Generated Code
The following is c_ida code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
/* There are a total of 75 entries in the algebraic variable array. There are a total of 21 entries in each of the rate and state variable arrays. There are a total of 49 entries in the constant variable array. */ /* * VOI is time in component environment (millisecond). * STATES[0] is V in component membrane (millivolt). * CONSTANTS[0] is R in component membrane (joule_per_mole_kelvin). * CONSTANTS[1] is T in component membrane (kelvin). * CONSTANTS[2] is F in component membrane (coulomb_per_millimole). * CONSTANTS[3] is Cm in component membrane (picoF). * ALGEBRAIC[0] is i_st in component membrane (picoA). * ALGEBRAIC[70] is i_Na in component fast_sodium_current (picoA). * ALGEBRAIC[15] is i_K1 in component time_independent_potassium_current (picoA). * ALGEBRAIC[16] is i_to in component transient_outward_K_current (picoA). * ALGEBRAIC[26] is i_Kur in component ultrarapid_delayed_rectifier_K_current (picoA). * ALGEBRAIC[35] is i_Kr in component rapid_delayed_rectifier_K_current (picoA). * ALGEBRAIC[40] is i_Ks in component slow_delayed_rectifier_K_current (picoA). * ALGEBRAIC[45] is i_Ca_L in component L_type_Ca_channel (picoA). * ALGEBRAIC[58] is i_CaP in component sarcolemmal_calcium_pump_current (picoA). * ALGEBRAIC[52] is i_NaK in component sodium_potassium_pump (picoA). * ALGEBRAIC[57] is i_NaCa in component Na_Ca_exchanger_current (picoA). * ALGEBRAIC[54] is i_B_Na in component background_currents (picoA). * ALGEBRAIC[55] is i_B_Ca in component background_currents (picoA). * CONSTANTS[4] is stim_start in component membrane (millisecond). * CONSTANTS[5] is stim_end in component membrane (millisecond). * CONSTANTS[6] is stim_period in component membrane (millisecond). * CONSTANTS[7] is stim_duration in component membrane (millisecond). * CONSTANTS[8] is stim_amplitude in component membrane (picoA). * ALGEBRAIC[1] is E_Na in component fast_sodium_current (millivolt). * CONSTANTS[9] is g_Na in component fast_sodium_current (nanoS_per_picoF). * STATES[1] is Na_i in component intracellular_ion_concentrations (millimolar). * CONSTANTS[10] is Na_o in component standard_ionic_concentrations (millimolar). * STATES[2] is m in component fast_sodium_current_m_gate (dimensionless). * STATES[3] is h in component fast_sodium_current_h_gate (dimensionless). * STATES[4] is j in component fast_sodium_current_j_gate (dimensionless). * ALGEBRAIC[2] is alpha_m in component fast_sodium_current_m_gate (per_millisecond). * ALGEBRAIC[3] is beta_m in component fast_sodium_current_m_gate (per_millisecond). * ALGEBRAIC[4] is m_inf in component fast_sodium_current_m_gate (dimensionless). * ALGEBRAIC[5] is tau_m in component fast_sodium_current_m_gate (millisecond). * ALGEBRAIC[6] is alpha_h in component fast_sodium_current_h_gate (per_millisecond). * ALGEBRAIC[7] is beta_h in component fast_sodium_current_h_gate (per_millisecond). * ALGEBRAIC[8] is h_inf in component fast_sodium_current_h_gate (dimensionless). * ALGEBRAIC[9] is tau_h in component fast_sodium_current_h_gate (millisecond). * ALGEBRAIC[10] is alpha_j in component fast_sodium_current_j_gate (per_millisecond). * ALGEBRAIC[11] is beta_j in component fast_sodium_current_j_gate (per_millisecond). * ALGEBRAIC[12] is j_inf in component fast_sodium_current_j_gate (dimensionless). * ALGEBRAIC[13] is tau_j in component fast_sodium_current_j_gate (millisecond). * ALGEBRAIC[14] is E_K in component time_independent_potassium_current (millivolt). * CONSTANTS[11] is g_K1 in component time_independent_potassium_current (nanoS_per_picoF). * CONSTANTS[12] is K_o in component standard_ionic_concentrations (millimolar). * STATES[5] is K_i in component intracellular_ion_concentrations (millimolar). * CONSTANTS[13] is K_Q10 in component transient_outward_K_current (dimensionless). * CONSTANTS[14] is g_to in component transient_outward_K_current (nanoS_per_picoF). * STATES[6] is oa in component transient_outward_K_current_oa_gate (dimensionless). * STATES[7] is oi in component transient_outward_K_current_oi_gate (dimensionless). * ALGEBRAIC[17] is alpha_oa in component transient_outward_K_current_oa_gate (per_millisecond). * ALGEBRAIC[18] is beta_oa in component transient_outward_K_current_oa_gate (per_millisecond). * ALGEBRAIC[19] is tau_oa in component transient_outward_K_current_oa_gate (millisecond). * ALGEBRAIC[20] is oa_infinity in component transient_outward_K_current_oa_gate (dimensionless). * ALGEBRAIC[21] is alpha_oi in component transient_outward_K_current_oi_gate (per_millisecond). * ALGEBRAIC[22] is beta_oi in component transient_outward_K_current_oi_gate (per_millisecond). * ALGEBRAIC[23] is tau_oi in component transient_outward_K_current_oi_gate (millisecond). * ALGEBRAIC[24] is oi_infinity in component transient_outward_K_current_oi_gate (dimensionless). * ALGEBRAIC[25] is g_Kur in component ultrarapid_delayed_rectifier_K_current (nanoS_per_picoF). * STATES[8] is ua in component ultrarapid_delayed_rectifier_K_current_ua_gate (dimensionless). * STATES[9] is ui in component ultrarapid_delayed_rectifier_K_current_ui_gate (dimensionless). * ALGEBRAIC[27] is alpha_ua in component ultrarapid_delayed_rectifier_K_current_ua_gate (per_millisecond). * ALGEBRAIC[28] is beta_ua in component ultrarapid_delayed_rectifier_K_current_ua_gate (per_millisecond). * ALGEBRAIC[29] is tau_ua in component ultrarapid_delayed_rectifier_K_current_ua_gate (millisecond). * ALGEBRAIC[30] is ua_infinity in component ultrarapid_delayed_rectifier_K_current_ua_gate (dimensionless). * ALGEBRAIC[31] is alpha_ui in component ultrarapid_delayed_rectifier_K_current_ui_gate (per_millisecond). * ALGEBRAIC[32] is beta_ui in component ultrarapid_delayed_rectifier_K_current_ui_gate (per_millisecond). * ALGEBRAIC[33] is tau_ui in component ultrarapid_delayed_rectifier_K_current_ui_gate (millisecond). * ALGEBRAIC[34] is ui_infinity in component ultrarapid_delayed_rectifier_K_current_ui_gate (dimensionless). * CONSTANTS[15] is g_Kr in component rapid_delayed_rectifier_K_current (nanoS_per_picoF). * STATES[10] is xr in component rapid_delayed_rectifier_K_current_xr_gate (dimensionless). * ALGEBRAIC[36] is alpha_xr in component rapid_delayed_rectifier_K_current_xr_gate (per_millisecond). * ALGEBRAIC[37] is beta_xr in component rapid_delayed_rectifier_K_current_xr_gate (per_millisecond). * ALGEBRAIC[38] is tau_xr in component rapid_delayed_rectifier_K_current_xr_gate (millisecond). * ALGEBRAIC[39] is xr_infinity in component rapid_delayed_rectifier_K_current_xr_gate (dimensionless). * CONSTANTS[16] is g_Ks in component slow_delayed_rectifier_K_current (nanoS_per_picoF). * STATES[11] is xs in component slow_delayed_rectifier_K_current_xs_gate (dimensionless). * ALGEBRAIC[41] is alpha_xs in component slow_delayed_rectifier_K_current_xs_gate (per_millisecond). * ALGEBRAIC[42] is beta_xs in component slow_delayed_rectifier_K_current_xs_gate (per_millisecond). * ALGEBRAIC[43] is tau_xs in component slow_delayed_rectifier_K_current_xs_gate (millisecond). * ALGEBRAIC[44] is xs_infinity in component slow_delayed_rectifier_K_current_xs_gate (dimensionless). * CONSTANTS[17] is g_Ca_L in component L_type_Ca_channel (nanoS_per_picoF). * STATES[12] is Ca_i in component intracellular_ion_concentrations (millimolar). * STATES[13] is d in component L_type_Ca_channel_d_gate (dimensionless). * STATES[14] is f in component L_type_Ca_channel_f_gate (dimensionless). * STATES[15] is f_Ca in component L_type_Ca_channel_f_Ca_gate (dimensionless). * ALGEBRAIC[46] is d_infinity in component L_type_Ca_channel_d_gate (dimensionless). * ALGEBRAIC[47] is tau_d in component L_type_Ca_channel_d_gate (millisecond). * ALGEBRAIC[48] is f_infinity in component L_type_Ca_channel_f_gate (dimensionless). * ALGEBRAIC[49] is tau_f in component L_type_Ca_channel_f_gate (millisecond). * ALGEBRAIC[50] is f_Ca_infinity in component L_type_Ca_channel_f_Ca_gate (dimensionless). * CONSTANTS[44] is tau_f_Ca in component L_type_Ca_channel_f_Ca_gate (millisecond). * CONSTANTS[18] is Km_Na_i in component sodium_potassium_pump (millimolar). * CONSTANTS[19] is Km_K_o in component sodium_potassium_pump (millimolar). * CONSTANTS[20] is i_NaK_max in component sodium_potassium_pump (picoA_per_picoF). * ALGEBRAIC[51] is f_NaK in component sodium_potassium_pump (dimensionless). * CONSTANTS[45] is sigma in component sodium_potassium_pump (dimensionless). * ALGEBRAIC[56] is i_B_K in component background_currents (picoA). * CONSTANTS[21] is g_B_Na in component background_currents (nanoS_per_picoF). * CONSTANTS[22] is g_B_Ca in component background_currents (nanoS_per_picoF). * CONSTANTS[23] is g_B_K in component background_currents (nanoS_per_picoF). * ALGEBRAIC[53] is E_Ca in component background_currents (millivolt). * CONSTANTS[24] is Ca_o in component standard_ionic_concentrations (millimolar). * CONSTANTS[25] is I_NaCa_max in component Na_Ca_exchanger_current (picoA_per_picoF). * CONSTANTS[26] is K_mNa in component Na_Ca_exchanger_current (millimolar). * CONSTANTS[27] is K_mCa in component Na_Ca_exchanger_current (millimolar). * CONSTANTS[28] is K_sat in component Na_Ca_exchanger_current (dimensionless). * CONSTANTS[29] is gamma in component Na_Ca_exchanger_current (dimensionless). * CONSTANTS[30] is i_CaP_max in component sarcolemmal_calcium_pump_current (picoA_per_picoF). * ALGEBRAIC[59] is i_rel in component Ca_release_current_from_JSR (millimolar_per_millisecond). * ALGEBRAIC[71] is Fn in component Ca_release_current_from_JSR (dimensionless). * CONSTANTS[31] is K_rel in component Ca_release_current_from_JSR (per_millisecond). * CONSTANTS[47] is V_rel in component intracellular_ion_concentrations (micrometre_3). * STATES[16] is Ca_rel in component intracellular_ion_concentrations (millimolar). * STATES[17] is u in component Ca_release_current_from_JSR_u_gate (dimensionless). * STATES[18] is v in component Ca_release_current_from_JSR_v_gate (dimensionless). * STATES[19] is w in component Ca_release_current_from_JSR_w_gate (dimensionless). * CONSTANTS[46] is tau_u in component Ca_release_current_from_JSR_u_gate (millisecond). * ALGEBRAIC[72] is u_infinity in component Ca_release_current_from_JSR_u_gate (dimensionless). * ALGEBRAIC[73] is tau_v in component Ca_release_current_from_JSR_v_gate (millisecond). * ALGEBRAIC[74] is v_infinity in component Ca_release_current_from_JSR_v_gate (dimensionless). * ALGEBRAIC[60] is tau_w in component Ca_release_current_from_JSR_w_gate (millisecond). * ALGEBRAIC[61] is w_infinity in component Ca_release_current_from_JSR_w_gate (dimensionless). * ALGEBRAIC[62] is i_tr in component transfer_current_from_NSR_to_JSR (millimolar_per_millisecond). * CONSTANTS[32] is tau_tr in component transfer_current_from_NSR_to_JSR (millisecond). * STATES[20] is Ca_up in component intracellular_ion_concentrations (millimolar). * CONSTANTS[33] is I_up_max in component Ca_uptake_current_by_the_NSR (millimolar_per_millisecond). * ALGEBRAIC[63] is i_up in component Ca_uptake_current_by_the_NSR (millimolar_per_millisecond). * CONSTANTS[34] is K_up in component Ca_uptake_current_by_the_NSR (millimolar). * ALGEBRAIC[64] is i_up_leak in component Ca_leak_current_by_the_NSR (millimolar_per_millisecond). * CONSTANTS[35] is Ca_up_max in component Ca_leak_current_by_the_NSR (millimolar). * CONSTANTS[36] is CMDN_max in component Ca_buffers (millimolar). * CONSTANTS[37] is TRPN_max in component Ca_buffers (millimolar). * CONSTANTS[38] is CSQN_max in component Ca_buffers (millimolar). * CONSTANTS[39] is Km_CMDN in component Ca_buffers (millimolar). * CONSTANTS[40] is Km_TRPN in component Ca_buffers (millimolar). * CONSTANTS[41] is Km_CSQN in component Ca_buffers (millimolar). * ALGEBRAIC[65] is Ca_CMDN in component Ca_buffers (millimolar). * ALGEBRAIC[66] is Ca_TRPN in component Ca_buffers (millimolar). * ALGEBRAIC[67] is Ca_CSQN in component Ca_buffers (millimolar). * CONSTANTS[42] is V_cell in component intracellular_ion_concentrations (micrometre_3). * CONSTANTS[43] is V_i in component intracellular_ion_concentrations (micrometre_3). * CONSTANTS[48] is V_up in component intracellular_ion_concentrations (micrometre_3). * ALGEBRAIC[68] is B1 in component intracellular_ion_concentrations (millimolar_per_millisecond). * ALGEBRAIC[69] is B2 in component intracellular_ion_concentrations (dimensionless). * RATES[0] is d/dt V in component membrane (millivolt). * RATES[2] is d/dt m in component fast_sodium_current_m_gate (dimensionless). * RATES[3] is d/dt h in component fast_sodium_current_h_gate (dimensionless). * RATES[4] is d/dt j in component fast_sodium_current_j_gate (dimensionless). * RATES[6] is d/dt oa in component transient_outward_K_current_oa_gate (dimensionless). * RATES[7] is d/dt oi in component transient_outward_K_current_oi_gate (dimensionless). * RATES[8] is d/dt ua in component ultrarapid_delayed_rectifier_K_current_ua_gate (dimensionless). * RATES[9] is d/dt ui in component ultrarapid_delayed_rectifier_K_current_ui_gate (dimensionless). * RATES[10] is d/dt xr in component rapid_delayed_rectifier_K_current_xr_gate (dimensionless). * RATES[11] is d/dt xs in component slow_delayed_rectifier_K_current_xs_gate (dimensionless). * RATES[13] is d/dt d in component L_type_Ca_channel_d_gate (dimensionless). * RATES[14] is d/dt f in component L_type_Ca_channel_f_gate (dimensionless). * RATES[15] is d/dt f_Ca in component L_type_Ca_channel_f_Ca_gate (dimensionless). * RATES[17] is d/dt u in component Ca_release_current_from_JSR_u_gate (dimensionless). * RATES[18] is d/dt v in component Ca_release_current_from_JSR_v_gate (dimensionless). * RATES[19] is d/dt w in component Ca_release_current_from_JSR_w_gate (dimensionless). * RATES[1] is d/dt Na_i in component intracellular_ion_concentrations (millimolar). * RATES[5] is d/dt K_i in component intracellular_ion_concentrations (millimolar). * RATES[12] is d/dt Ca_i in component intracellular_ion_concentrations (millimolar). * RATES[20] is d/dt Ca_up in component intracellular_ion_concentrations (millimolar). * RATES[16] is d/dt Ca_rel in component intracellular_ion_concentrations (millimolar). * There are a total of 13 condition variables. */ void initConsts(double* CONSTANTS, double* RATES, double *STATES) { STATES[0] = -81.18; CONSTANTS[0] = 8.3143; CONSTANTS[1] = 310; CONSTANTS[2] = 96.4867; CONSTANTS[3] = 100; CONSTANTS[4] = 50; CONSTANTS[5] = 50000; CONSTANTS[6] = 1000; CONSTANTS[7] = 2; CONSTANTS[8] = -2000; CONSTANTS[9] = 7.8; STATES[1] = 1.117e+01; CONSTANTS[10] = 140; STATES[2] = 2.908e-3; STATES[3] = 9.649e-1; STATES[4] = 9.775e-1; CONSTANTS[11] = 0.09; CONSTANTS[12] = 5.4; STATES[5] = 1.39e+02; CONSTANTS[13] = 3; CONSTANTS[14] = 0.1652; STATES[6] = 3.043e-2; STATES[7] = 9.992e-1; STATES[8] = 4.966e-3; STATES[9] = 9.986e-1; CONSTANTS[15] = 0.029411765; STATES[10] = 3.296e-5; CONSTANTS[16] = 0.12941176; STATES[11] = 1.869e-2; CONSTANTS[17] = 0.12375; STATES[12] = 1.013e-4; STATES[13] = 1.367e-4; STATES[14] = 9.996e-1; STATES[15] = 7.755e-1; CONSTANTS[18] = 10; CONSTANTS[19] = 1.5; CONSTANTS[20] = 0.59933874; CONSTANTS[21] = 0.0006744375; CONSTANTS[22] = 0.001131; CONSTANTS[23] = 0; CONSTANTS[24] = 1.8; CONSTANTS[25] = 1600; CONSTANTS[26] = 87.5; CONSTANTS[27] = 1.38; CONSTANTS[28] = 0.1; CONSTANTS[29] = 0.35; CONSTANTS[30] = 0.275; CONSTANTS[31] = 30; STATES[16] = 1.488; STATES[17] = 2.35e-112; STATES[18] = 1; STATES[19] = 0.9992; CONSTANTS[32] = 180; STATES[20] = 1.488; CONSTANTS[33] = 0.005; CONSTANTS[34] = 0.00092; CONSTANTS[35] = 15; CONSTANTS[36] = 0.05; CONSTANTS[37] = 0.07; CONSTANTS[38] = 10; CONSTANTS[39] = 0.00238; CONSTANTS[40] = 0.0005; CONSTANTS[41] = 0.8; CONSTANTS[42] = 20100; CONSTANTS[43] = CONSTANTS[42]*0.680000; CONSTANTS[44] = 2.00000; CONSTANTS[45] = (1.00000/7.00000)*(exp(CONSTANTS[10]/67.3000) - 1.00000); CONSTANTS[46] = 8.00000; CONSTANTS[47] = 0.00480000*CONSTANTS[42]; CONSTANTS[48] = 0.0552000*CONSTANTS[42]; RATES[0] = 0.1001; RATES[2] = 0.1001; RATES[3] = 0.1001; RATES[4] = 0.1001; RATES[6] = 0.1001; RATES[7] = 0.1001; RATES[8] = 0.1001; RATES[9] = 0.1001; RATES[10] = 0.1001; RATES[11] = 0.1001; RATES[13] = 0.1001; RATES[14] = 0.1001; RATES[15] = 0.1001; RATES[17] = 0.1001; RATES[18] = 0.1001; RATES[19] = 0.1001; RATES[1] = 0.1001; RATES[5] = 0.1001; RATES[12] = 0.1001; RATES[20] = 0.1001; RATES[16] = 0.1001; } void computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { resid[0] = RATES[0] - - (ALGEBRAIC[70]+ALGEBRAIC[15]+ALGEBRAIC[16]+ALGEBRAIC[26]+ALGEBRAIC[35]+ALGEBRAIC[40]+ALGEBRAIC[54]+ALGEBRAIC[55]+ALGEBRAIC[52]+ALGEBRAIC[58]+ALGEBRAIC[57]+ALGEBRAIC[45]+ALGEBRAIC[0])/CONSTANTS[3]; resid[1] = RATES[2] - (ALGEBRAIC[4] - STATES[2])/ALGEBRAIC[5]; resid[2] = RATES[3] - (ALGEBRAIC[8] - STATES[3])/ALGEBRAIC[9]; resid[3] = RATES[4] - (ALGEBRAIC[12] - STATES[4])/ALGEBRAIC[13]; resid[4] = RATES[6] - (ALGEBRAIC[20] - STATES[6])/ALGEBRAIC[19]; resid[5] = RATES[7] - (ALGEBRAIC[24] - STATES[7])/ALGEBRAIC[23]; resid[6] = RATES[8] - (ALGEBRAIC[30] - STATES[8])/ALGEBRAIC[29]; resid[7] = RATES[9] - (ALGEBRAIC[34] - STATES[9])/ALGEBRAIC[33]; resid[8] = RATES[10] - (ALGEBRAIC[39] - STATES[10])/ALGEBRAIC[38]; resid[9] = RATES[11] - (ALGEBRAIC[44] - STATES[11])/ALGEBRAIC[43]; resid[10] = RATES[13] - (ALGEBRAIC[46] - STATES[13])/ALGEBRAIC[47]; resid[11] = RATES[14] - (ALGEBRAIC[48] - STATES[14])/ALGEBRAIC[49]; resid[12] = RATES[15] - (ALGEBRAIC[50] - STATES[15])/CONSTANTS[44]; resid[13] = RATES[17] - (ALGEBRAIC[72] - STATES[17])/CONSTANTS[46]; resid[14] = RATES[18] - (ALGEBRAIC[74] - STATES[18])/ALGEBRAIC[73]; resid[15] = RATES[19] - (ALGEBRAIC[61] - STATES[19])/ALGEBRAIC[60]; resid[16] = RATES[1] - ( - 3.00000*ALGEBRAIC[52] - ( 3.00000*ALGEBRAIC[57]+ALGEBRAIC[54]+ALGEBRAIC[70]))/( CONSTANTS[43]*CONSTANTS[2]); resid[17] = RATES[5] - ( 2.00000*ALGEBRAIC[52] - (ALGEBRAIC[15]+ALGEBRAIC[16]+ALGEBRAIC[26]+ALGEBRAIC[35]+ALGEBRAIC[40]+ALGEBRAIC[56]))/( CONSTANTS[43]*CONSTANTS[2]); resid[18] = RATES[12] - ALGEBRAIC[68]/ALGEBRAIC[69]; resid[19] = RATES[20] - ALGEBRAIC[63] - (ALGEBRAIC[64]+( ALGEBRAIC[62]*CONSTANTS[47])/CONSTANTS[48]); resid[20] = RATES[16] - (ALGEBRAIC[62] - ALGEBRAIC[59])*pow(1.00000+( CONSTANTS[38]*CONSTANTS[41])/pow(STATES[16]+CONSTANTS[41], 2.00000), - 1.00000); } void computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[65] = ( CONSTANTS[36]*STATES[12])/(STATES[12]+CONSTANTS[39]); ALGEBRAIC[66] = ( CONSTANTS[37]*STATES[12])/(STATES[12]+CONSTANTS[40]); ALGEBRAIC[67] = ( CONSTANTS[38]*STATES[16])/(STATES[16]+CONSTANTS[41]); } void computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[0] = (CONDVAR[0]>=0.00000&&CONDVAR[1]<=0.00000&&CONDVAR[2]<=0.00000 ? CONSTANTS[8] : 0.00000); ALGEBRAIC[2] = (STATES[0]==- 47.1300 ? 3.20000 : ( 0.320000*(STATES[0]+47.1300))/(1.00000 - exp( - 0.100000*(STATES[0]+47.1300)))); ALGEBRAIC[3] = 0.0800000*exp(- STATES[0]/11.0000); ALGEBRAIC[4] = ALGEBRAIC[2]/(ALGEBRAIC[2]+ALGEBRAIC[3]); ALGEBRAIC[5] = 1.00000/(ALGEBRAIC[2]+ALGEBRAIC[3]); ALGEBRAIC[6] = (CONDVAR[3]<0.00000 ? 0.135000*exp((STATES[0]+80.0000)/- 6.80000) : 0.00000); ALGEBRAIC[7] = (CONDVAR[4]<0.00000 ? 3.56000*exp( 0.0790000*STATES[0])+ 310000.*exp( 0.350000*STATES[0]) : 1.00000/( 0.130000*(1.00000+exp((STATES[0]+10.6600)/- 11.1000)))); ALGEBRAIC[8] = ALGEBRAIC[6]/(ALGEBRAIC[6]+ALGEBRAIC[7]); ALGEBRAIC[9] = 1.00000/(ALGEBRAIC[6]+ALGEBRAIC[7]); ALGEBRAIC[10] = (CONDVAR[5]<0.00000 ? ( ( - 127140.*exp( 0.244400*STATES[0]) - 3.47400e-05*exp( - 0.0439100*STATES[0]))*(STATES[0]+37.7800))/(1.00000+exp( 0.311000*(STATES[0]+79.2300))) : 0.00000); ALGEBRAIC[11] = (CONDVAR[6]<0.00000 ? ( 0.121200*exp( - 0.0105200*STATES[0]))/(1.00000+exp( - 0.137800*(STATES[0]+40.1400))) : ( 0.300000*exp( - 2.53500e-07*STATES[0]))/(1.00000+exp( - 0.100000*(STATES[0]+32.0000)))); ALGEBRAIC[12] = ALGEBRAIC[10]/(ALGEBRAIC[10]+ALGEBRAIC[11]); ALGEBRAIC[13] = 1.00000/(ALGEBRAIC[10]+ALGEBRAIC[11]); ALGEBRAIC[14] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[12]/STATES[5]); ALGEBRAIC[15] = ( CONSTANTS[3]*CONSTANTS[11]*(STATES[0] - ALGEBRAIC[14]))/(1.00000+exp( 0.0700000*(STATES[0]+80.0000))); ALGEBRAIC[16] = CONSTANTS[3]*CONSTANTS[14]*pow(STATES[6], 3.00000)*STATES[7]*(STATES[0] - ALGEBRAIC[14]); ALGEBRAIC[17] = 0.650000*pow(exp((STATES[0] - - 10.0000)/- 8.50000)+exp(((STATES[0] - - 10.0000) - 40.0000)/- 59.0000), - 1.00000); ALGEBRAIC[18] = 0.650000*pow(2.50000+exp(((STATES[0] - - 10.0000)+72.0000)/17.0000), - 1.00000); ALGEBRAIC[19] = pow(ALGEBRAIC[17]+ALGEBRAIC[18], - 1.00000)/CONSTANTS[13]; ALGEBRAIC[20] = pow(1.00000+exp(((STATES[0] - - 10.0000)+10.4700)/- 17.5400), - 1.00000); ALGEBRAIC[21] = pow(18.5300+ 1.00000*exp(((STATES[0] - - 10.0000)+103.700)/10.9500), - 1.00000); ALGEBRAIC[22] = pow(35.5600+ 1.00000*exp(((STATES[0] - - 10.0000) - 8.74000)/- 7.44000), - 1.00000); ALGEBRAIC[23] = pow(ALGEBRAIC[21]+ALGEBRAIC[22], - 1.00000)/CONSTANTS[13]; ALGEBRAIC[24] = pow(1.00000+exp(((STATES[0] - - 10.0000)+33.1000)/5.30000), - 1.00000); ALGEBRAIC[25] = 0.00500000+0.0500000/(1.00000+exp((STATES[0] - 15.0000)/- 13.0000)); ALGEBRAIC[26] = CONSTANTS[3]*ALGEBRAIC[25]*pow(STATES[8], 3.00000)*STATES[9]*(STATES[0] - ALGEBRAIC[14]); ALGEBRAIC[27] = 0.650000*pow(exp((STATES[0] - - 10.0000)/- 8.50000)+exp(((STATES[0] - - 10.0000) - 40.0000)/- 59.0000), - 1.00000); ALGEBRAIC[28] = 0.650000*pow(2.50000+exp(((STATES[0] - - 10.0000)+72.0000)/17.0000), - 1.00000); ALGEBRAIC[29] = pow(ALGEBRAIC[27]+ALGEBRAIC[28], - 1.00000)/CONSTANTS[13]; ALGEBRAIC[30] = pow(1.00000+exp(((STATES[0] - - 10.0000)+20.3000)/- 9.60000), - 1.00000); ALGEBRAIC[31] = pow(21.0000+ 1.00000*exp(((STATES[0] - - 10.0000) - 195.000)/- 28.0000), - 1.00000); ALGEBRAIC[32] = 1.00000/exp(((STATES[0] - - 10.0000) - 168.000)/- 16.0000); ALGEBRAIC[33] = pow(ALGEBRAIC[31]+ALGEBRAIC[32], - 1.00000)/CONSTANTS[13]; ALGEBRAIC[34] = pow(1.00000+exp(((STATES[0] - - 10.0000) - 109.450)/27.4800), - 1.00000); ALGEBRAIC[35] = ( CONSTANTS[3]*CONSTANTS[15]*STATES[10]*(STATES[0] - ALGEBRAIC[14]))/(1.00000+exp((STATES[0]+15.0000)/22.4000)); ALGEBRAIC[36] = (CONDVAR[7]<0.00000 ? 0.00150000 : ( 0.000300000*(STATES[0]+14.1000))/(1.00000 - exp((STATES[0]+14.1000)/- 5.00000))); ALGEBRAIC[37] = (CONDVAR[8]<0.00000 ? 0.000378361 : ( 7.38980e-05*(STATES[0] - 3.33280))/(exp((STATES[0] - 3.33280)/5.12370) - 1.00000)); ALGEBRAIC[38] = pow(ALGEBRAIC[36]+ALGEBRAIC[37], - 1.00000); ALGEBRAIC[39] = pow(1.00000+exp((STATES[0]+14.1000)/- 6.50000), - 1.00000); ALGEBRAIC[40] = CONSTANTS[3]*CONSTANTS[16]*pow(STATES[11], 2.00000)*(STATES[0] - ALGEBRAIC[14]); ALGEBRAIC[41] = (CONDVAR[9]<0.00000 ? 0.000680000 : ( 4.00000e-05*(STATES[0] - 19.9000))/(1.00000 - exp((STATES[0] - 19.9000)/- 17.0000))); ALGEBRAIC[42] = (CONDVAR[10]<0.00000 ? 0.000315000 : ( 3.50000e-05*(STATES[0] - 19.9000))/(exp((STATES[0] - 19.9000)/9.00000) - 1.00000)); ALGEBRAIC[43] = 0.500000*pow(ALGEBRAIC[41]+ALGEBRAIC[42], - 1.00000); ALGEBRAIC[44] = pow(1.00000+exp((STATES[0] - 19.9000)/- 12.7000), - 0.500000); ALGEBRAIC[45] = CONSTANTS[3]*CONSTANTS[17]*STATES[13]*STATES[14]*STATES[15]*(STATES[0] - 65.0000); ALGEBRAIC[46] = pow(1.00000+exp((STATES[0]+10.0000)/- 8.00000), - 1.00000); ALGEBRAIC[47] = (CONDVAR[11]<0.00000 ? 4.57900/(1.00000+exp((STATES[0]+10.0000)/- 6.24000)) : (1.00000 - exp((STATES[0]+10.0000)/- 6.24000))/( 0.0350000*(STATES[0]+10.0000)*(1.00000+exp((STATES[0]+10.0000)/- 6.24000)))); ALGEBRAIC[48] = exp(- (STATES[0]+28.0000)/6.90000)/(1.00000+exp(- (STATES[0]+28.0000)/6.90000)); ALGEBRAIC[49] = 9.00000*pow( 0.0197000*exp( - pow(0.0337000, 2.00000)*pow(STATES[0]+10.0000, 2.00000))+0.0200000, - 1.00000); ALGEBRAIC[50] = pow(1.00000+STATES[12]/0.000350000, - 1.00000); ALGEBRAIC[51] = pow(1.00000+ 0.124500*exp(( - 0.100000*CONSTANTS[2]*STATES[0])/( CONSTANTS[0]*CONSTANTS[1]))+ 0.0365000*CONSTANTS[45]*exp(( - CONSTANTS[2]*STATES[0])/( CONSTANTS[0]*CONSTANTS[1])), - 1.00000); ALGEBRAIC[52] = ( (( CONSTANTS[3]*CONSTANTS[20]*ALGEBRAIC[51]*1.00000)/(1.00000+pow(CONSTANTS[18]/STATES[1], 1.50000)))*CONSTANTS[12])/(CONSTANTS[12]+CONSTANTS[19]); ALGEBRAIC[1] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[10]/STATES[1]); ALGEBRAIC[54] = CONSTANTS[3]*CONSTANTS[21]*(STATES[0] - ALGEBRAIC[1]); ALGEBRAIC[53] = (( CONSTANTS[0]*CONSTANTS[1])/( 2.00000*CONSTANTS[2]))*log(CONSTANTS[24]/STATES[12]); ALGEBRAIC[55] = CONSTANTS[3]*CONSTANTS[22]*(STATES[0] - ALGEBRAIC[53]); ALGEBRAIC[56] = CONSTANTS[3]*CONSTANTS[23]*(STATES[0] - ALGEBRAIC[14]); ALGEBRAIC[57] = ( CONSTANTS[3]*CONSTANTS[25]*( exp(( CONSTANTS[29]*CONSTANTS[2]*STATES[0])/( CONSTANTS[0]*CONSTANTS[1]))*pow(STATES[1], 3.00000)*CONSTANTS[24] - exp(( (CONSTANTS[29] - 1.00000)*CONSTANTS[2]*STATES[0])/( CONSTANTS[0]*CONSTANTS[1]))*pow(CONSTANTS[10], 3.00000)*STATES[12]))/( (pow(CONSTANTS[26], 3.00000)+pow(CONSTANTS[10], 3.00000))*(CONSTANTS[27]+CONSTANTS[24])*(1.00000+ CONSTANTS[28]*exp(( (CONSTANTS[29] - 1.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])))); ALGEBRAIC[58] = ( CONSTANTS[3]*CONSTANTS[30]*STATES[12])/(0.000500000+STATES[12]); ALGEBRAIC[59] = CONSTANTS[31]*pow(STATES[17], 2.00000)*STATES[18]*STATES[19]*(STATES[16] - STATES[12]); ALGEBRAIC[60] = (CONDVAR[12]<0.00000 ? ( 6.00000*0.200000)/1.30000 : ( 6.00000*(1.00000 - exp(- (STATES[0] - 7.90000)/5.00000)))/( (1.00000+ 0.300000*exp(- (STATES[0] - 7.90000)/5.00000))*1.00000*(STATES[0] - 7.90000))); ALGEBRAIC[61] = 1.00000 - pow(1.00000+exp(- (STATES[0] - 40.0000)/17.0000), - 1.00000); ALGEBRAIC[62] = (STATES[20] - STATES[16])/CONSTANTS[32]; ALGEBRAIC[63] = CONSTANTS[33]/(1.00000+CONSTANTS[34]/STATES[12]); ALGEBRAIC[64] = ( CONSTANTS[33]*STATES[20])/CONSTANTS[35]; ALGEBRAIC[68] = ( 2.00000*ALGEBRAIC[57] - (ALGEBRAIC[58]+ALGEBRAIC[45]+ALGEBRAIC[55]))/( 2.00000*CONSTANTS[43]*CONSTANTS[2])+( CONSTANTS[48]*(ALGEBRAIC[64] - ALGEBRAIC[63])+ ALGEBRAIC[59]*CONSTANTS[47])/CONSTANTS[43]; ALGEBRAIC[69] = 1.00000+( CONSTANTS[37]*CONSTANTS[40])/pow(STATES[12]+CONSTANTS[40], 2.00000)+( CONSTANTS[36]*CONSTANTS[39])/pow(STATES[12]+CONSTANTS[39], 2.00000); ALGEBRAIC[70] = CONSTANTS[3]*CONSTANTS[9]*pow(STATES[2], 3.00000)*STATES[3]*STATES[4]*(STATES[0] - ALGEBRAIC[1]); ALGEBRAIC[71] = 1000.00*( 1.00000e-15*CONSTANTS[47]*ALGEBRAIC[59] - (1.00000e-15/( 2.00000*CONSTANTS[2]))*( 0.500000*ALGEBRAIC[45] - 0.200000*ALGEBRAIC[57])); ALGEBRAIC[72] = pow(1.00000+exp(- (ALGEBRAIC[71] - 3.41750e-13)/1.36700e-15), - 1.00000); ALGEBRAIC[73] = 1.91000+ 2.09000*pow(1.00000+exp(- (ALGEBRAIC[71] - 3.41750e-13)/1.36700e-15), - 1.00000); ALGEBRAIC[74] = 1.00000 - pow(1.00000+exp(- (ALGEBRAIC[71] - 6.83500e-14)/1.36700e-15), - 1.00000); } void getStateInformation(double* SI) { SI[0] = 1.0; SI[1] = 1.0; SI[2] = 1.0; SI[3] = 1.0; SI[4] = 1.0; SI[5] = 1.0; SI[6] = 1.0; SI[7] = 1.0; SI[8] = 1.0; SI[9] = 1.0; SI[10] = 1.0; SI[11] = 1.0; SI[12] = 1.0; SI[13] = 1.0; SI[14] = 1.0; SI[15] = 1.0; SI[16] = 1.0; SI[17] = 1.0; SI[18] = 1.0; SI[19] = 1.0; SI[20] = 1.0; } void computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { CONDVAR[0] = VOI - CONSTANTS[4]; CONDVAR[1] = VOI - CONSTANTS[5]; CONDVAR[2] = ((VOI - CONSTANTS[4]) - floor((VOI - CONSTANTS[4])/CONSTANTS[6])*CONSTANTS[6]) - CONSTANTS[7]; CONDVAR[3] = STATES[0] - - 40.0000; CONDVAR[4] = STATES[0] - - 40.0000; CONDVAR[5] = STATES[0] - - 40.0000; CONDVAR[6] = STATES[0] - - 40.0000; CONDVAR[7] = fabs(STATES[0]+14.1000) - 1.00000e-10; CONDVAR[8] = fabs(STATES[0] - 3.33280) - 1.00000e-10; CONDVAR[9] = fabs(STATES[0] - 19.9000) - 1.00000e-10; CONDVAR[10] = fabs(STATES[0] - 19.9000) - 1.00000e-10; CONDVAR[11] = fabs(STATES[0]+10.0000) - 1.00000e-10; CONDVAR[12] = fabs(STATES[0] - 7.90000) - 1.00000e-10; }