function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction() % This is the "main function". In Matlab, things work best if you rename this function to match the filename. [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel(); end function [algebraicVariableCount] = getAlgebraicVariableCount() % Used later when setting a global variable with the number of algebraic variables. % Note: This is not the "main method". algebraicVariableCount =4; end % There are a total of 4 entries in each of the rate and state variable arrays. % There are a total of 14 entries in the constant variable array. % function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel() % Create ALGEBRAIC of correct size global algebraicVariableCount; algebraicVariableCount = getAlgebraicVariableCount(); % Initialise constants and state variables [INIT_STATES, CONSTANTS] = initConsts; % Set timespan to solve over tspan = [0, 10]; % Set numerical accuracy options for ODE solver options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1); % Solve model with ODE solver [VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options); % Compute algebraic variables [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS); ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI); % Plot state variables against variable of integration [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends(); figure(); plot(VOI, STATES); xlabel(LEGEND_VOI); l = legend(LEGEND_STATES); set(l,'Interpreter','none'); end function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends() LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = ''; LEGEND_VOI = strpad('time in component environment (minute)'); LEGEND_STATES(:,1) = strpad('r in component r (nanomolar)'); LEGEND_ALGEBRAIC(:,1) = strpad('Ir in component r (flux)'); LEGEND_CONSTANTS(:,1) = strpad('k6 in component r (first_order_rate_constant)'); LEGEND_STATES(:,2) = strpad('s in component s (nanomolar)'); LEGEND_ALGEBRAIC(:,2) = strpad('Is in component model_parameters (flux)'); LEGEND_CONSTANTS(:,2) = strpad('k7 in component model_parameters (first_order_rate_constant)'); LEGEND_STATES(:,3) = strpad('f in component f (dimensionless)'); LEGEND_CONSTANTS(:,3) = strpad('k1 in component f (second_order_rate_constant)'); LEGEND_CONSTANTS(:,4) = strpad('k2 in component f (first_order_rate_constant)'); LEGEND_CONSTANTS(:,5) = strpad('k3 in component f (first_order_rate_constant)'); LEGEND_ALGEBRAIC(:,3) = strpad('phi_b_s in component f (dimensionless)'); LEGEND_CONSTANTS(:,6) = strpad('sb in component f (dimensionless)'); LEGEND_CONSTANTS(:,7) = strpad('delta_b in component f (dimensionless)'); LEGEND_CONSTANTS(:,8) = strpad('c in component model_parameters (nanomolar)'); LEGEND_STATES(:,4) = strpad('h in component h (nanomolar)'); LEGEND_CONSTANTS(:,9) = strpad('k4 in component h (first_order_rate_constant)'); LEGEND_CONSTANTS(:,10) = strpad('k5 in component h (first_order_rate_constant)'); LEGEND_ALGEBRAIC(:,4) = strpad('phi_r_s in component h (dimensionless)'); LEGEND_CONSTANTS(:,11) = strpad('sr in component h (dimensionless)'); LEGEND_CONSTANTS(:,12) = strpad('delta_r in component h (dimensionless)'); LEGEND_CONSTANTS(:,13) = strpad('k8 in component model_parameters (first_order_rate_constant)'); LEGEND_CONSTANTS(:,14) = strpad('j1 in component model_parameters (dimensionless)'); LEGEND_RATES(:,1) = strpad('d/dt r in component r (nanomolar)'); LEGEND_RATES(:,2) = strpad('d/dt s in component s (nanomolar)'); LEGEND_RATES(:,3) = strpad('d/dt f in component f (dimensionless)'); LEGEND_RATES(:,4) = strpad('d/dt h in component h (nanomolar)'); LEGEND_STATES = LEGEND_STATES'; LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC'; LEGEND_RATES = LEGEND_RATES'; LEGEND_CONSTANTS = LEGEND_CONSTANTS'; end function [STATES, CONSTANTS] = initConsts() VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = []; STATES(:,1) = 0.0; CONSTANTS(:,1) = 5.0; STATES(:,2) = 0.0; CONSTANTS(:,2) = 5.0; STATES(:,3) = 0.3; CONSTANTS(:,3) = 0.1; CONSTANTS(:,4) = 0.002; CONSTANTS(:,5) = 0.018; CONSTANTS(:,6) = 0.029; CONSTANTS(:,7) = 0.3; CONSTANTS(:,8) = 0.01; STATES(:,4) = 0.0; CONSTANTS(:,9) = 9.0; CONSTANTS(:,10) = 71.0; CONSTANTS(:,11) = -0.56; CONSTANTS(:,12) = 0.3; CONSTANTS(:,13) = 0.07; CONSTANTS(:,14) = 10; if (isempty(STATES)), warning('Initial values for states not set');, end end function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS) global algebraicVariableCount; statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; ALGEBRAIC = zeros(1, algebraicVariableCount); utilOnes = 1; else statesRowCount = statesSize(1); ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount); RATES = zeros(statesRowCount, statesColumnCount); utilOnes = ones(statesRowCount, 1); end ALGEBRAIC(:,1) = piecewise({VOI>=0.00000&VOI<=90.0000, 0.00000 , VOI>=91.0000&VOI<=92.0000, 10.0000 , VOI>=93.0000&VOI<=113.000, 0.00000 , VOI>=114.000&VOI<=115.000, 10.0000 , VOI>=116.000&VOI<=136.000, 0.00000 , VOI>=137.000&VOI<=138.000, 10.0000 , VOI>=139.000&VOI<=159.000, 0.00000 , VOI>=160.000&VOI<=161.000, 10.0000 , VOI>=162.000&VOI<=252.000, 0.00000 , VOI>=253.000&VOI<=254.000, 10.0000 , VOI>=255.000&VOI<=275.000, 0.00000 , VOI>=276.000&VOI<=277.000, 10.0000 , VOI>=278.000&VOI<=298.000, 0.00000 , VOI>=299.000&VOI<=300.000, 10.0000 , VOI>=301.000&VOI<=321.000, 0.00000 , VOI>=322.000&VOI<=323.000, 10.0000 }, 0.00000); RATES(:,1) = ALGEBRAIC(:,1) - CONSTANTS(:,1).*STATES(:,1); ALGEBRAIC(:,2) = piecewise({VOI>0.00000&VOI<=90.0000, 10.0000 , VOI>90.0000&VOI<=180.000, 0.00000 , VOI>180.000&VOI<=270.000, 10.0000 , VOI>270.000&VOI<=360.000, 0.00000 }, 0.00000); RATES(:,2) = ALGEBRAIC(:,2) - CONSTANTS(:,2).*STATES(:,2); ALGEBRAIC(:,3) = 1.00000./(1.00000+exp( - (arbitrary_log( 1.00000.*STATES(:,2), 10) - CONSTANTS(:,6))./CONSTANTS(:,7))); RATES(:,3) = - ( CONSTANTS(:,3).*(STATES(:,1)+CONSTANTS(:,8)).*STATES(:,3))+ (CONSTANTS(:,4)+ CONSTANTS(:,5).*ALGEBRAIC(:,3)).*(1.00000 - STATES(:,3)); ALGEBRAIC(:,4) = 1.00000./(1.00000+exp( - (arbitrary_log( 1.00000.*STATES(:,2), 10) - CONSTANTS(:,11))./CONSTANTS(:,12))); RATES(:,4) = CONSTANTS(:,14).*( (CONSTANTS(:,9)+ CONSTANTS(:,10).*(1.00000 - ALGEBRAIC(:,4))).*( (STATES(:,1)+CONSTANTS(:,8)).*STATES(:,3)) - CONSTANTS(:,13).*STATES(:,4)); RATES = RATES'; end % Calculate algebraic variables function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI) statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; utilOnes = 1; else statesRowCount = statesSize(1); utilOnes = ones(statesRowCount, 1); end ALGEBRAIC(:,1) = piecewise({VOI>=0.00000&VOI<=90.0000, 0.00000 , VOI>=91.0000&VOI<=92.0000, 10.0000 , VOI>=93.0000&VOI<=113.000, 0.00000 , VOI>=114.000&VOI<=115.000, 10.0000 , VOI>=116.000&VOI<=136.000, 0.00000 , VOI>=137.000&VOI<=138.000, 10.0000 , VOI>=139.000&VOI<=159.000, 0.00000 , VOI>=160.000&VOI<=161.000, 10.0000 , VOI>=162.000&VOI<=252.000, 0.00000 , VOI>=253.000&VOI<=254.000, 10.0000 , VOI>=255.000&VOI<=275.000, 0.00000 , VOI>=276.000&VOI<=277.000, 10.0000 , VOI>=278.000&VOI<=298.000, 0.00000 , VOI>=299.000&VOI<=300.000, 10.0000 , VOI>=301.000&VOI<=321.000, 0.00000 , VOI>=322.000&VOI<=323.000, 10.0000 }, 0.00000); ALGEBRAIC(:,2) = piecewise({VOI>0.00000&VOI<=90.0000, 10.0000 , VOI>90.0000&VOI<=180.000, 0.00000 , VOI>180.000&VOI<=270.000, 10.0000 , VOI>270.000&VOI<=360.000, 0.00000 }, 0.00000); ALGEBRAIC(:,3) = 1.00000./(1.00000+exp( - (arbitrary_log( 1.00000.*STATES(:,2), 10) - CONSTANTS(:,6))./CONSTANTS(:,7))); ALGEBRAIC(:,4) = 1.00000./(1.00000+exp( - (arbitrary_log( 1.00000.*STATES(:,2), 10) - CONSTANTS(:,11))./CONSTANTS(:,12))); end % Compute result of a piecewise function function x = piecewise(cases, default) set = [0]; for i = 1:2:length(cases) if (length(cases{i+1}) == 1) x(cases{i} & ~set,:) = cases{i+1}; else x(cases{i} & ~set,:) = cases{i+1}(cases{i} & ~set); end set = set | cases{i}; if(set), break, end end if (length(default) == 1) x(~set,:) = default; else x(~set,:) = default(~set); end end % Compute a logarithm to any base" + function x = arbitrary_log(a, base) x = log(a) ./ log(base); end % Pad out or shorten strings to a set length function strout = strpad(strin) req_length = 160; insize = size(strin,2); if insize > req_length strout = strin(1:req_length); else strout = [strin, blanks(req_length - insize)]; end end