potassium_current_xs1_gate (ms). * ALGEBRAIC[31] is xs2_infinity in component slow_delayed_rectifier_potassium_current_xs2_gate (dimensionless). * ALGEBRAIC[32] is tau_xs2 in component slow_delayed_rectifier_potassium_current_xs2_gate (ms). * CONSTANTS[67] is g_K_ATP in component ATP_sensitive_potassium_current (milliS_per_microF). * CONSTANTS[26] is i_K_ATP_on in component ATP_sensitive_potassium_current (dimensionless). * CONSTANTS[27] is nATP in component ATP_sensitive_potassium_current (dimensionless). * CONSTANTS[28] is nicholsarea in component ATP_sensitive_potassium_current (dimensionless). * CONSTANTS[29] is ATPi in component ATP_sensitive_potassium_current (millimolar). * CONSTANTS[30] is hATP in component ATP_sensitive_potassium_current (dimensionless). * CONSTANTS[31] is kATP in component ATP_sensitive_potassium_current (millimolar). * CONSTANTS[74] is pATP in component ATP_sensitive_potassium_current (dimensionless). * CONSTANTS[76] is GKbaraATP in component ATP_sensitive_potassium_current (milliS_per_microF). * CONSTANTS[68] is g_to in component transient_outward_current (milliS_per_microF). * ALGEBRAIC[33] is rvdv in component transient_outward_current (dimensionless). * STATES[13] is zdv in component transient_outward_current_zdv_gate (dimensionless). * STATES[14] is ydv in component transient_outward_current_ydv_gate (dimensionless). * ALGEBRAIC[34] is alpha_zdv in component transient_outward_current_zdv_gate (per_ms). * ALGEBRAIC[35] is beta_zdv in component transient_outward_current_zdv_gate (per_ms). * ALGEBRAIC[36] is tau_zdv in component transient_outward_current_zdv_gate (ms). * ALGEBRAIC[37] is zdv_ss in component transient_outward_current_zdv_gate (dimensionless). * ALGEBRAIC[38] is alpha_ydv in component transient_outward_current_ydv_gate (per_ms). * ALGEBRAIC[39] is beta_ydv in component transient_outward_current_ydv_gate (per_ms). * ALGEBRAIC[40] is tau_ydv in component transient_outward_current_ydv_gate (ms). * ALGEBRAIC[41] is ydv_ss in component transient_outward_current_ydv_gate (dimensionless). * CONSTANTS[69] is g_K1 in component time_independent_potassium_current (milliS_per_microF). * CONSTANTS[32] is G_K1 in component time_independent_potassium_current (milliS_per_microF). * ALGEBRAIC[45] is K1_infinity in component time_independent_potassium_current_K1_gate (dimensionless). * ALGEBRAIC[43] is alpha_K1 in component time_independent_potassium_current_K1_gate (per_ms). * ALGEBRAIC[44] is beta_K1 in component time_independent_potassium_current_K1_gate (per_ms). * CONSTANTS[33] is g_Kp in component plateau_potassium_current (milliS_per_microF). * ALGEBRAIC[46] is Kp in component plateau_potassium_current (dimensionless). * CONSTANTS[34] is g_K_Na in component sodium_activated_potassium_current (milliS_per_microF). * CONSTANTS[35] is nKNa in component sodium_activated_potassium_current (dimensionless). * ALGEBRAIC[48] is pona in component sodium_activated_potassium_current (dimensionless). * ALGEBRAIC[49] is pov in component sodium_activated_potassium_current (dimensionless). * CONSTANTS[36] is kdKNa in component sodium_activated_potassium_current (millimolar). * CONSTANTS[37] is K_mpCa in component sarcolemmal_calcium_pump (millimolar). * CONSTANTS[38] is I_pCa in component sarcolemmal_calcium_pump (microA_per_microF). * CONSTANTS[39] is g_Nab in component sodium_background_current (milliS_per_microF). * CONSTANTS[40] is g_Cab in component calcium_background_current (milliS_per_microF). * CONSTANTS[41] is I_NaK in component sodium_potassium_pump (microA_per_microF). * ALGEBRAIC[52] is f_NaK in component sodium_potassium_pump (dimensionless). * CONSTANTS[42] is K_mNai in component sodium_potassium_pump (millimolar). * CONSTANTS[43] is K_mKo in component sodium_potassium_pump (millimolar). * CONSTANTS[70] is sigma in component sodium_potassium_pump (dimensionless). * ALGEBRAIC[78] is i_ns_Na in component non_specific_calcium_activated_current (microA_per_microF). * ALGEBRAIC[79] is i_ns_K in component non_specific_calcium_activated_current (microA_per_microF). * CONSTANTS[71] is P_ns_Ca in component non_specific_calcium_activated_current (litre_per_farad_millisecond). * ALGEBRAIC[54] is I_ns_Na in component non_specific_calcium_activated_current (microA_per_microF). * ALGEBRAIC[55] is I_ns_K in component non_specific_calcium_activated_current (microA_per_microF). * CONSTANTS[44] is K_m_ns_Ca in component non_specific_calcium_activated_current (millimolar). * CONSTANTS[45] is c1 in component Na_Ca_exchanger (microA_per_microF). * CONSTANTS[46] is c2 in component Na_Ca_exchanger (dimensionless). * CONSTANTS[47] is gamma in component Na_Ca_exchanger (dimensionless). * STATES[15] is i_rel in component CICR_current (millimolar_per_ms). * ALGEBRAIC[63] is i_up in component calcium_dynamics (millimolar_per_ms). * ALGEBRAIC[64] is i_leak in component calcium_dynamics (millimolar_per_ms). * ALGEBRAIC[65] is i_tr in component calcium_dynamics (millimolar_per_ms). * CONSTANTS[48] is tau_tr in component calcium_dynamics (ms). * CONSTANTS[49] is CSQN_max in component calcium_dynamics (millimolar). * CONSTANTS[50] is K_mCSQN in component calcium_dynamics (millimolar). * CONSTANTS[51] is K_mup in component calcium_dynamics (millimolar). * CONSTANTS[72] is K_leak in component calcium_dynamics (per_ms). * CONSTANTS[52] is I_up in component calcium_dynamics (millimolar_per_ms). * CONSTANTS[53] is Ca_NSR_max in component calcium_dynamics (millimolar). * STATES[16] is CaT in component calcium_dynamics (millimolar). * ALGEBRAIC[58] is Ca_JSR in component calcium_dynamics (millimolar). * STATES[17] is JSR in component calcium_dynamics (millimolar). * STATES[18] is NSR in component calcium_dynamics (millimolar). * ALGEBRAIC[56] is bjsr in component calcium_dynamics (millimolar). * ALGEBRAIC[57] is cjsr in component calcium_dynamics (millimolar2). * ALGEBRAIC[59] is bmyo in component calcium_dynamics (millimolar). * ALGEBRAIC[60] is cmyo in component calcium_dynamics (millimolar2). * ALGEBRAIC[61] is dmyo in component calcium_dynamics (millimolar3). * CONSTANTS[75] is V_myo in component geometry (micro_litre). * CONSTANTS[54] is A_cap in component geometry (cm2). * CONSTANTS[77] is V_JSR in component geometry (micro_litre). * CONSTANTS[78] is V_NSR in component geometry (micro_litre). * CONSTANTS[55] is K_mTRPN in component calcium_dynamics (millimolar). * CONSTANTS[56] is K_mCMDN in component calcium_dynamics (millimolar). * CONSTANTS[57] is TRPN_max in component calcium_dynamics (millimolar). * CONSTANTS[58] is CMDN_max in component calcium_dynamics (millimolar). * CONSTANTS[59] is kappa in component CICR_current (mM_per_millivolt_ms). * CONSTANTS[60] is tau in component CICR_current (ms). * CONSTANTS[61] is K_relss in component CICR_current (millimolar). * CONSTANTS[62] is qn in component CICR_current (dimensionless). * CONSTANTS[65] is alpha_rel in component CICR_current (millimolar_per_mV). * ALGEBRAIC[66] is tau_rel in component CICR_current (ms). * ALGEBRAIC[87] is I_relss in component CICR_current (millimolar_per_ms). * CONSTANTS[63] is preplength in component geometry (mm). * CONSTANTS[64] is radius in component geometry (mm). * CONSTANTS[73] is volume in component geometry (micro_litre). * RATES[0] is d/dt V in component cell (millivolt). * RATES[2] is d/dt m in component fast_sodium_current_m_gate (dimensionless). * RATES[3] is d/dt h in component fast_sodium_current_h_gate (dimensionless). * RATES[4] is d/dt j in component fast_sodium_current_j_gate (dimensionless). * RATES[6] is d/dt d in component L_type_Ca_channel_d_gate (dimensionless). * RATES[7] is d/dt f in component L_type_Ca_channel_f_gate (dimensionless). * RATES[8] is d/dt b in component T_type_Ca_channel_b_gate (dimensionless). * RATES[9] is d/dt g in component T_type_Ca_channel_g_gate (dimensionless). * RATES[10] is d/dt xr in component rapid_delayed_rectifier_potassium_current_xr_gate (dimensionless). * RATES[11] is d/dt xs1 in component slow_delayed_rectifier_potassium_current_xs1_gate (dimensionless). * RATES[12] is d/dt xs2 in component slow_delayed_rectifier_potassium_current_xs2_gate (dimensionless). * RATES[13] is d/dt zdv in component transient_outward_current_zdv_gate (dimensionless). * RATES[14] is d/dt ydv in component transient_outward_current_ydv_gate (dimensionless). * RATES[17] is d/dt JSR in component calcium_dynamics (millimolar). * RATES[18] is d/dt NSR in component calcium_dynamics (millimolar). * RATES[16] is d/dt CaT in component calcium_dynamics (millimolar). * RATES[15] is d/dt i_rel in component CICR_current (millimolar_per_ms). * RATES[1] is d/dt Nai in component ionic_concentrations (millimolar). * RATES[5] is d/dt Ki in component ionic_concentrations (millimolar). * There are a total of 8 condition variables. */ void initConsts(double* CONSTANTS, double* RATES, double *STATES) { STATES[0] = -85.126196430406; CONSTANTS[0] = 8314; CONSTANTS[1] = 310; CONSTANTS[2] = 96485; CONSTANTS[3] = 10; CONSTANTS[4] = 9e6; CONSTANTS[5] = 300; CONSTANTS[6] = 0.5; CONSTANTS[7] = -80; CONSTANTS[8] = 16; STATES[1] = 10; CONSTANTS[9] = 140; STATES[2] = 0.001513296212; STATES[3] = 0.985318710339; STATES[4] = 0.990731711845; CONSTANTS[10] = 0.75; CONSTANTS[11] = 0.75; CONSTANTS[12] = 0.75; CONSTANTS[13] = 0.75; CONSTANTS[14] = 1; CONSTANTS[15] = 0.341; CONSTANTS[16] = 0.00054; CONSTANTS[17] = 6.75e-7; CONSTANTS[18] = 1.93e-7; CONSTANTS[19] = 1.8; CONSTANTS[20] = 5.4; STATES[5] = 144.473230653346; STATES[6] = 0.000005906564; STATES[7] = 0.999390880784; CONSTANTS[21] = 0.0006; CONSTANTS[22] = 0.05; STATES[8] = 0.001378275288; STATES[9] = 0.988597502434; CONSTANTS[23] = 0.02614; STATES[10] = 0.000207067204; CONSTANTS[24] = 0.433; CONSTANTS[25] = 0.01833; STATES[11] = 0.007136102382; STATES[12] = 0.039518996812; CONSTANTS[26] = 1; CONSTANTS[27] = 0.24; CONSTANTS[28] = 5e-5; CONSTANTS[29] = 3; CONSTANTS[30] = 2; CONSTANTS[31] = 0.00025; STATES[13] = 0.014537782303; STATES[14] = 0.99993940527; CONSTANTS[32] = 0.75; CONSTANTS[33] = 0.00552; CONSTANTS[34] = 0.12848; CONSTANTS[35] = 2.8; CONSTANTS[36] = 66; CONSTANTS[37] = 0.0005; CONSTANTS[38] = 1.15; CONSTANTS[39] = 0.004; CONSTANTS[40] = 0.003016; CONSTANTS[41] = 2.25; CONSTANTS[42] = 10; CONSTANTS[43] = 1.5; CONSTANTS[44] = 0.0012; CONSTANTS[45] = 0.00025; CONSTANTS[46] = 0.0001; CONSTANTS[47] = 0.15; STATES[15] = -0.000000000000000000474565; CONSTANTS[48] = 120; CONSTANTS[49] = 10; CONSTANTS[50] = 0.8; CONSTANTS[51] = 0.00092; CONSTANTS[52] = 0.00875; CONSTANTS[53] = 15; STATES[16] = 0.01544711; STATES[17] = 8.290468; STATES[18] = 1.516756041281; CONSTANTS[54] = 1.534e-4; CONSTANTS[55] = 0.0005; CONSTANTS[56] = 0.00238; CONSTANTS[57] = 0.07; CONSTANTS[58] = 0.05; CONSTANTS[59] = 0.125; CONSTANTS[60] = 4.75; CONSTANTS[61] = 1; CONSTANTS[62] = 9; CONSTANTS[63] = 0.1; CONSTANTS[64] = 0.011; CONSTANTS[65] = CONSTANTS[59]*CONSTANTS[60]; CONSTANTS[66] = CONSTANTS[23]* pow((CONSTANTS[20]/5.40000), 1.0 / 2); CONSTANTS[67] = ( CONSTANTS[26]*0.000193000)/CONSTANTS[28]; CONSTANTS[68] = 0.00000*0.500000; CONSTANTS[69] = CONSTANTS[32]* pow((CONSTANTS[20]/5.40000), 1.0 / 2); CONSTANTS[70] = (1.00000/7.00000)*(exp(CONSTANTS[9]/67.3000) - 1.00000); CONSTANTS[71] = 1.75000e-07; CONSTANTS[72] = CONSTANTS[52]/CONSTANTS[53]; CONSTANTS[73] = 3.14159265358979*CONSTANTS[63]*pow(CONSTANTS[64], 2.00000); CONSTANTS[74] = 1.00000/(1.00000+pow(CONSTANTS[29]/CONSTANTS[31], CONSTANTS[30])); CONSTANTS[75] = 0.680000*CONSTANTS[73]; CONSTANTS[76] = CONSTANTS[67]*CONSTANTS[74]*pow(CONSTANTS[20]/4.00000, CONSTANTS[27]); CONSTANTS[77] = 0.00480000*CONSTANTS[73]; CONSTANTS[78] = 0.0552000*CONSTANTS[73]; RATES[0] = 0.1001; RATES[2] = 0.1001; RATES[3] = 0.1001; RATES[4] = 0.1001; RATES[6] = 0.1001; RATES[7] = 0.1001; RATES[8] = 0.1001; RATES[9] = 0.1001; RATES[10] = 0.1001; RATES[11] = 0.1001; RATES[12] = 0.1001; RATES[13] = 0.1001; RATES[14] = 0.1001; RATES[17] = 0.1001; RATES[18] = 0.1001; RATES[16] = 0.1001; RATES[15] = 0.1001; RATES[1] = 0.1001; RATES[5] = 0.1001; } void computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { resid[0] = RATES[0] - ALGEBRAIC[88]; resid[1] = RATES[2] - ALGEBRAIC[4]*(1.00000 - STATES[2]) - ALGEBRAIC[5]*STATES[2]; resid[2] = RATES[3] - ALGEBRAIC[6]*(1.00000 - STATES[3]) - ALGEBRAIC[7]*STATES[3]; resid[3] = RATES[4] - ALGEBRAIC[8]*(1.00000 - STATES[4]) - ALGEBRAIC[9]*STATES[4]; resid[4] = RATES[6] - ALGEBRAIC[15]*(1.00000 - STATES[6]) - ALGEBRAIC[16]*STATES[6]; resid[5] = RATES[7] - ALGEBRAIC[19]*(1.00000 - STATES[7]) - ALGEBRAIC[20]*STATES[7]; resid[6] = RATES[8] - (ALGEBRAIC[21] - STATES[8])/ALGEBRAIC[22]; resid[7] = RATES[9] - (ALGEBRAIC[23] - STATES[9])/ALGEBRAIC[24]; resid[8] = RATES[10] - (ALGEBRAIC[26] - STATES[10])/ALGEBRAIC[27]; resid[9] = RATES[11] - (ALGEBRAIC[29] - STATES[11])/ALGEBRAIC[30]; resid[10] = RATES[12] - (ALGEBRAIC[31] - STATES[12])/ALGEBRAIC[32]; resid[11] = RATES[13] - (ALGEBRAIC[37] - STATES[13])/ALGEBRAIC[36]; resid[12] = RATES[14] - (ALGEBRAIC[41] - STATES[14])/ALGEBRAIC[40]; resid[13] = RATES[17] - ALGEBRAIC[65] - STATES[15]; resid[14] = RATES[18] - (( - ALGEBRAIC[65]*CONSTANTS[77])/CONSTANTS[78] - ALGEBRAIC[64])+ALGEBRAIC[63]; resid[15] = RATES[16] - ( - 1.00000*CONSTANTS[54]*(ALGEBRAIC[82]+ALGEBRAIC[86]+ALGEBRAIC[75]+ALGEBRAIC[77]+ - 2.00000*ALGEBRAIC[81]))/( 2.00000*CONSTANTS[75]*CONSTANTS[2])+( STATES[15]*CONSTANTS[77])/CONSTANTS[75]+( (ALGEBRAIC[64] - ALGEBRAIC[63])*CONSTANTS[78])/CONSTANTS[75]; resid[16] = RATES[15] - - (ALGEBRAIC[87]+STATES[15])/ALGEBRAIC[66]; resid[17] = RATES[1] - ( - 1.00000*(ALGEBRAIC[2]+ALGEBRAIC[83]+ALGEBRAIC[51]+ALGEBRAIC[78]+ ALGEBRAIC[81]*3.00000+ ALGEBRAIC[53]*3.00000)*CONSTANTS[54])/( CONSTANTS[75]*CONSTANTS[2]); resid[18] = RATES[5] - ( - 1.00000*(ALGEBRAIC[0]+ALGEBRAIC[84]+ALGEBRAIC[69]+ALGEBRAIC[71]+ALGEBRAIC[74]+ALGEBRAIC[72]+ALGEBRAIC[73]+ALGEBRAIC[47]+ALGEBRAIC[50]+ALGEBRAIC[79]+ - ALGEBRAIC[53]*2.00000)*CONSTANTS[54])/( CONSTANTS[75]*CONSTANTS[2]); } void computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { } void computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[0] = (CONDVAR[0]>=0.00000&&CONDVAR[1]<=0.00000&&CONDVAR[2]<=0.00000 ? CONSTANTS[7] : 0.00000); ALGEBRAIC[1] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[9]/STATES[1]); ALGEBRAIC[2] = CONSTANTS[8]*pow(STATES[2], 3.00000)*STATES[3]*STATES[4]*(STATES[0] - ALGEBRAIC[1]); ALGEBRAIC[3] = STATES[0]+47.1300; ALGEBRAIC[4] = ( 0.320000*ALGEBRAIC[3])/(1.00000 - exp( - 0.100000*ALGEBRAIC[3])); ALGEBRAIC[5] = 0.0800000*exp(- STATES[0]/11.0000); ALGEBRAIC[6] = (CONDVAR[3]<0.00000 ? 0.135000*exp((80.0000+STATES[0])/- 6.80000) : 0.00000); ALGEBRAIC[7] = (CONDVAR[4]<0.00000 ? 3.56000*exp( 0.0790000*STATES[0])+ 310000.*exp( 0.350000*STATES[0]) : 1.00000/( 0.130000*(1.00000+exp((STATES[0]+10.6600)/- 11.1000)))); ALGEBRAIC[8] = (CONDVAR[5]<0.00000 ? ( - ( 127140.*exp( 0.244400*STATES[0])+ 3.47400e-05*exp( - 0.0439100*STATES[0]))*(STATES[0]+37.7800))/(1.00000+exp( 0.311000*(STATES[0]+79.2300))) : 0.00000); ALGEBRAIC[9] = (CONDVAR[6]<0.00000 ? ( 0.121200*exp( - 0.0105200*STATES[0]))/(1.00000+exp( - 0.137800*(STATES[0]+40.1400))) : ( 0.300000*exp( - 2.53500e-07*STATES[0]))/(1.00000+exp( - 0.100000*(STATES[0]+32.0000)))); ALGEBRAIC[12] = STATES[0]+10.0000; ALGEBRAIC[13] = 1.00000/(1.00000+exp(- ALGEBRAIC[12]/6.24000)); ALGEBRAIC[14] = ( 1.00000*ALGEBRAIC[13]*(1.00000 - exp(- ALGEBRAIC[12]/6.24000)))/( 0.0350000*ALGEBRAIC[12]); ALGEBRAIC[15] = ALGEBRAIC[13]/ALGEBRAIC[14]; ALGEBRAIC[16] = (1.00000 - ALGEBRAIC[13])/ALGEBRAIC[14]; ALGEBRAIC[17] = 1.00000/(1.00000+exp((STATES[0]+32.0000)/8.00000))+0.600000/(1.00000+exp((50.0000 - STATES[0])/20.0000)); ALGEBRAIC[18] = 1.00000/( 0.0197000*exp(- pow( 0.0337000*(STATES[0]+10.0000), 2.00000))+0.0200000); ALGEBRAIC[19] = ALGEBRAIC[17]/ALGEBRAIC[18]; ALGEBRAIC[20] = (1.00000 - ALGEBRAIC[17])/ALGEBRAIC[18]; ALGEBRAIC[21] = 1.00000/(1.00000+exp(- (STATES[0]+14.0000)/10.8000)); ALGEBRAIC[22] = 3.70000+6.10000/(1.00000+exp((STATES[0]+25.0000)/4.50000)); ALGEBRAIC[23] = 1.00000/(1.00000+exp((STATES[0]+60.0000)/5.60000)); ALGEBRAIC[24] = (CONDVAR[7]<=0.00000 ? - 0.875000*STATES[0]+12.0000 : 12.0000); ALGEBRAIC[26] = 1.00000/(1.00000+exp(- (STATES[0]+21.5000)/7.50000)); ALGEBRAIC[27] = 1.00000/(( 0.00138000*(STATES[0]+14.2000))/(1.00000 - exp( - 0.123000*(STATES[0]+14.2000)))+( 0.000610000*(STATES[0]+38.9000))/(exp( 0.145000*(STATES[0]+38.9000)) - 1.00000)); ALGEBRAIC[29] = 1.00000/(1.00000+exp(- (STATES[0] - 1.50000)/16.7000)); ALGEBRAIC[30] = 1.00000/(( 7.19000e-05*(STATES[0]+30.0000))/(1.00000 - exp( - 0.148000*(STATES[0]+30.0000)))+( 0.000131000*(STATES[0]+30.0000))/(exp( 0.0687000*(STATES[0]+30.0000)) - 1.00000)); ALGEBRAIC[31] = 1.00000/(1.00000+exp(- (STATES[0] - 1.50000)/16.7000)); ALGEBRAIC[32] = 4.00000/(( 7.19000e-05*(STATES[0]+30.0000))/(1.00000 - exp( - 0.148000*(STATES[0]+30.0000)))+( 0.000131000*(STATES[0]+30.0000))/(exp( 0.0687000*(STATES[0]+30.0000)) - 1.00000)); ALGEBRAIC[34] = ( 10.0000*exp((STATES[0] - 40.0000)/25.0000))/(1.00000+exp((STATES[0] - 40.0000)/25.0000)); ALGEBRAIC[35] = ( 10.0000*exp(- (STATES[0]+90.0000)/25.0000))/(1.00000+exp(- (STATES[0]+90.0000)/25.0000)); ALGEBRAIC[36] = 1.00000/(ALGEBRAIC[34]+ALGEBRAIC[35]); ALGEBRAIC[37] = ALGEBRAIC[34]/(ALGEBRAIC[34]+ALGEBRAIC[35]); ALGEBRAIC[38] = 0.0150000/(1.00000+exp((STATES[0]+60.0000)/5.00000)); ALGEBRAIC[39] = ( 0.100000*exp((STATES[0]+25.0000)/5.00000))/(1.00000+exp((STATES[0]+25.0000)/5.00000)); ALGEBRAIC[40] = 1.00000/(ALGEBRAIC[38]+ALGEBRAIC[39]); ALGEBRAIC[41] = ALGEBRAIC[38]/(ALGEBRAIC[38]+ALGEBRAIC[39]); ALGEBRAIC[42] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[20]/STATES[5]); ALGEBRAIC[46] = 1.00000/(1.00000+exp((7.48800 - STATES[0])/5.98000)); ALGEBRAIC[47] = CONSTANTS[33]*ALGEBRAIC[46]*(STATES[0] - ALGEBRAIC[42]); ALGEBRAIC[48] = 0.850000/(1.00000+pow(CONSTANTS[36]/STATES[1], CONSTANTS[35])); ALGEBRAIC[49] = 0.800000 - 0.650000/(1.00000+exp((STATES[0]+125.000)/15.0000)); ALGEBRAIC[50] = CONSTANTS[34]*ALGEBRAIC[48]*ALGEBRAIC[49]*(STATES[0] - ALGEBRAIC[42]); ALGEBRAIC[51] = CONSTANTS[39]*(STATES[0] - ALGEBRAIC[1]); ALGEBRAIC[52] = 1.00000/(1.00000+ 0.124500*exp(( - 0.100000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))+ 0.0365000*CONSTANTS[70]*exp(( - STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))); ALGEBRAIC[53] = (( CONSTANTS[41]*ALGEBRAIC[52])/(1.00000+pow(CONSTANTS[42]/STATES[1], 2.00000)))/(1.00000+CONSTANTS[43]/CONSTANTS[20]); ALGEBRAIC[59] = CONSTANTS[58]+CONSTANTS[57]+CONSTANTS[56]+CONSTANTS[55]+- STATES[16]; ALGEBRAIC[60] = CONSTANTS[56]*CONSTANTS[55]+ CONSTANTS[57]*CONSTANTS[56]+ CONSTANTS[58]*CONSTANTS[55]+ - STATES[16]*(CONSTANTS[55]+CONSTANTS[56]); ALGEBRAIC[61] = - CONSTANTS[55]*CONSTANTS[56]*STATES[16]; ALGEBRAIC[62] = (2.00000/3.00000)* pow((pow(ALGEBRAIC[59], 2.00000) - 3.00000*ALGEBRAIC[60]), 1.0 / 2)*cos(acos(( 9.00000*ALGEBRAIC[59]*ALGEBRAIC[60] - ( 2.00000*pow(ALGEBRAIC[59], 3.00000)+ 27.0000*ALGEBRAIC[61]))/( 2.00000* pow(pow(pow(ALGEBRAIC[59], 2.00000) - 3.00000*ALGEBRAIC[60], 3.00000), 1.0 / 2)))/3.00000) - ALGEBRAIC[59]/3.00000; ALGEBRAIC[63] = ( CONSTANTS[52]*ALGEBRAIC[62])/(ALGEBRAIC[62]+CONSTANTS[51]); ALGEBRAIC[64] = CONSTANTS[72]*STATES[18]; ALGEBRAIC[56] = CONSTANTS[49]+CONSTANTS[50]+- STATES[17]; ALGEBRAIC[57] = CONSTANTS[50]*STATES[17]; ALGEBRAIC[58] = ( pow((pow(ALGEBRAIC[56], 2.00000)+ 4.00000*ALGEBRAIC[57]), 1.0 / 2) - ALGEBRAIC[56])/2.00000; ALGEBRAIC[65] = (STATES[18] - ALGEBRAIC[58])/CONSTANTS[48]; ALGEBRAIC[66] = CONSTANTS[60]/(1.00000+0.0123000/ALGEBRAIC[58]); ALGEBRAIC[25] = 1.00000/(1.00000+exp((STATES[0]+9.00000)/22.4000)); ALGEBRAIC[69] = CONSTANTS[66]*STATES[10]*ALGEBRAIC[25]*(STATES[0] - ALGEBRAIC[42]); ALGEBRAIC[70] = CONSTANTS[24]*(1.00000+0.600000/(1.00000+pow(3.80000e-05/ALGEBRAIC[62], 1.40000))); ALGEBRAIC[28] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log((CONSTANTS[20]+ CONSTANTS[25]*CONSTANTS[9])/(STATES[5]+ CONSTANTS[25]*STATES[1])); ALGEBRAIC[71] = ALGEBRAIC[70]*STATES[11]*STATES[12]*(STATES[0] - ALGEBRAIC[28]); ALGEBRAIC[72] = CONSTANTS[76]*(STATES[0] - ALGEBRAIC[42]); ALGEBRAIC[33] = exp(STATES[0]/100.000); ALGEBRAIC[73] = CONSTANTS[68]*pow(STATES[13], 3.00000)*STATES[14]*ALGEBRAIC[33]*(STATES[0] - ALGEBRAIC[42]); ALGEBRAIC[43] = 1.02000/(1.00000+exp( 0.238500*((STATES[0] - ALGEBRAIC[42]) - 59.2150))); ALGEBRAIC[44] = ( 1.00000*( 0.491240*exp( 0.0803200*((STATES[0] - ALGEBRAIC[42])+5.47600))+exp( 0.0617500*((STATES[0] - ALGEBRAIC[42]) - 594.310))))/(1.00000+exp( - 0.514300*((STATES[0] - ALGEBRAIC[42])+4.75300))); ALGEBRAIC[45] = ALGEBRAIC[43]/(ALGEBRAIC[43]+ALGEBRAIC[44]); ALGEBRAIC[74] = CONSTANTS[69]*ALGEBRAIC[45]*(STATES[0] - ALGEBRAIC[42]); ALGEBRAIC[75] = ( CONSTANTS[38]*ALGEBRAIC[62])/(CONSTANTS[37]+ALGEBRAIC[62]); ALGEBRAIC[76] = (( CONSTANTS[0]*CONSTANTS[1])/( 2.00000*CONSTANTS[2]))*log(CONSTANTS[19]/ALGEBRAIC[62]); ALGEBRAIC[77] = CONSTANTS[40]*(STATES[0] - ALGEBRAIC[76]); ALGEBRAIC[54] = ( (( CONSTANTS[71]*pow(1.00000, 2.00000)*STATES[0]*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*( CONSTANTS[10]*STATES[1]*exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[11]*CONSTANTS[9]))/(exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000); ALGEBRAIC[78] = ( ALGEBRAIC[54]*1.00000)/(1.00000+pow(CONSTANTS[44]/ALGEBRAIC[62], 3.00000)); ALGEBRAIC[55] = ( (( CONSTANTS[71]*pow(1.00000, 2.00000)*STATES[0]*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*( CONSTANTS[12]*STATES[5]*exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[13]*CONSTANTS[20]))/(exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000); ALGEBRAIC[79] = ( ALGEBRAIC[55]*1.00000)/(1.00000+pow(CONSTANTS[44]/ALGEBRAIC[62], 3.00000)); ALGEBRAIC[81] = ( CONSTANTS[45]*exp(( (CONSTANTS[47] - 1.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*( exp(( STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(STATES[1], 3.00000)*CONSTANTS[19] - pow(CONSTANTS[9], 3.00000)*ALGEBRAIC[62]))/(1.00000+ CONSTANTS[46]*exp(( (CONSTANTS[47] - 1.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*( exp(( STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(STATES[1], 3.00000)*CONSTANTS[19]+ pow(CONSTANTS[9], 3.00000)*ALGEBRAIC[62])); ALGEBRAIC[67] = ( (( CONSTANTS[16]*pow(2.00000, 2.00000)*STATES[0]*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*( CONSTANTS[14]*ALGEBRAIC[62]*exp(( 2.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[15]*CONSTANTS[19]))/(exp(( 2.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000); ALGEBRAIC[68] = 1.00000/(1.00000+ALGEBRAIC[62]/CONSTANTS[21]); ALGEBRAIC[82] = STATES[6]*STATES[7]*ALGEBRAIC[68]*ALGEBRAIC[67]; ALGEBRAIC[10] = ( (( CONSTANTS[17]*pow(1.00000, 2.00000)*STATES[0]*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*( CONSTANTS[10]*STATES[1]*exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[11]*CONSTANTS[9]))/(exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000); ALGEBRAIC[83] = STATES[6]*STATES[7]*ALGEBRAIC[68]*ALGEBRAIC[10]; ALGEBRAIC[11] = ( (( CONSTANTS[18]*pow(1.00000, 2.00000)*STATES[0]*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*( CONSTANTS[12]*STATES[5]*exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[13]*CONSTANTS[20]))/(exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000); ALGEBRAIC[84] = STATES[6]*STATES[7]*ALGEBRAIC[68]*ALGEBRAIC[11]; ALGEBRAIC[86] = CONSTANTS[22]*STATES[8]*STATES[8]*STATES[9]*(STATES[0] - ALGEBRAIC[76]); ALGEBRAIC[87] = ( ALGEBRAIC[82]*CONSTANTS[65])/(1.00000+pow(CONSTANTS[61]/ALGEBRAIC[58], CONSTANTS[62])); ALGEBRAIC[85] = ALGEBRAIC[82]+ALGEBRAIC[84]+ALGEBRAIC[83]; ALGEBRAIC[80] = ALGEBRAIC[78]+ALGEBRAIC[79]; ALGEBRAIC[88] = - (ALGEBRAIC[2]+ALGEBRAIC[85]+ALGEBRAIC[86]+ALGEBRAIC[69]+ALGEBRAIC[71]+ALGEBRAIC[50]+ALGEBRAIC[74]+ALGEBRAIC[72]+ALGEBRAIC[73]+ALGEBRAIC[47]+ALGEBRAIC[81]+ALGEBRAIC[75]+ALGEBRAIC[51]+ALGEBRAIC[77]+ALGEBRAIC[53]+ALGEBRAIC[80]+ALGEBRAIC[0]); } void getStateInformation(double* SI) { SI[0] = 1.0; SI[1] = 1.0; SI[2] = 1.0; SI[3] = 1.0; SI[4] = 1.0; SI[5] = 1.0; SI[6] = 1.0; SI[7] = 1.0; SI[8] = 1.0; SI[9] = 1.0; SI[10] = 1.0; SI[11] = 1.0; SI[12] = 1.0; SI[13] = 1.0; SI[14] = 1.0; SI[15] = 1.0; SI[16] = 1.0; SI[17] = 1.0; SI[18] = 1.0; } void computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { CONDVAR[0] = VOI - CONSTANTS[3]; CONDVAR[1] = VOI - CONSTANTS[4]; CONDVAR[2] = ((VOI - CONSTANTS[3]) - floor((VOI - CONSTANTS[3])/CONSTANTS[5])*CONSTANTS[5]) - CONSTANTS[6]; CONDVAR[3] = STATES[0] - - 40.0000; CONDVAR[4] = STATES[0] - - 40.0000; CONDVAR[5] = STATES[0] - - 40.0000; CONDVAR[6] = STATES[0] - - 40.0000; CONDVAR[7] = STATES[0] - 0.00000; }