Generated Code
The following is c_ida code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
/* There are a total of 369 entries in the algebraic variable array. There are a total of 145 entries in each of the rate and state variable arrays. There are a total of 410 entries in the constant variable array. */ /* * CONSTANTS[324] is AC47_cyt in component ac (uM). * CONSTANTS[329] is AC47_eca in component ac (uM). * CONSTANTS[320] is AC56_cav in component ac (uM). * CONSTANTS[328] is AC56_cyt in component ac (uM). * CONSTANTS[296] is AC_tot in component ac (uM). * CONSTANTS[0] is ATP in component ac (uM). * CONSTANTS[1] is KmATP in component ac (uM). * CONSTANTS[2] is KmGiAC56 in component ac (uM). * CONSTANTS[3] is KmGsAC47 in component ac (dimensionless). * CONSTANTS[4] is KmGsAC56 in component ac (dimensionless). * CONSTANTS[5] is KmGsGiAC56 in component ac (dimensionless). * ALGEBRAIC[0] is ac_kAC47_cyt_gsa in component ac (dimensionless). * ALGEBRAIC[1] is ac_kAC47_eca_gsa in component ac (dimensionless). * ALGEBRAIC[2] is ac_kAC56_cav_gsa in component ac (dimensionless). * ALGEBRAIC[3] is ac_kAC56_cyt_gsa in component ac (dimensionless). * CONSTANTS[6] is afAC47 in component ac (hertz). * CONSTANTS[7] is afAC56 in component ac (hertz). * CONSTANTS[8] is basalAC47 in component ac (dimensionless). * CONSTANTS[9] is basalAC56 in component ac (dimensionless). * CONSTANTS[294] is R_b1_tot in component beta (uM). * STATES[0] is Gi_bg in component beta_cav (uM). * STATES[1] is Gs_aGTP in component beta_cav (uM). * STATES[2] is Gs_aGTP in component beta_cyt (uM). * STATES[3] is Gs_aGTP in component beta_eca (uM). * ALGEBRAIC[172] is dcAMP_AC47_cyt in component ac (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[173] is dcAMP_AC47_eca in component ac (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[174] is dcAMP_AC56_cav in component ac (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[175] is dcAMP_AC56_cyt in component ac (mol_per_m3_per_s_times_1e_minus_3). * CONSTANTS[227] is fATP in component ac (dimensionless). * CONSTANTS[10] is f_AC47_eca in component ac (dimensionless). * CONSTANTS[260] is f_AC56_AC47 in component ac (dimensionless). * CONSTANTS[11] is f_AC56_cav in component ac (dimensionless). * ALGEBRAIC[4] is gsi in component ac (dimensionless). * CONSTANTS[12] is hGsAC47 in component ac (dimensionless). * CONSTANTS[13] is hGsAC56 in component ac (dimensionless). * CONSTANTS[14] is hGsGiAC56 in component ac (dimensionless). * ALGEBRAIC[5] is kAC47_cyt in component ac (hertz). * ALGEBRAIC[6] is kAC47_eca in component ac (hertz). * ALGEBRAIC[7] is kAC56_cav in component ac (hertz). * ALGEBRAIC[8] is kAC56_cyt in component ac (hertz). * CONSTANTS[15] is vGsGiAC56 in component ac (dimensionless). * CONSTANTS[319] is vr_cav in component cell (dimensionless). * CONSTANTS[321] is vr_cyt in component cell (dimensionless). * CONSTANTS[326] is vr_eca in component cell (dimensionless). * CONSTANTS[16] is ICaL_akap in component akap_sig (uM). * CONSTANTS[391] is ICaL_akapf in component akap_sig (uM). * CONSTANTS[392] is ICaL_arn in component akap_sig (uM). * CONSTANTS[393] is ICaL_arp in component akap_sig (uM). * CONSTANTS[17] is ICaL_tot in component akap_sig (uM). * CONSTANTS[281] is ICaLf in component akap_sig (uM). * STATES[4] is ICaLp in component akap_sig (uM). * CONSTANTS[18] is Ka_ical in component akap_sig (uM). * CONSTANTS[19] is Ka_ryr in component akap_sig (uM). * CONSTANTS[20] is Ki in component akap_sig (uM). * CONSTANTS[21] is Kp_ical in component akap_sig (uM). * CONSTANTS[22] is Kp_ryr in component akap_sig (uM). * CONSTANTS[23] is Kr in component akap_sig (uM). * CONSTANTS[24] is Li in component akap_sig (uM). * CONSTANTS[25] is Lr in component akap_sig (uM). * CONSTANTS[26] is Mi in component akap_sig (uM). * CONSTANTS[27] is Mr in component akap_sig (uM). * CONSTANTS[380] is PKA_cav in component pka (uM). * CONSTANTS[390] is PKAf in component akap_sig (uM). * CONSTANTS[28] is PP1_cav in component pp1 (uM). * CONSTANTS[291] is PP1f_cav in component akap_sig (uM). * CONSTANTS[29] is RyR_akap in component akap_sig (uM). * CONSTANTS[394] is RyR_akapf in component akap_sig (uM). * CONSTANTS[395] is RyR_arn in component akap_sig (uM). * CONSTANTS[396] is RyR_arp in component akap_sig (uM). * CONSTANTS[30] is RyR_tot in component akap_sig (uM). * CONSTANTS[293] is RyRf in component akap_sig (uM). * STATES[5] is RyRp in component akap_sig (uM). * CONSTANTS[273] is akap_sig_ICaLf_sum in component akap_sig (dimensionless). * ALGEBRAIC[9] is akap_sig_ICaLp_dif in component akap_sig (uM). * CONSTANTS[387] is akap_sig_PKAf_arg in component akap_sig (dimensionless). * CONSTANTS[381] is akap_sig_PKAf_b in component akap_sig (uM). * CONSTANTS[382] is akap_sig_PKAf_c in component akap_sig (mM2_times_1e_minus_6). * CONSTANTS[383] is akap_sig_PKAf_d in component akap_sig (mM3_times_1e_minus_9). * CONSTANTS[388] is akap_sig_PKAf_mag in component akap_sig (uM). * CONSTANTS[384] is akap_sig_PKAf_rr in component akap_sig (mol6_per_m18_times_1e_minus_18). * CONSTANTS[389] is akap_sig_PKAf_x in component akap_sig (dimensionless). * CONSTANTS[385] is akap_sig_PKAf_yi in component akap_sig (mM3_times_1e_minus_9). * CONSTANTS[386] is akap_sig_PKAf_yr in component akap_sig (mM3_times_1e_minus_9). * CONSTANTS[288] is akap_sig_PP1f_cav_arg in component akap_sig (dimensionless). * CONSTANTS[282] is akap_sig_PP1f_cav_b in component akap_sig (uM). * CONSTANTS[283] is akap_sig_PP1f_cav_c in component akap_sig (mM2_times_1e_minus_6). * CONSTANTS[284] is akap_sig_PP1f_cav_d in component akap_sig (mM3_times_1e_minus_9). * CONSTANTS[289] is akap_sig_PP1f_cav_mag in component akap_sig (uM). * CONSTANTS[285] is akap_sig_PP1f_cav_rr in component akap_sig (mol6_per_m18_times_1e_minus_18). * CONSTANTS[290] is akap_sig_PP1f_cav_x in component akap_sig (dimensionless). * CONSTANTS[286] is akap_sig_PP1f_cav_yi in component akap_sig (mM3_times_1e_minus_9). * CONSTANTS[287] is akap_sig_PP1f_cav_yr in component akap_sig (mM3_times_1e_minus_9). * CONSTANTS[292] is akap_sig_RyRf_sum in component akap_sig (dimensionless). * ALGEBRAIC[10] is akap_sig_RyRp_dif in component akap_sig (uM). * ALGEBRAIC[11] is fp_ICaL in component akap_sig (dimensionless). * ALGEBRAIC[12] is fp_RyR in component akap_sig (dimensionless). * CONSTANTS[31] is ka_ical in component akap_sig (hertz). * CONSTANTS[32] is ka_ryr in component akap_sig (hertz). * CONSTANTS[33] is kp_ical in component akap_sig (hertz). * CONSTANTS[34] is kp_ryr in component akap_sig (hertz). * STATES[6] is C in component pka_cav (uM). * VOI is time in component engine (ms). * CONSTANTS[35] is Gi_tot in component beta (uM). * CONSTANTS[295] is Gs_tot in component beta (uM). * CONSTANTS[297] is R_b2_tot in component beta (uM). * CONSTANTS[36] is f_Gi_cav in component beta (dimensionless). * CONSTANTS[215] is f_Gi_eca in component beta (dimensionless). * CONSTANTS[37] is f_Gs_cav in component beta (dimensionless). * CONSTANTS[216] is f_Gs_cyt in component beta (dimensionless). * CONSTANTS[38] is f_Gs_eca in component beta (dimensionless). * CONSTANTS[39] is f_Rb1_cav in component beta (dimensionless). * CONSTANTS[298] is f_Rb1_cyt in component beta (dimensionless). * CONSTANTS[40] is f_Rb1_eca in component beta (dimensionless). * CONSTANTS[41] is f_Rb2_cav in component beta (dimensionless). * CONSTANTS[299] is f_Rb2_eca in component beta (dimensionless). * CONSTANTS[42] is k_act1_Gi in component beta (hertz). * CONSTANTS[43] is k_act1_Gs in component beta (hertz). * CONSTANTS[44] is k_act2_Gi in component beta (hertz). * CONSTANTS[45] is k_act2_Gs in component beta (hertz). * CONSTANTS[46] is k_b1_c in component beta (uM). * CONSTANTS[47] is k_b1_h in component beta (uM). * CONSTANTS[48] is k_b1_l in component beta (uM). * CONSTANTS[49] is k_b2_a in component beta (uM). * CONSTANTS[50] is k_b2_c in component beta (uM). * CONSTANTS[51] is k_b2_f in component beta (uM). * CONSTANTS[52] is k_b2_h in component beta (uM). * CONSTANTS[53] is k_b2_l in component beta (uM). * CONSTANTS[54] is k_b2_n in component beta (uM). * CONSTANTS[217] is k_grk_dp in component beta (hertz). * CONSTANTS[218] is k_grk_p in component beta (hertz). * CONSTANTS[219] is k_hydr_Gi in component beta (hertz). * CONSTANTS[55] is k_hydr_Gs in component beta (hertz). * CONSTANTS[257] is k_pka_dp in component beta (hertz). * CONSTANTS[220] is k_pka_p in component beta (per_mM_per_ms). * CONSTANTS[221] is k_reas_Gi in component beta (per_mM_per_ms). * CONSTANTS[56] is k_reas_Gs in component beta (per_mM_per_ms). * CONSTANTS[57] is rate_bds in component beta (per_mM_per_ms). * CONSTANTS[58] is GRK in component beta_cav (dimensionless). * STATES[7] is Gi_aGDP in component beta_cav (uM). * STATES[8] is Gi_aGTP in component beta_cav (uM). * ALGEBRAIC[13] is Gi_abg in component beta_cav (uM). * ALGEBRAIC[248] is Gi_f in component beta_cav (uM). * STATES[9] is Gs_aGDP in component beta_cav (uM). * ALGEBRAIC[14] is Gs_abg in component beta_cav (uM). * STATES[10] is Gs_bg in component beta_cav (uM). * ALGEBRAIC[298] is Gs_f in component beta_cav (uM). * ALGEBRAIC[357] is LRGs_tot in component beta_cav (uM). * ALGEBRAIC[334] is LRb1 in component beta_cav (uM). * ALGEBRAIC[335] is LRb1Gs in component beta_cav (uM). * ALGEBRAIC[336] is LRb2 in component beta_cav (uM). * ALGEBRAIC[299] is LRb2Gi in component beta_cav (uM). * ALGEBRAIC[337] is LRb2Gs in component beta_cav (uM). * ALGEBRAIC[358] is RGs_tot in component beta_cav (uM). * CONSTANTS[322] is R_b1_tot in component beta_cav (uM). * CONSTANTS[323] is R_b2_tot in component beta_cav (uM). * ALGEBRAIC[338] is Rb1Gs in component beta_cav (uM). * ALGEBRAIC[300] is Rb1_f in component beta_cav (uM). * STATES[11] is Rb1_grk_tot in component beta_cav (uM). * ALGEBRAIC[15] is Rb1_np_tot in component beta_cav (uM). * STATES[12] is Rb1_pka_tot in component beta_cav (uM). * ALGEBRAIC[249] is Rb2Gi in component beta_cav (uM). * ALGEBRAIC[339] is Rb2Gs in component beta_cav (uM). * ALGEBRAIC[301] is Rb2_f in component beta_cav (uM). * STATES[13] is Rb2_grk_tot in component beta_cav (uM). * ALGEBRAIC[16] is Rb2_np_tot in component beta_cav (uM). * ALGEBRAIC[176] is Rb2_pka_f in component beta_cav (uM). * STATES[14] is Rb2_pka_tot in component beta_cav (uM). * CONSTANTS[223] is beta_cav_Gs_f_a in component beta_cav (mol4_per_m12_times_1e_minus_12). * ALGEBRAIC[177] is beta_cav_Gs_f_arg in component beta_cav (dimensionless). * ALGEBRAIC[17] is beta_cav_Gs_f_b in component beta_cav (uM). * ALGEBRAIC[18] is beta_cav_Gs_f_c in component beta_cav (mM2_times_1e_minus_6). * CONSTANTS[258] is beta_cav_Gs_f_c11 in component beta_cav (mol5_per_m15_times_1e_minus_15). * CONSTANTS[271] is beta_cav_Gs_f_c22 in component beta_cav (mol5_per_m15_times_1e_minus_15). * CONSTANTS[279] is beta_cav_Gs_f_c33 in component beta_cav (mol6_per_m18_times_1e_minus_18). * ALGEBRAIC[19] is beta_cav_Gs_f_d in component beta_cav (mM3_times_1e_minus_9). * ALGEBRAIC[250] is beta_cav_Gs_f_i in component beta_cav (uM). * ALGEBRAIC[178] is beta_cav_Gs_f_mag in component beta_cav (uM). * ALGEBRAIC[251] is beta_cav_Gs_f_r in component beta_cav (uM). * ALGEBRAIC[20] is beta_cav_Gs_f_rr in component beta_cav (mol6_per_m18_times_1e_minus_18). * ALGEBRAIC[179] is beta_cav_Gs_f_x in component beta_cav (dimensionless). * ALGEBRAIC[21] is beta_cav_Gs_f_yi in component beta_cav (mM3_times_1e_minus_9). * ALGEBRAIC[22] is beta_cav_Gs_f_yr in component beta_cav (mM3_times_1e_minus_9). * CONSTANTS[222] is beta_cav_Rb2_pka_f_a in component beta_cav (uM). * ALGEBRAIC[23] is beta_cav_Rb2_pka_f_b in component beta_cav (mM2_times_1e_minus_6). * ALGEBRAIC[24] is beta_cav_Rb2_pka_f_c in component beta_cav (mM3_times_1e_minus_9). * CONSTANTS[59] is L in component iso (uM). * CONSTANTS[60] is k_GsAct_b2 in component beta_cav (dimensionless). * CONSTANTS[61] is GRK in component beta_cyt (dimensionless). * STATES[15] is Gs_aGDP in component beta_cyt (uM). * ALGEBRAIC[25] is Gs_abg in component beta_cyt (uM). * STATES[16] is Gs_bg in component beta_cyt (uM). * ALGEBRAIC[252] is Gs_f in component beta_cyt (uM). * ALGEBRAIC[253] is LRb1Gs_np in component beta_cyt (uM). * ALGEBRAIC[254] is LRb1_np in component beta_cyt (uM). * CONSTANTS[325] is R_b1_tot in component beta_cyt (uM). * ALGEBRAIC[255] is Rb1Gs_np in component beta_cyt (uM). * STATES[17] is Rb1_grk_tot in component beta_cyt (uM). * ALGEBRAIC[180] is Rb1_np_f in component beta_cyt (uM). * ALGEBRAIC[26] is Rb1_np_tot in component beta_cyt (uM). * STATES[18] is Rb1_pka_tot in component beta_cyt (uM). * CONSTANTS[224] is beta_cyt_Rb1_np_f_a in component beta_cyt (uM). * ALGEBRAIC[27] is beta_cyt_Rb1_np_f_b in component beta_cyt (mM2_times_1e_minus_6). * ALGEBRAIC[28] is beta_cyt_Rb1_np_f_c in component beta_cyt (mM3_times_1e_minus_9). * STATES[19] is C in component pka_cyt (uM). * CONSTANTS[62] is GRK in component beta_eca (dimensionless). * STATES[20] is Gi_aGDP in component beta_eca (uM). * STATES[21] is Gi_aGTP in component beta_eca (uM). * ALGEBRAIC[29] is Gi_abg in component beta_eca (uM). * STATES[22] is Gi_bg in component beta_eca (uM). * ALGEBRAIC[256] is Gi_f in component beta_eca (uM). * STATES[23] is Gs_aGDP in component beta_eca (uM). * ALGEBRAIC[30] is Gs_abg in component beta_eca (uM). * STATES[24] is Gs_bg in component beta_eca (uM). * ALGEBRAIC[302] is Gs_f in component beta_eca (uM). * ALGEBRAIC[359] is LRGs_tot in component beta_eca (uM). * ALGEBRAIC[340] is LRb1 in component beta_eca (uM). * ALGEBRAIC[341] is LRb1Gs in component beta_eca (uM). * ALGEBRAIC[342] is LRb2 in component beta_eca (uM). * ALGEBRAIC[303] is LRb2Gi in component beta_eca (uM). * ALGEBRAIC[343] is LRb2Gs in component beta_eca (uM). * ALGEBRAIC[360] is RGs_tot in component beta_eca (uM). * CONSTANTS[330] is R_b1_tot in component beta_eca (uM). * CONSTANTS[331] is R_b2_tot in component beta_eca (uM). * ALGEBRAIC[344] is Rb1Gs in component beta_eca (uM). * ALGEBRAIC[304] is Rb1_f in component beta_eca (uM). * STATES[25] is Rb1_grk_tot in component beta_eca (uM). * ALGEBRAIC[31] is Rb1_np_tot in component beta_eca (uM). * STATES[26] is Rb1_pka_tot in component beta_eca (uM). * ALGEBRAIC[257] is Rb2Gi in component beta_eca (uM). * ALGEBRAIC[345] is Rb2Gs in component beta_eca (uM). * ALGEBRAIC[305] is Rb2_f in component beta_eca (uM). * STATES[27] is Rb2_grk_tot in component beta_eca (uM). * ALGEBRAIC[32] is Rb2_np_tot in component beta_eca (uM). * ALGEBRAIC[181] is Rb2_pka_f in component beta_eca (uM). * STATES[28] is Rb2_pka_tot in component beta_eca (uM). * CONSTANTS[226] is beta_eca_Gs_f_a in component beta_eca (mol4_per_m12_times_1e_minus_12). * ALGEBRAIC[182] is beta_eca_Gs_f_arg in component beta_eca (dimensionless). * ALGEBRAIC[33] is beta_eca_Gs_f_b in component beta_eca (uM). * ALGEBRAIC[34] is beta_eca_Gs_f_c in component beta_eca (mM2_times_1e_minus_6). * CONSTANTS[259] is beta_eca_Gs_f_c11 in component beta_eca (mol5_per_m15_times_1e_minus_15). * CONSTANTS[272] is beta_eca_Gs_f_c22 in component beta_eca (mol5_per_m15_times_1e_minus_15). * CONSTANTS[280] is beta_eca_Gs_f_c33 in component beta_eca (mol6_per_m18_times_1e_minus_18). * ALGEBRAIC[35] is beta_eca_Gs_f_d in component beta_eca (mM3_times_1e_minus_9). * ALGEBRAIC[258] is beta_eca_Gs_f_i in component beta_eca (uM). * ALGEBRAIC[183] is beta_eca_Gs_f_mag in component beta_eca (uM). * ALGEBRAIC[259] is beta_eca_Gs_f_r in component beta_eca (uM). * ALGEBRAIC[36] is beta_eca_Gs_f_rr in component beta_eca (mol6_per_m18_times_1e_minus_18). * ALGEBRAIC[184] is beta_eca_Gs_f_x in component beta_eca (dimensionless). * ALGEBRAIC[37] is beta_eca_Gs_f_yi in component beta_eca (mM3_times_1e_minus_9). * ALGEBRAIC[38] is beta_eca_Gs_f_yr in component beta_eca (mM3_times_1e_minus_9). * CONSTANTS[225] is beta_eca_Rb2_pka_f_a in component beta_eca (uM). * ALGEBRAIC[39] is beta_eca_Rb2_pka_f_b in component beta_eca (mM2_times_1e_minus_6). * ALGEBRAIC[40] is beta_eca_Rb2_pka_f_c in component beta_eca (mM3_times_1e_minus_9). * CONSTANTS[63] is k_GsAct_b2 in component beta_eca (dimensionless). * STATES[29] is C in component pka_eca (uM). * CONSTANTS[302] is AF in component cell (m2_mol_per_s_per_A_times_1e_minus_4). * ALGEBRAIC[306] is Ca in component calcium (mM). * ALGEBRAIC[185] is Ca_CaL in component calcium (mM). * ALGEBRAIC[186] is Ca_jsr in component calcium (mM). * STATES[30] is Ca_nsr in component calcium (mM). * ALGEBRAIC[187] is Ca_sr in component calcium (mM). * ALGEBRAIC[361] is ICa_tot in component calcium (uA_per_cm2). * ALGEBRAIC[308] is ICab in component icab (uA_per_cm2). * ALGEBRAIC[352] is INaCa in component inaca (uA_per_cm2). * ALGEBRAIC[283] is INaCaSR in component inaca (uA_per_cm2). * ALGEBRAIC[307] is Idiff_Ca in component diff (mM_per_ms). * ALGEBRAIC[196] is Idiff_sr in component diff (mM_per_ms). * ALGEBRAIC[326] is IpCa in component ipca (uA_per_cm2). * ALGEBRAIC[327] is Irel in component irel (mM_per_ms). * ALGEBRAIC[197] is Itr in component diff (mM_per_ms). * ALGEBRAIC[366] is Iup in component iup (mM_per_ms). * CONSTANTS[64] is Ka_tni in component calcium (uM). * CONSTANTS[65] is Kp_tni in component calcium (uM). * CONSTANTS[66] is PP2A in component pp1 (uM). * CONSTANTS[228] is bar_sum in component calcium (mM). * CONSTANTS[67] is bsl_bar in component calcium (mM). * CONSTANTS[68] is bsl_km in component calcium (mM). * CONSTANTS[69] is bsr_bar in component calcium (mM). * CONSTANTS[70] is bsr_km in component calcium (mM). * ALGEBRAIC[41] is calcium_Ca_CaL_b in component calcium (mM). * ALGEBRAIC[42] is calcium_Ca_CaL_c in component calcium (mM2). * ALGEBRAIC[43] is calcium_Ca_CaL_d in component calcium (mM3). * ALGEBRAIC[260] is calcium_Ca_b in component calcium (mM). * ALGEBRAIC[261] is calcium_Ca_c in component calcium (mM2). * ALGEBRAIC[262] is calcium_Ca_d in component calcium (mM3). * ALGEBRAIC[44] is calcium_Ca_jsr_b in component calcium (mM). * ALGEBRAIC[45] is calcium_Ca_jsr_c in component calcium (mM2). * CONSTANTS[312] is calcium_Ca_nsr_r1 in component calcium (dimensionless). * ALGEBRAIC[46] is calcium_Ca_sr_b in component calcium (mM). * ALGEBRAIC[47] is calcium_Ca_sr_c in component calcium (mM2). * ALGEBRAIC[48] is calcium_Ca_sr_d in component calcium (mM3). * ALGEBRAIC[49] is calcium_fhat_val in component calcium (dimensionless). * CONSTANTS[305] is calcium_uCa_CaL_r1 in component calcium (mol_per_m_per_s_per_A_times_1e5). * CONSTANTS[315] is calcium_uCa_CaL_r2 in component calcium (dimensionless). * CONSTANTS[308] is calcium_uCa_r1 in component calcium (mol_per_m_per_s_per_A_times_1e5). * CONSTANTS[313] is calcium_uCa_r2 in component calcium (dimensionless). * CONSTANTS[316] is calcium_uCa_sr_r1 in component calcium (mol_per_m_per_s_per_A_times_1e5). * CONSTANTS[317] is calcium_uCa_sr_r2 in component calcium (dimensionless). * CONSTANTS[71] is cbar in component calcium (mM). * CONSTANTS[72] is csqn_bar in component calcium (mM). * CONSTANTS[73] is csqn_km in component calcium (mM). * STATES[31] is f_tni in component calcium (dimensionless). * ALGEBRAIC[50] is fhat in component calcium (dimensionless). * ALGEBRAIC[269] is ICaL in component ical (uA_per_cm2). * CONSTANTS[74] is ka_tni in component calcium (hertz). * CONSTANTS[75] is kc in component calcium (mM). * CONSTANTS[230] is km_pro in component calcium (mM2). * CONSTANTS[261] is km_sum in component calcium (mM). * CONSTANTS[76] is kp_tni in component calcium (hertz). * ALGEBRAIC[188] is kpro in component calcium (mM2). * ALGEBRAIC[189] is ksum in component calcium (mM). * ALGEBRAIC[51] is kt in component calcium (mM). * CONSTANTS[77] is ktn in component calcium (mM). * CONSTANTS[229] is ktp in component calcium (mM). * CONSTANTS[318] is r3 in component calcium (dimensionless). * CONSTANTS[262] is ss_pro in component calcium (mM2). * CONSTANTS[274] is ss_sum in component calcium (mM). * CONSTANTS[78] is tbar in component calcium (mM). * STATES[32] is uCa in component calcium (mM). * STATES[33] is uCa_CaL in component calcium (mM). * STATES[34] is uCa_jsr in component calcium (mM). * STATES[35] is uCa_sr in component calcium (mM). * CONSTANTS[304] is v_CaL in component cell (uL). * CONSTANTS[307] is v_cyt in component cell (uL). * CONSTANTS[310] is v_jsr in component cell (uL). * CONSTANTS[311] is v_nsr in component cell (uL). * CONSTANTS[314] is v_sr in component cell (uL). * CONSTANTS[79] is CaMK0 in component camk (dimensionless). * CONSTANTS[80] is K in component camk (dimensionless). * CONSTANTS[81] is Km in component camk (mM). * CONSTANTS[82] is PP1_eca in component pp1 (uM). * ALGEBRAIC[263] is PP1_tot in component camk (uM). * ALGEBRAIC[247] is PP1f_cyt in component pp1 (uM). * ALGEBRAIC[264] is active in component camk (dimensionless). * ALGEBRAIC[190] is bound in component camk (dimensionless). * ALGEBRAIC[265] is c in component camk (dimensionless). * ALGEBRAIC[266] is camk_f_ryr_d in component camk (dimensionless). * CONSTANTS[83] is camk_trap_alpha in component camk (mS_per_uF). * CONSTANTS[84] is camk_trap_beta in component camk (mS_per_uF). * STATES[36] is f_ical in component camk (dimensionless). * STATES[37] is f_ik1 in component camk (dimensionless). * STATES[38] is f_ina in component camk (dimensionless). * STATES[39] is f_ito in component camk (dimensionless). * STATES[40] is f_plb in component camk (dimensionless). * STATES[41] is f_ryr in component camk (dimensionless). * CONSTANTS[231] is tau_cal in component camk (ms). * CONSTANTS[232] is tau_ik1 in component camk (ms). * CONSTANTS[233] is tau_ina in component camk (ms). * CONSTANTS[234] is tau_ito in component camk (ms). * CONSTANTS[85] is tau_plb in component camk (ms). * CONSTANTS[86] is tau_ryr in component camk (ms). * STATES[42] is trap in component camk (dimensionless). * STATES[43] is cAMP_cav in component camp (uM). * STATES[44] is cAMP_cyt in component camp (uM). * STATES[45] is cAMP_eca in component camp (uM). * ALGEBRAIC[52] is camp_cAMP_cav_j1 in component camp (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[53] is camp_cAMP_cav_j2 in component camp (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[191] is camp_cAMP_cav_pde in component camp (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[54] is camp_cAMP_cyt_j1 in component camp (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[55] is camp_cAMP_cyt_j2 in component camp (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[192] is camp_cAMP_cyt_pde in component camp (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[56] is camp_cAMP_eca_j1 in component camp (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[57] is camp_cAMP_eca_j2 in component camp (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[193] is camp_cAMP_eca_pde in component camp (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[155] is dcAMP_PDE2_cav in component pde (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[156] is dcAMP_PDE2_cyt in component pde (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[157] is dcAMP_PDE2_eca in component pde (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[158] is dcAMP_PDE3_cav in component pde (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[159] is dcAMP_PDE3_cyt in component pde (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[160] is dcAMP_PDE4_cav in component pde (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[161] is dcAMP_PDE4_cyt in component pde (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[162] is dcAMP_PDE4_eca in component pde (mol_per_m3_per_s_times_1e_minus_3). * CONSTANTS[235] is j_cav_cyt in component camp (m3_per_s_times_1e_minus_9). * CONSTANTS[236] is j_cav_eca in component camp (m3_per_s_times_1e_minus_9). * CONSTANTS[237] is j_eca_cyt in component camp (m3_per_s_times_1e_minus_9). * ALGEBRAIC[164] is dcAMP in component pka_cav (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[166] is dcAMP in component pka_cyt (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[168] is dcAMP in component pka_eca (mol_per_m3_per_s_times_1e_minus_3). * CONSTANTS[306] is v_cav in component cell (uL). * CONSTANTS[309] is v_eca in component cell (uL). * CONSTANTS[87] is F in component phys (C_per_mol). * CONSTANTS[301] is capArea in component cell (cm2). * CONSTANTS[300] is geoArea in component cell (cm2). * CONSTANTS[88] is length in component cell (cm). * CONSTANTS[89] is pi in component cell (dimensionless). * CONSTANTS[90] is radius in component cell (cm). * CONSTANTS[303] is volume in component cell (uL). * ALGEBRAIC[267] is CTKCl in component ctkcl (mM_per_ms). * ALGEBRAIC[268] is CTNaCl in component ctnacl (mM_per_ms). * STATES[46] is Cl in component chloride (mM). * STATES[47] is Cl_sr in component chloride (mM). * ALGEBRAIC[348] is IClCa in component iclca (uA_per_cm2). * ALGEBRAIC[362] is ICl_tot in component chloride (uA_per_cm2). * ALGEBRAIC[216] is IClb in component iclb (uA_per_cm2). * ALGEBRAIC[58] is Idiff_Cl in component diff (mM_per_ms). * CONSTANTS[332] is chloride_Cl_r1 in component chloride (mol_per_m_per_s_per_A_times_1e5). * CONSTANTS[337] is chloride_Cl_r2 in component chloride (dimensionless). * CONSTANTS[341] is chloride_Cl_sr_r1 in component chloride (mol_per_m_per_s_per_A_times_1e5). * ALGEBRAIC[151] is ECl in component nernst (mV). * ALGEBRAIC[152] is EK in component nernst (mV). * CONSTANTS[91] is KClBar in component ctkcl (mM_per_ms). * ALGEBRAIC[194] is ctkcl_CTKCl_z1 in component ctkcl (mV). * CONSTANTS[92] is ctkcl_CTKCl_z2 in component ctkcl (mV). * ALGEBRAIC[154] is ENa in component nernst (mV). * CONSTANTS[93] is NaClBar in component ctnacl (mM_per_ms). * ALGEBRAIC[195] is ctnacl_CTNaCl_z1 in component ctnacl (g4_m8_per_s12_per_A4). * CONSTANTS[346] is ctnacl_CTNaCl_z2 in component ctnacl (g4_m8_per_s12_per_A4). * ALGEBRAIC[59] is Idiff_Na in component diff (mM_per_ms). * STATES[48] is Na in component sodium (mM). * STATES[49] is Na_sr in component sodium (mM). * CONSTANTS[94] is tau in component diff (ms). * CONSTANTS[95] is tau_sr in component diff (ms). * CONSTANTS[96] is tau_tr in component diff (ms). * CONSTANTS[97] is Cao in component extra (mM). * CONSTANTS[98] is Clo in component extra (mM). * CONSTANTS[99] is Ko in component extra (mM). * CONSTANTS[100] is Nao in component extra (mM). * CONSTANTS[263] is FRT in component phys (per_mV). * STATES[50] is V in component membrane (mV). * ALGEBRAIC[198] is efrt in component icab (dimensionless). * CONSTANTS[101] is pCab in component icab (cm_per_s). * ALGEBRAIC[60] is vfrt in component icab (dimensionless). * ALGEBRAIC[199] is f_hat in component ical (dimensionless). * ALGEBRAIC[201] is ICaL in component ical_camk (uA_per_cm2). * CONSTANTS[397] is ical_f_hat_ratio in component ical (dimensionless). * ALGEBRAIC[61] is ical_f_hat_val in component ical (dimensionless). * ALGEBRAIC[211] is ICaL in component ical_np (uA_per_cm2). * STATES[51] is C in component ical_camk (dimensionless). * STATES[52] is CI in component ical_camk (dimensionless). * STATES[53] is CIs in component ical_camk (dimensionless). * STATES[54] is Cs in component ical_camk (dimensionless). * CONSTANTS[275] is FFRT in component phys (s4_A2_per_g_per_m2_per_mol). * ALGEBRAIC[200] is IBar in component ical_camk (uA_per_cm2). * STATES[55] is O in component ical_camk (dimensionless). * STATES[56] is OI in component ical_camk (dimensionless). * STATES[57] is OIs in component ical_camk (dimensionless). * STATES[58] is Os in component ical_camk (dimensionless). * ALGEBRAIC[62] is PCa in component ical_camk (cm_per_s). * ALGEBRAIC[63] is ac_inf in component ical_camk (dimensionless). * ALGEBRAIC[70] is ac_tau in component ical_np (ms). * ALGEBRAIC[202] is alpha in component ical_camk (mS_per_uF). * ALGEBRAIC[203] is beta in component ical_camk (mS_per_uF). * ALGEBRAIC[270] is delta in component ical_camk (mS_per_uF). * ALGEBRAIC[363] is delta1 in component ical_camk (mS_per_uF). * ALGEBRAIC[64] is delta_tau in component ical_camk (dimensionless). * ALGEBRAIC[65] is ical_camk_IBar_vv in component ical_camk (dimensionless). * ALGEBRAIC[346] is ical_camk_delta1_xs_cor in component ical_camk (mS_per_uF). * ALGEBRAIC[271] is ical_camk_delta1_y_cor in component ical_camk (mS_per_uF). * ALGEBRAIC[75] is in_a in component ical_np (dimensionless). * ALGEBRAIC[76] is in_b in component ical_np (dimensionless). * ALGEBRAIC[204] is in_hi_inf in component ical_camk (dimensionless). * ALGEBRAIC[309] is in_hi_tau in component ical_camk (ms). * ALGEBRAIC[66] is in_inf in component ical_camk (dimensionless). * ALGEBRAIC[67] is in_lo_inf in component ical_camk (dimensionless). * ALGEBRAIC[205] is in_lo_tau in component ical_camk (ms). * ALGEBRAIC[272] is inca in component ical_camk (dimensionless). * ALGEBRAIC[206] is ss_cal_10 in component ical_camk (dimensionless). * ALGEBRAIC[207] is ss_cal_4 in component ical_camk (dimensionless). * CONSTANTS[102] is theta in component ical_camk (mS_per_uF). * CONSTANTS[103] is theta1 in component ical_camk (mS_per_uF). * ALGEBRAIC[208] is x in component ical_camk (mS_per_uF). * ALGEBRAIC[310] is xs in component ical_camk (mS_per_uF). * ALGEBRAIC[209] is y in component ical_camk (mS_per_uF). * ALGEBRAIC[311] is ys in component ical_camk (mS_per_uF). * STATES[59] is C in component ical_np (dimensionless). * STATES[60] is CI in component ical_np (dimensionless). * STATES[61] is CIs in component ical_np (dimensionless). * STATES[62] is Cs in component ical_np (dimensionless). * ALGEBRAIC[210] is IBar in component ical_np (uA_per_cm2). * STATES[63] is O in component ical_np (dimensionless). * STATES[64] is OI in component ical_np (dimensionless). * STATES[65] is OIs in component ical_np (dimensionless). * STATES[66] is Os in component ical_np (dimensionless). * ALGEBRAIC[68] is PCa in component ical_np (cm_per_s). * ALGEBRAIC[69] is ac_inf in component ical_np (dimensionless). * ALGEBRAIC[71] is alpha in component ical_np (mS_per_uF). * ALGEBRAIC[72] is beta in component ical_np (mS_per_uF). * ALGEBRAIC[273] is delta in component ical_np (mS_per_uF). * ALGEBRAIC[364] is delta1 in component ical_np (mS_per_uF). * ALGEBRAIC[73] is delta_tau in component ical_np (dimensionless). * ALGEBRAIC[74] is ical_np_IBar_vv in component ical_np (dimensionless). * ALGEBRAIC[347] is ical_np_delta1_xs_cor in component ical_np (mS_per_uF). * ALGEBRAIC[212] is ical_np_delta1_y_cor in component ical_np (mS_per_uF). * ALGEBRAIC[213] is in_hi_inf in component ical_np (dimensionless). * ALGEBRAIC[312] is in_hi_tau in component ical_np (ms). * ALGEBRAIC[77] is in_inf in component ical_np (dimensionless). * ALGEBRAIC[78] is in_lo_inf in component ical_np (dimensionless). * ALGEBRAIC[79] is in_lo_tau in component ical_np (ms). * ALGEBRAIC[274] is inca in component ical_np (dimensionless). * ALGEBRAIC[214] is ss_cal_10 in component ical_np (dimensionless). * ALGEBRAIC[215] is ss_cal_4 in component ical_np (dimensionless). * CONSTANTS[104] is theta in component ical_np (mS_per_uF). * CONSTANTS[105] is theta1 in component ical_np (mS_per_uF). * ALGEBRAIC[80] is x in component ical_np (mS_per_uF). * ALGEBRAIC[313] is xs in component ical_np (mS_per_uF). * ALGEBRAIC[81] is y in component ical_np (mS_per_uF). * ALGEBRAIC[314] is ys in component ical_np (mS_per_uF). * CONSTANTS[106] is Gbar in component iclb (mS_per_cm2). * ALGEBRAIC[217] is IClCa_bar in component iclca (uA_per_cm2). * ALGEBRAIC[288] is Irel_pure in component irel (mM_per_ms). * ALGEBRAIC[315] is KClCa in component iclca (dimensionless). * CONSTANTS[107] is PCl in component iclca (cm_per_s). * STATES[67] is i2 in component iclca (dimensionless). * ALGEBRAIC[82] is iclca_i2_alpha in component iclca (dimensionless). * ALGEBRAIC[83] is iclca_i2_beta in component iclca (dimensionless). * CONSTANTS[108] is kCaCl in component iclca (mM_per_ms). * CONSTANTS[109] is tau in component iclca (ms). * ALGEBRAIC[84] is vexp in component iclca (dimensionless). * CONSTANTS[239] is Gbar in component ik1 (mS_per_cm2). * ALGEBRAIC[365] is IK1 in component ik1 (uA_per_cm2). * ALGEBRAIC[349] is IK1_camk in component ik1 (uA_per_cm2). * ALGEBRAIC[316] is IK1_np in component ik1 (uA_per_cm2). * ALGEBRAIC[275] is ik1_IK1_np_alpha in component ik1 (dimensionless). * ALGEBRAIC[276] is ik1_IK1_np_beta in component ik1 (dimensionless). * ALGEBRAIC[218] is ik1_IK1_np_vv in component ik1 (mV). * CONSTANTS[240] is GKr in component ikr (mS_per_cm2). * ALGEBRAIC[219] is IKr in component ikr (uA_per_cm2). * STATES[68] is ac in component ikr (dimensionless). * ALGEBRAIC[85] is ikr_ac_tau in component ikr (ms). * ALGEBRAIC[86] is inf in component ikr (dimensionless). * ALGEBRAIC[87] is inx in component ikr (dimensionless). * ALGEBRAIC[153] is EKs in component nernst (mV). * ALGEBRAIC[317] is G in component iks (mS_per_cm2). * ALGEBRAIC[350] is IKs in component iks (uA_per_cm2). * CONSTANTS[403] is IKs_arn in component iks_sig (uM). * ALGEBRAIC[318] is IKs_np in component iks (uA_per_cm2). * ALGEBRAIC[319] is IKs_pka in component iks (uA_per_cm2). * CONSTANTS[110] is IKs_tot in component iks_sig (uM). * ALGEBRAIC[277] is f_hat in component iks (dimensionless). * ALGEBRAIC[102] is fp_iks in component iks_sig (dimensionless). * CONSTANTS[404] is iks_f_hat_ratio in component iks (dimensionless). * ALGEBRAIC[220] is iks_f_hat_val in component iks (dimensionless). * STATES[69] is O1 in component iks_np (dimensionless). * STATES[70] is O2 in component iks_np (dimensionless). * STATES[71] is O1 in component iks_pka (dimensionless). * STATES[72] is O2 in component iks_pka (dimensionless). * STATES[73] is C1 in component iks_np (dimensionless). * STATES[74] is C10 in component iks_np (dimensionless). * STATES[75] is C11 in component iks_np (dimensionless). * STATES[76] is C12 in component iks_np (dimensionless). * STATES[77] is C13 in component iks_np (dimensionless). * STATES[78] is C14 in component iks_np (dimensionless). * STATES[79] is C15 in component iks_np (dimensionless). * STATES[80] is C2 in component iks_np (dimensionless). * STATES[81] is C3 in component iks_np (dimensionless). * STATES[82] is C4 in component iks_np (dimensionless). * STATES[83] is C5 in component iks_np (dimensionless). * STATES[84] is C6 in component iks_np (dimensionless). * STATES[85] is C7 in component iks_np (dimensionless). * STATES[86] is C8 in component iks_np (dimensionless). * STATES[87] is C9 in component iks_np (dimensionless). * ALGEBRAIC[88] is a in component iks_np (mS_per_uF). * ALGEBRAIC[89] is b in component iks_np (mS_per_uF). * ALGEBRAIC[90] is d in component iks_np (mS_per_uF). * ALGEBRAIC[91] is e in component iks_np (mS_per_uF). * ALGEBRAIC[92] is g in component iks_np (mS_per_uF). * ALGEBRAIC[93] is o in component iks_np (mS_per_uF). * ALGEBRAIC[94] is p in component iks_np (mS_per_uF). * CONSTANTS[111] is t in component iks_np (mS_per_uF). * STATES[88] is C1 in component iks_pka (dimensionless). * STATES[89] is C10 in component iks_pka (dimensionless). * STATES[90] is C11 in component iks_pka (dimensionless). * STATES[91] is C12 in component iks_pka (dimensionless). * STATES[92] is C13 in component iks_pka (dimensionless). * STATES[93] is C14 in component iks_pka (dimensionless). * STATES[94] is C15 in component iks_pka (dimensionless). * STATES[95] is C2 in component iks_pka (dimensionless). * STATES[96] is C3 in component iks_pka (dimensionless). * STATES[97] is C4 in component iks_pka (dimensionless). * STATES[98] is C5 in component iks_pka (dimensionless). * STATES[99] is C6 in component iks_pka (dimensionless). * STATES[100] is C7 in component iks_pka (dimensionless). * STATES[101] is C8 in component iks_pka (dimensionless). * STATES[102] is C9 in component iks_pka (dimensionless). * ALGEBRAIC[95] is a in component iks_pka (mS_per_uF). * ALGEBRAIC[96] is b in component iks_pka (mS_per_uF). * ALGEBRAIC[97] is d in component iks_pka (mS_per_uF). * ALGEBRAIC[98] is e in component iks_pka (mS_per_uF). * ALGEBRAIC[99] is g in component iks_pka (mS_per_uF). * ALGEBRAIC[100] is o in component iks_pka (mS_per_uF). * ALGEBRAIC[101] is p in component iks_pka (mS_per_uF). * CONSTANTS[112] is t in component iks_pka (mS_per_uF). * CONSTANTS[405] is IKs_arp in component iks_sig (uM). * CONSTANTS[356] is IKsf in component iks_sig (uM). * STATES[103] is IKsp in component iks_sig (uM). * CONSTANTS[113] is K in component iks_sig (uM). * CONSTANTS[114] is Ka_iks in component iks_sig (uM). * CONSTANTS[115] is Kp_iks in component iks_sig (uM). * CONSTANTS[116] is L in component iks_sig (uM). * CONSTANTS[117] is M in component iks_sig (uM). * CONSTANTS[399] is PKA_eca in component pka (uM). * CONSTANTS[401] is PKAf in component iks_sig (uM). * CONSTANTS[360] is PP1f_eca in component iks_sig (uM). * CONSTANTS[118] is Yotiao in component iks_sig (uM). * CONSTANTS[402] is Yotiaof in component iks_sig (uM). * CONSTANTS[353] is iks_sig_IKsf_sum in component iks_sig (dimensionless). * ALGEBRAIC[103] is iks_sig_IKsp_dif in component iks_sig (uM). * CONSTANTS[400] is iks_sig_PKAf_sum in component iks_sig (dimensionless). * CONSTANTS[358] is iks_sig_PP1f_eca_sum in component iks_sig (dimensionless). * CONSTANTS[119] is ka_iks in component iks_sig (hertz). * CONSTANTS[120] is kp_iks in component iks_sig (hertz). * ALGEBRAIC[278] is IKur in component ikur (uA_per_cm2). * ALGEBRAIC[221] is IKur_np in component ikur (uA_per_cm2). * ALGEBRAIC[222] is IKur_p in component ikur (uA_per_cm2). * CONSTANTS[121] is Ka_ikur in component ikur (uM). * CONSTANTS[122] is Kp_ikur in component ikur (uM). * STATES[104] is f_ikur in component ikur (dimensionless). * ALGEBRAIC[223] is fhat in component ikur (dimensionless). * CONSTANTS[123] is gbar_np in component ikur (mS_per_cm2). * ALGEBRAIC[104] is ikur_fhat_val in component ikur (dimensionless). * CONSTANTS[124] is ka_ikur in component ikur (hertz). * CONSTANTS[125] is kp_ikur in component ikur (hertz). * ALGEBRAIC[351] is INa in component ina (uA_per_cm2). * ALGEBRAIC[224] is INa_both in component ina (uA_per_cm2). * ALGEBRAIC[225] is INa_camk in component ina (uA_per_cm2). * ALGEBRAIC[226] is INa_np in component ina (uA_per_cm2). * ALGEBRAIC[227] is INa_pka in component ina (uA_per_cm2). * CONSTANTS[126] is Ka_ina in component ina (uM). * CONSTANTS[127] is Kp_ina in component ina (uM). * ALGEBRAIC[279] is f_both in component ina (dimensionless). * ALGEBRAIC[280] is f_camk_only in component ina (dimensionless). * STATES[105] is f_ina in component ina (dimensionless). * ALGEBRAIC[320] is f_np in component ina (dimensionless). * ALGEBRAIC[228] is f_pka in component ina (dimensionless). * ALGEBRAIC[281] is f_pka_only in component ina (dimensionless). * CONSTANTS[241] is gNaBar in component ina (mS_per_cm2). * STATES[106] is h in component ina_camk (dimensionless). * STATES[107] is j in component ina_camk (dimensionless). * STATES[108] is m in component ina_camk (dimensionless). * ALGEBRAIC[105] is ina_f_pka_val in component ina (dimensionless). * STATES[109] is h in component ina_np (dimensionless). * STATES[110] is j in component ina_np (dimensionless). * STATES[111] is m in component ina_np (dimensionless). * STATES[112] is h in component ina_pka (dimensionless). * STATES[113] is j in component ina_pka (dimensionless). * STATES[114] is m in component ina_pka (dimensionless). * CONSTANTS[128] is ka_ina in component ina (hertz). * CONSTANTS[129] is kp_ina in component ina (hertz). * CONSTANTS[130] is dVIn in component ina_camk (mV). * ALGEBRAIC[106] is ina_camk_h_alpha in component ina_camk (mS_per_uF). * ALGEBRAIC[107] is ina_camk_h_beta in component ina_camk (mS_per_uF). * ALGEBRAIC[108] is ina_camk_j_alpha in component ina_camk (mS_per_uF). * ALGEBRAIC[109] is ina_camk_j_beta in component ina_camk (mS_per_uF). * ALGEBRAIC[110] is ina_camk_m_alpha in component ina_camk (mS_per_uF). * ALGEBRAIC[111] is ina_camk_m_beta in component ina_camk (mS_per_uF). * ALGEBRAIC[112] is ina_np_h_alpha in component ina_np (mS_per_uF). * ALGEBRAIC[113] is ina_np_h_beta in component ina_np (mS_per_uF). * ALGEBRAIC[114] is ina_np_j_alpha in component ina_np (mS_per_uF). * ALGEBRAIC[115] is ina_np_j_beta in component ina_np (mS_per_uF). * ALGEBRAIC[116] is ina_np_m_alpha in component ina_np (mS_per_uF). * ALGEBRAIC[117] is ina_np_m_beta in component ina_np (mS_per_uF). * CONSTANTS[131] is dVAc in component ina_pka (mV). * CONSTANTS[132] is dVIn in component ina_pka (mV). * ALGEBRAIC[118] is ina_pka_h_alpha in component ina_pka (mS_per_uF). * ALGEBRAIC[119] is ina_pka_h_beta in component ina_pka (mS_per_uF). * ALGEBRAIC[120] is ina_pka_j_alpha in component ina_pka (mS_per_uF). * ALGEBRAIC[121] is ina_pka_j_beta in component ina_pka (mS_per_uF). * ALGEBRAIC[122] is ina_pka_m_alpha in component ina_pka (mS_per_uF). * ALGEBRAIC[123] is ina_pka_m_beta in component ina_pka (mS_per_uF). * ALGEBRAIC[282] is INab in component inab (uA_per_cm2). * CONSTANTS[133] is P in component inab (cm_per_s). * ALGEBRAIC[229] is ePhi in component inab (dimensionless). * ALGEBRAIC[124] is inab_INab_phi in component inab (dimensionless). * CONSTANTS[362] is KmNai3 in component inaca (mM3). * CONSTANTS[364] is KmNao3 in component inaca (mM3). * CONSTANTS[134] is Km_Ca in component inaca (mM). * CONSTANTS[135] is Km_Cai in component inaca (mM). * CONSTANTS[136] is Km_Cao in component inaca (mM). * CONSTANTS[137] is Km_Nai in component inaca (mM). * CONSTANTS[138] is Km_Nao in component inaca (mM). * ALGEBRAIC[125] is Na_i3 in component inaca (mM3). * CONSTANTS[366] is Na_o3 in component inaca (mM3). * ALGEBRAIC[126] is Na_ss3 in component inaca (mM3). * CONSTANTS[139] is eta in component inaca (dimensionless). * ALGEBRAIC[127] is exp1 in component inaca (dimensionless). * ALGEBRAIC[128] is exp2 in component inaca (dimensionless). * ALGEBRAIC[230] is inaca_INaCaSR_denom1 in component inaca (dimensionless). * ALGEBRAIC[129] is inaca_INaCaSR_denom2 in component inaca (dimensionless). * ALGEBRAIC[231] is inaca_INaCaSR_denom3 in component inaca (mol4_per_m12). * ALGEBRAIC[232] is inaca_INaCaSR_denom4 in component inaca (mol4_per_m12). * ALGEBRAIC[233] is inaca_INaCaSR_num in component inaca (A_mol4_per_m14_times_1e_minus_2). * ALGEBRAIC[321] is inaca_INaCa_denom1 in component inaca (dimensionless). * ALGEBRAIC[130] is inaca_INaCa_denom2 in component inaca (dimensionless). * ALGEBRAIC[322] is inaca_INaCa_denom3 in component inaca (mol4_per_m12). * ALGEBRAIC[323] is inaca_INaCa_denom4 in component inaca (mol4_per_m12). * ALGEBRAIC[324] is inaca_INaCa_num in component inaca (A_mol4_per_m14_times_1e_minus_2). * CONSTANTS[140] is kSat in component inaca (dimensionless). * CONSTANTS[141] is vMax in component inaca (uA_per_cm2). * ALGEBRAIC[284] is INaK in component inak (uA_per_cm2). * ALGEBRAIC[234] is INaK_np in component inak (uA_per_cm2). * ALGEBRAIC[235] is INaK_p in component inak (uA_per_cm2). * CONSTANTS[142] is Ka_inak in component inak (uM). * CONSTANTS[143] is Kp_inak in component inak (uM). * STATES[115] is f_inak in component inak (dimensionless). * ALGEBRAIC[236] is fhat in component inak (dimensionless). * CONSTANTS[144] is ibar in component inak (uA_per_cm2). * ALGEBRAIC[131] is inak_fhat_val in component inak (dimensionless). * CONSTANTS[145] is ka_inak in component inak (hertz). * CONSTANTS[146] is km_ko in component inak (mM). * CONSTANTS[147] is km_np in component inak (mM). * CONSTANTS[148] is km_p in component inak (mM). * CONSTANTS[149] is kp_inak in component inak (hertz). * ALGEBRAIC[132] is phi in component inak (uA_per_cm2). * CONSTANTS[242] is pk in component inak (dimensionless). * ALGEBRAIC[325] is INaL in component inal (uA_per_cm2). * ALGEBRAIC[285] is INaL_camk in component inal (uA_per_cm2). * ALGEBRAIC[286] is INaL_np in component inal (uA_per_cm2). * ALGEBRAIC[237] is conductance in component inal (mV). * STATES[116] is h in component inal (dimensionless). * ALGEBRAIC[133] is h_inf in component inal (dimensionless). * ALGEBRAIC[134] is inal_m_alpha in component inal (mS_per_uF). * ALGEBRAIC[135] is inal_m_beta in component inal (mS_per_uF). * STATES[117] is m in component inal (dimensionless). * CONSTANTS[150] is tau_h in component inal (ms). * CONSTANTS[151] is IpCa_bar in component ipca (uA_per_cm2). * CONSTANTS[152] is Km_pCa in component ipca (mM). * ALGEBRAIC[287] is Ileak_ryr in component irel (mM_per_ms). * ALGEBRAIC[238] is Ileak_ryr_np in component irel (mM_per_ms). * ALGEBRAIC[239] is Ileak_ryr_p in component irel (mM_per_ms). * STATES[118] is Irel_np in component irel (mM_per_ms). * STATES[119] is Irel_p in component irel (mM_per_ms). * CONSTANTS[153] is Km_ryr_leak_np in component irel (mM). * CONSTANTS[154] is Km_ryr_leak_p in component irel (mM). * ALGEBRAIC[240] is alpha_np in component irel (mM_per_ms). * ALGEBRAIC[241] is alpha_p in component irel (mM_per_ms). * CONSTANTS[243] is beta_0 in component irel (ms). * ALGEBRAIC[136] is beta_np in component irel (ms). * ALGEBRAIC[137] is beta_p in component irel (ms). * ALGEBRAIC[242] is fhat in component irel (dimensionless). * CONSTANTS[398] is irel_fhat_ratio in component irel (dimensionless). * ALGEBRAIC[138] is irel_fhat_val in component irel (dimensionless). * ALGEBRAIC[328] is irel_inf_np in component irel (mM_per_ms). * ALGEBRAIC[329] is irel_inf_p in component irel (mM_per_ms). * ALGEBRAIC[289] is irel_tau_np in component irel (ms). * ALGEBRAIC[290] is irel_tau_p in component irel (ms). * CONSTANTS[155] is k_ryr_leak_np in component irel (mS_per_uF). * CONSTANTS[156] is k_ryr_leak_p in component irel (mS_per_uF). * ALGEBRAIC[243] is x in component irel (dimensionless). * ALGEBRAIC[291] is y in component irel (dimensionless). * CONSTANTS[157] is Gbar in component ito (mS_per_cm2). * ALGEBRAIC[330] is ITo in component ito (uA_per_cm2). * ALGEBRAIC[292] is ITo_camk in component ito (uA_per_cm2). * ALGEBRAIC[293] is ITo_np in component ito (uA_per_cm2). * ALGEBRAIC[139] is R in component ito (dimensionless). * ALGEBRAIC[140] is a_inf in component ito (dimensionless). * STATES[120] is a_np in component ito (dimensionless). * ALGEBRAIC[244] is a_tau in component ito (ms). * ALGEBRAIC[141] is alph_if in component ito (dimensionless). * ALGEBRAIC[142] is alph_is in component ito (dimensionless). * ALGEBRAIC[143] is beta_i in component ito (mS_per_uF). * STATES[121] is if_camk in component ito (dimensionless). * STATES[122] is if_np in component ito (dimensionless). * STATES[123] is is_camk in component ito (dimensionless). * STATES[124] is is_np in component ito (dimensionless). * ALGEBRAIC[144] is ito_a_np_alpha in component ito (dimensionless). * ALGEBRAIC[145] is ito_a_np_beta in component ito (dimensionless). * ALGEBRAIC[146] is ito_if_camk_alpha in component ito (mS_per_uF). * ALGEBRAIC[147] is ito_if_np_alpha in component ito (mS_per_uF). * ALGEBRAIC[148] is ito_is_camk_alpha in component ito (mS_per_uF). * ALGEBRAIC[149] is ito_is_np_alpha in component ito (mS_per_uF). * ALGEBRAIC[245] is x in component ito (uA_per_cm2). * ALGEBRAIC[331] is Imax in component iup (mM_per_ms). * CONSTANTS[158] is Ka_plb in component iup (uM). * CONSTANTS[376] is Km_both in component iup (mM). * CONSTANTS[369] is Km_camk in component iup (mM). * CONSTANTS[159] is Km_np in component iup (mM). * CONSTANTS[374] is Km_pka in component iup (mM). * ALGEBRAIC[353] is Km_up in component iup (mM). * CONSTANTS[160] is Kp_plb in component iup (uM). * ALGEBRAIC[294] is f_SERCA2a in component iup (dimensionless). * ALGEBRAIC[295] is f_both in component iup (dimensionless). * ALGEBRAIC[296] is f_camk_only in component iup (dimensionless). * ALGEBRAIC[332] is f_np in component iup (dimensionless). * ALGEBRAIC[246] is f_pka in component iup (dimensionless). * ALGEBRAIC[297] is f_pka_only in component iup (dimensionless). * STATES[125] is f_plb in component iup (dimensionless). * ALGEBRAIC[150] is iup_f_pka_val in component iup (dimensionless). * CONSTANTS[161] is iupmax in component iup (mM_per_ms). * CONSTANTS[379] is iupmaxCAMK in component iup (mM_per_ms). * CONSTANTS[162] is ka_plb in component iup (hertz). * CONSTANTS[163] is kp_plb in component iup (hertz). * ALGEBRAIC[333] is leak in component iup (mM_per_ms). * CONSTANTS[164] is nsrmax in component iup (mM). * ALGEBRAIC[354] is uptake in component iup (mM_per_ms). * ALGEBRAIC[367] is IK_tot in component potassium (uA_per_cm2). * ALGEBRAIC[356] is INa_tot in component sodium (uA_per_cm2). * ALGEBRAIC[368] is i_ion in component membrane (uA_per_cm2). * ALGEBRAIC[171] is i_stim in component stimulus (uA_per_cm2). * CONSTANTS[165] is PNaK in component nernst (dimensionless). * CONSTANTS[238] is RTF in component phys (mV). * STATES[126] is K in component potassium (mM). * CONSTANTS[166] is KPDEp in component pde (uM). * CONSTANTS[167] is KmIbmxPde2 in component pde (dimensionless). * CONSTANTS[168] is KmIbmxPde3 in component pde (dimensionless). * CONSTANTS[169] is KmIbmxPde4 in component pde (dimensionless). * CONSTANTS[170] is KmPDE2 in component pde (uM). * CONSTANTS[171] is KmPDE3 in component pde (uM). * CONSTANTS[172] is KmPDE4 in component pde (uM). * CONSTANTS[347] is PDE2_cav in component pde (uM). * CONSTANTS[348] is PDE2_cyt in component pde (uM). * CONSTANTS[349] is PDE2_eca in component pde (uM). * CONSTANTS[173] is PDE2_tot in component pde (uM). * STATES[127] is PDE3_P_cav in component pde (uM). * STATES[128] is PDE3_P_cyt in component pde (uM). * CONSTANTS[377] is PDE3_cav in component pde (uM). * CONSTANTS[378] is PDE3_cyt in component pde (uM). * CONSTANTS[363] is PDE3_tot in component pde (uM). * STATES[129] is PDE4_P_cav in component pde (uM). * STATES[130] is PDE4_P_cyt in component pde (uM). * STATES[131] is PDE4_P_eca in component pde (uM). * CONSTANTS[370] is PDE4_cav in component pde (uM). * CONSTANTS[371] is PDE4_cyt in component pde (uM). * CONSTANTS[372] is PDE4_eca in component pde (uM). * CONSTANTS[365] is PDE4_tot in component pde (uM). * CONSTANTS[174] is delta_k_pde34 in component pde (dimensionless). * CONSTANTS[175] is f_pde2_cav in component pde (dimensionless). * CONSTANTS[333] is f_pde2_cyt in component pde (dimensionless). * CONSTANTS[176] is f_pde2_eca in component pde (dimensionless). * CONSTANTS[334] is f_pde2_part in component pde (dimensionless). * CONSTANTS[367] is f_pde3_cav in component pde (dimensionless). * CONSTANTS[373] is f_pde3_cyt in component pde (dimensionless). * CONSTANTS[177] is f_pde4_cav in component pde (dimensionless). * CONSTANTS[339] is f_pde4_cyt in component pde (dimensionless). * CONSTANTS[343] is f_pde4_eca in component pde (dimensionless). * CONSTANTS[178] is f_pde4_part in component pde (dimensionless). * CONSTANTS[179] is f_pde_part in component pde (dimensionless). * CONSTANTS[180] is ff_pde3_cyt in component pde (dimensionless). * CONSTANTS[181] is h_ibmx_pde2 in component pde (dimensionless). * CONSTANTS[182] is h_ibmx_pde3 in component pde (dimensionless). * CONSTANTS[183] is h_ibmx_pde4 in component pde (dimensionless). * CONSTANTS[184] is ibmx in component pde (uM). * CONSTANTS[342] is ibmx2 in component pde (uM). * CONSTANTS[375] is ibmx3 in component pde (uM). * CONSTANTS[368] is ibmx4 in component pde (uM). * CONSTANTS[338] is ibmx_h2 in component pde (dimensionless). * CONSTANTS[350] is ibmx_h3 in component pde (dimensionless). * CONSTANTS[354] is ibmx_h4 in component pde (dimensionless). * CONSTANTS[185] is kPDE2 in component pde (hertz). * CONSTANTS[186] is kPDE3 in component pde (hertz). * CONSTANTS[187] is kPDE4 in component pde (hertz). * CONSTANTS[244] is kbPDEp in component pde (hertz). * CONSTANTS[188] is kfPDEp in component pde (per_mM_per_ms). * CONSTANTS[359] is pde_PDE3_tot_alpha in component pde (dimensionless). * CONSTANTS[361] is pde_PDE3_tot_beta in component pde (dimensionless). * CONSTANTS[189] is r_pde34_frac in component pde (dimensionless). * CONSTANTS[357] is r_pde3_cyt in component pde (dimensionless). * CONSTANTS[190] is R in component phys (mJ_per_mol_per_K). * CONSTANTS[191] is T in component phys (kelvin). * CONSTANTS[245] is K_pki in component pka (uM). * CONSTANTS[335] is PKA_cyt in component pka (uM). * CONSTANTS[192] is PKA_tot in component pka (uM). * CONSTANTS[344] is PKI_cav in component pka (uM). * CONSTANTS[355] is PKI_cyt in component pka (uM). * CONSTANTS[351] is PKI_eca in component pka (uM). * CONSTANTS[336] is PKI_tot in component pka (uM). * CONSTANTS[264] is b_pki in component pka (hertz). * CONSTANTS[193] is f_cav in component pka (dimensionless). * CONSTANTS[327] is f_cyt in component pka (dimensionless). * CONSTANTS[194] is f_eca in component pka (dimensionless). * CONSTANTS[195] is f_pki in component pka (per_mM_per_ms). * CONSTANTS[340] is f_pki_cav in component pka (dimensionless). * CONSTANTS[352] is f_pki_cyt in component pka (dimensionless). * CONSTANTS[345] is f_pki_eca in component pka (dimensionless). * STATES[132] is A2R in component pka_cav (uM). * STATES[133] is A2RC in component pka_cav (uM). * STATES[134] is ARC in component pka_cav (uM). * CONSTANTS[196] is K1 in component pka_cav (uM). * CONSTANTS[197] is K2 in component pka_cav (uM). * CONSTANTS[198] is K3 in component pka_cav (m3_per_mol_times_1e3). * STATES[135] is PKIC in component pka_cav (uM). * ALGEBRAIC[163] is RCf in component pka_cav (uM). * CONSTANTS[246] is b1 in component pka_cav (hertz). * CONSTANTS[247] is b2 in component pka_cav (hertz). * CONSTANTS[248] is b3 in component pka_cav (per_mM_per_ms). * CONSTANTS[199] is f1 in component pka_cav (per_mM_per_ms). * CONSTANTS[200] is f2 in component pka_cav (per_mM_per_ms). * CONSTANTS[201] is f3 in component pka_cav (hertz). * STATES[136] is A2R in component pka_cyt (uM). * STATES[137] is A2RC in component pka_cyt (uM). * STATES[138] is ARC in component pka_cyt (uM). * CONSTANTS[202] is K1 in component pka_cyt (uM). * CONSTANTS[203] is K2 in component pka_cyt (uM). * CONSTANTS[204] is K3 in component pka_cyt (m3_per_mol_times_1e3). * STATES[139] is PKIC in component pka_cyt (uM). * ALGEBRAIC[165] is RCf in component pka_cyt (uM). * CONSTANTS[265] is b1 in component pka_cyt (hertz). * CONSTANTS[266] is b2 in component pka_cyt (hertz). * CONSTANTS[267] is b3 in component pka_cyt (per_mM_per_ms). * CONSTANTS[249] is f1 in component pka_cyt (per_mM_per_ms). * CONSTANTS[250] is f2 in component pka_cyt (per_mM_per_ms). * CONSTANTS[251] is f3 in component pka_cyt (hertz). * STATES[140] is A2R in component pka_eca (uM). * STATES[141] is A2RC in component pka_eca (uM). * STATES[142] is ARC in component pka_eca (uM). * CONSTANTS[252] is K1 in component pka_eca (uM). * CONSTANTS[253] is K2 in component pka_eca (uM). * CONSTANTS[254] is K3 in component pka_eca (m3_per_mol_times_1e3). * STATES[143] is PKIC in component pka_eca (uM). * ALGEBRAIC[167] is RCf in component pka_eca (uM). * CONSTANTS[276] is b1 in component pka_eca (hertz). * CONSTANTS[277] is b2 in component pka_eca (hertz). * CONSTANTS[278] is b3 in component pka_eca (per_mM_per_ms). * CONSTANTS[268] is f1 in component pka_eca (per_mM_per_ms). * CONSTANTS[269] is f2 in component pka_eca (per_mM_per_ms). * CONSTANTS[270] is f3 in component pka_eca (hertz). * CONSTANTS[406] is potassium_K_r1 in component potassium (mol_per_m_per_s_per_A_times_1e5). * CONSTANTS[205] is K in component pp1 (uM). * CONSTANTS[206] is Kdp in component pp1 (uM). * CONSTANTS[207] is Kp in component pp1 (uM). * CONSTANTS[208] is PP1_cyt in component pp1 (uM). * ALGEBRAIC[169] is di in component pp1 (uM). * CONSTANTS[209] is f in component pp1 (dimensionless). * STATES[144] is inhib1_p in component pp1 (uM). * CONSTANTS[255] is inhib1_tot in component pp1 (uM). * CONSTANTS[210] is kdp in component pp1 (hertz). * CONSTANTS[211] is kp in component pp1 (hertz). * ALGEBRAIC[170] is pp1_PP1f_cyt_sum in component pp1 (uM). * ALGEBRAIC[355] is INa_cyt in component sodium (uA_per_cm2). * CONSTANTS[407] is sodium_Na_r1 in component sodium (mol_per_m_per_s_per_A_times_1e5). * CONSTANTS[408] is sodium_Na_r2 in component sodium (dimensionless). * CONSTANTS[409] is sodium_Na_sr_r1 in component sodium (mol_per_m_per_s_per_A_times_1e5). * CONSTANTS[256] is amplitude in component stimulus (uA_per_cm2). * CONSTANTS[212] is duration in component stimulus (ms). * CONSTANTS[213] is offset in component stimulus (ms). * CONSTANTS[214] is period in component stimulus (ms). * RATES[4] is d/dt ICaLp in component akap_sig (uM). * RATES[5] is d/dt RyRp in component akap_sig (uM). * RATES[7] is d/dt Gi_aGDP in component beta_cav (uM). * RATES[8] is d/dt Gi_aGTP in component beta_cav (uM). * RATES[0] is d/dt Gi_bg in component beta_cav (uM). * RATES[9] is d/dt Gs_aGDP in component beta_cav (uM). * RATES[1] is d/dt Gs_aGTP in component beta_cav (uM). * RATES[10] is d/dt Gs_bg in component beta_cav (uM). * RATES[11] is d/dt Rb1_grk_tot in component beta_cav (uM). * RATES[12] is d/dt Rb1_pka_tot in component beta_cav (uM). * RATES[13] is d/dt Rb2_grk_tot in component beta_cav (uM). * RATES[14] is d/dt Rb2_pka_tot in component beta_cav (uM). * RATES[15] is d/dt Gs_aGDP in component beta_cyt (uM). * RATES[2] is d/dt Gs_aGTP in component beta_cyt (uM). * RATES[16] is d/dt Gs_bg in component beta_cyt (uM). * RATES[17] is d/dt Rb1_grk_tot in component beta_cyt (uM). * RATES[18] is d/dt Rb1_pka_tot in component beta_cyt (uM). * RATES[20] is d/dt Gi_aGDP in component beta_eca (uM). * RATES[21] is d/dt Gi_aGTP in component beta_eca (uM). * RATES[22] is d/dt Gi_bg in component beta_eca (uM). * RATES[23] is d/dt Gs_aGDP in component beta_eca (uM). * RATES[3] is d/dt Gs_aGTP in component beta_eca (uM). * RATES[24] is d/dt Gs_bg in component beta_eca (uM). * RATES[25] is d/dt Rb1_grk_tot in component beta_eca (uM). * RATES[26] is d/dt Rb1_pka_tot in component beta_eca (uM). * RATES[27] is d/dt Rb2_grk_tot in component beta_eca (uM). * RATES[28] is d/dt Rb2_pka_tot in component beta_eca (uM). * RATES[30] is d/dt Ca_nsr in component calcium (mM). * RATES[31] is d/dt f_tni in component calcium (dimensionless). * RATES[32] is d/dt uCa in component calcium (mM). * RATES[33] is d/dt uCa_CaL in component calcium (mM). * RATES[34] is d/dt uCa_jsr in component calcium (mM). * RATES[35] is d/dt uCa_sr in component calcium (mM). * RATES[36] is d/dt f_ical in component camk (dimensionless). * RATES[37] is d/dt f_ik1 in component camk (dimensionless). * RATES[38] is d/dt f_ina in component camk (dimensionless). * RATES[39] is d/dt f_ito in component camk (dimensionless). * RATES[40] is d/dt f_plb in component camk (dimensionless). * RATES[41] is d/dt f_ryr in component camk (dimensionless). * RATES[42] is d/dt trap in component camk (dimensionless). * RATES[43] is d/dt cAMP_cav in component camp (uM). * RATES[44] is d/dt cAMP_cyt in component camp (uM). * RATES[45] is d/dt cAMP_eca in component camp (uM). * RATES[46] is d/dt Cl in component chloride (mM). * RATES[47] is d/dt Cl_sr in component chloride (mM). * RATES[51] is d/dt C in component ical_camk (dimensionless). * RATES[52] is d/dt CI in component ical_camk (dimensionless). * RATES[53] is d/dt CIs in component ical_camk (dimensionless). * RATES[54] is d/dt Cs in component ical_camk (dimensionless). * RATES[55] is d/dt O in component ical_camk (dimensionless). * RATES[56] is d/dt OI in component ical_camk (dimensionless). * RATES[57] is d/dt OIs in component ical_camk (dimensionless). * RATES[58] is d/dt Os in component ical_camk (dimensionless). * RATES[59] is d/dt C in component ical_np (dimensionless). * RATES[60] is d/dt CI in component ical_np (dimensionless). * RATES[61] is d/dt CIs in component ical_np (dimensionless). * RATES[62] is d/dt Cs in component ical_np (dimensionless). * RATES[63] is d/dt O in component ical_np (dimensionless). * RATES[64] is d/dt OI in component ical_np (dimensionless). * RATES[65] is d/dt OIs in component ical_np (dimensionless). * RATES[66] is d/dt Os in component ical_np (dimensionless). * RATES[67] is d/dt i2 in component iclca (dimensionless). * RATES[68] is d/dt ac in component ikr (dimensionless). * RATES[73] is d/dt C1 in component iks_np (dimensionless). * RATES[74] is d/dt C10 in component iks_np (dimensionless). * RATES[75] is d/dt C11 in component iks_np (dimensionless). * RATES[76] is d/dt C12 in component iks_np (dimensionless). * RATES[77] is d/dt C13 in component iks_np (dimensionless). * RATES[78] is d/dt C14 in component iks_np (dimensionless). * RATES[79] is d/dt C15 in component iks_np (dimensionless). * RATES[80] is d/dt C2 in component iks_np (dimensionless). * RATES[81] is d/dt C3 in component iks_np (dimensionless). * RATES[82] is d/dt C4 in component iks_np (dimensionless). * RATES[83] is d/dt C5 in component iks_np (dimensionless). * RATES[84] is d/dt C6 in component iks_np (dimensionless). * RATES[85] is d/dt C7 in component iks_np (dimensionless). * RATES[86] is d/dt C8 in component iks_np (dimensionless). * RATES[87] is d/dt C9 in component iks_np (dimensionless). * RATES[69] is d/dt O1 in component iks_np (dimensionless). * RATES[70] is d/dt O2 in component iks_np (dimensionless). * RATES[88] is d/dt C1 in component iks_pka (dimensionless). * RATES[89] is d/dt C10 in component iks_pka (dimensionless). * RATES[90] is d/dt C11 in component iks_pka (dimensionless). * RATES[91] is d/dt C12 in component iks_pka (dimensionless). * RATES[92] is d/dt C13 in component iks_pka (dimensionless). * RATES[93] is d/dt C14 in component iks_pka (dimensionless). * RATES[94] is d/dt C15 in component iks_pka (dimensionless). * RATES[95] is d/dt C2 in component iks_pka (dimensionless). * RATES[96] is d/dt C3 in component iks_pka (dimensionless). * RATES[97] is d/dt C4 in component iks_pka (dimensionless). * RATES[98] is d/dt C5 in component iks_pka (dimensionless). * RATES[99] is d/dt C6 in component iks_pka (dimensionless). * RATES[100] is d/dt C7 in component iks_pka (dimensionless). * RATES[101] is d/dt C8 in component iks_pka (dimensionless). * RATES[102] is d/dt C9 in component iks_pka (dimensionless). * RATES[71] is d/dt O1 in component iks_pka (dimensionless). * RATES[72] is d/dt O2 in component iks_pka (dimensionless). * RATES[103] is d/dt IKsp in component iks_sig (uM). * RATES[104] is d/dt f_ikur in component ikur (dimensionless). * RATES[105] is d/dt f_ina in component ina (dimensionless). * RATES[106] is d/dt h in component ina_camk (dimensionless). * RATES[107] is d/dt j in component ina_camk (dimensionless). * RATES[108] is d/dt m in component ina_camk (dimensionless). * RATES[109] is d/dt h in component ina_np (dimensionless). * RATES[110] is d/dt j in component ina_np (dimensionless). * RATES[111] is d/dt m in component ina_np (dimensionless). * RATES[112] is d/dt h in component ina_pka (dimensionless). * RATES[113] is d/dt j in component ina_pka (dimensionless). * RATES[114] is d/dt m in component ina_pka (dimensionless). * RATES[115] is d/dt f_inak in component inak (dimensionless). * RATES[116] is d/dt h in component inal (dimensionless). * RATES[117] is d/dt m in component inal (dimensionless). * RATES[118] is d/dt Irel_np in component irel (mM_per_ms). * RATES[119] is d/dt Irel_p in component irel (mM_per_ms). * RATES[120] is d/dt a_np in component ito (dimensionless). * RATES[121] is d/dt if_camk in component ito (dimensionless). * RATES[122] is d/dt if_np in component ito (dimensionless). * RATES[123] is d/dt is_camk in component ito (dimensionless). * RATES[124] is d/dt is_np in component ito (dimensionless). * RATES[125] is d/dt f_plb in component iup (dimensionless). * RATES[50] is d/dt V in component membrane (mV). * RATES[127] is d/dt PDE3_P_cav in component pde (uM). * RATES[128] is d/dt PDE3_P_cyt in component pde (uM). * RATES[129] is d/dt PDE4_P_cav in component pde (uM). * RATES[130] is d/dt PDE4_P_cyt in component pde (uM). * RATES[131] is d/dt PDE4_P_eca in component pde (uM). * RATES[132] is d/dt A2R in component pka_cav (uM). * RATES[133] is d/dt A2RC in component pka_cav (uM). * RATES[134] is d/dt ARC in component pka_cav (uM). * RATES[6] is d/dt C in component pka_cav (uM). * RATES[135] is d/dt PKIC in component pka_cav (uM). * RATES[136] is d/dt A2R in component pka_cyt (uM). * RATES[137] is d/dt A2RC in component pka_cyt (uM). * RATES[138] is d/dt ARC in component pka_cyt (uM). * RATES[19] is d/dt C in component pka_cyt (uM). * RATES[139] is d/dt PKIC in component pka_cyt (uM). * RATES[140] is d/dt A2R in component pka_eca (uM). * RATES[141] is d/dt A2RC in component pka_eca (uM). * RATES[142] is d/dt ARC in component pka_eca (uM). * RATES[29] is d/dt C in component pka_eca (uM). * RATES[143] is d/dt PKIC in component pka_eca (uM). * RATES[126] is d/dt K in component potassium (mM). * RATES[144] is d/dt inhib1_p in component pp1 (uM). * RATES[48] is d/dt Na in component sodium (mM). * RATES[49] is d/dt Na_sr in component sodium (mM). * There are a total of 29 condition variables. */ void initConsts(double* CONSTANTS, double* RATES, double *STATES) { CONSTANTS[0] = 5000.0; CONSTANTS[1] = 315.0; CONSTANTS[2] = 0.0465; CONSTANTS[3] = 0.031544; CONSTANTS[4] = 0.0852; CONSTANTS[5] = 0.4824; CONSTANTS[6] = 3.3757; CONSTANTS[7] = 41.32; CONSTANTS[8] = 0.03135; CONSTANTS[9] = 0.037696; STATES[0] = 2.09911481235842013e-3; STATES[1] = 6.85041638458664965e-3; STATES[2] = 7.31420577213055985e-4; STATES[3] = 1.84627603007976003e-2; CONSTANTS[10] = 0.16479; CONSTANTS[11] = 0.087459; CONSTANTS[12] = 1.0043; CONSTANTS[13] = 1.3574; CONSTANTS[14] = 0.6623; CONSTANTS[15] = 0.8569; CONSTANTS[16] = 0.025; CONSTANTS[17] = 0.025; STATES[4] = 6.73713947839316954e-4; CONSTANTS[18] = 1.27019999999999993e-6; CONSTANTS[19] = 6.62979999999999944e-5; CONSTANTS[20] = 0.01; CONSTANTS[21] = 0.0063064; CONSTANTS[22] = 0.043003; CONSTANTS[23] = 0.01; CONSTANTS[24] = 0.0001; CONSTANTS[25] = 0.0001; CONSTANTS[26] = 0.01; CONSTANTS[27] = 0.01; CONSTANTS[28] = 0.25; CONSTANTS[29] = 0.125; CONSTANTS[30] = 0.125; STATES[5] = 4.10693810508170991e-3; CONSTANTS[31] = 5.10090000000000044e-4; CONSTANTS[32] = 0.0025548; CONSTANTS[33] = 0.0006903; CONSTANTS[34] = 0.0038257; STATES[6] = 3.26565916584702978e-02; CONSTANTS[35] = 0.5; CONSTANTS[36] = 0.85; CONSTANTS[37] = 0.0011071; CONSTANTS[38] = 0.5664; CONSTANTS[39] = 0.081161; CONSTANTS[40] = 0.48744; CONSTANTS[41] = 0.85; CONSTANTS[42] = 4.0; CONSTANTS[43] = 4.9054; CONSTANTS[44] = 0.05; CONSTANTS[45] = 0.25945; CONSTANTS[46] = 2.449; CONSTANTS[47] = 0.062; CONSTANTS[48] = 0.567; CONSTANTS[49] = 1.6655; CONSTANTS[50] = 1.8463; CONSTANTS[51] = 0.1; CONSTANTS[52] = 0.012; CONSTANTS[53] = 1.053; CONSTANTS[54] = 1.053; CONSTANTS[55] = 0.8; CONSTANTS[56] = 1210.0; CONSTANTS[57] = 0.35; CONSTANTS[58] = 1.0; STATES[7] = 5.02792845976641014e-4; STATES[8] = 1.59632196638178009e-3; STATES[9] = 6.07316088556675987e-4; STATES[10] = 7.45773247314215036e-3; STATES[11] = 2.49592854373432000e-10; STATES[12] = 1.49041813757830998e-2; STATES[13] = 8.91799633266019011e-10; STATES[14] = 2.75455839709412009e-2; CONSTANTS[59] = 0.0; CONSTANTS[60] = 1.0; CONSTANTS[61] = 1.0; STATES[15] = 4.19991861054322011e-4; STATES[16] = 1.15141243826746994e-3; STATES[17] = 7.07824478944670999e-11; STATES[18] = 9.44463350378085993e-3; STATES[19] = 3.62113356111495976e-01; CONSTANTS[62] = 1.0; STATES[20] = 3.41341142614041016e-4; STATES[21] = 3.64315164237569004e-4; STATES[22] = 7.05656306851923029e-4; STATES[23] = 6.39038440072506948e-4; STATES[24] = 1.91017987408719017e-2; STATES[25] = 1.18055788874765002e-9; STATES[26] = 2.03016833596287999e-1; STATES[27] = 1.13428924662652000e-10; STATES[28] = 1.10248953370551007e-2; CONSTANTS[63] = 1.0; STATES[29] = 5.67249910261072965e-01; STATES[30] = 1.191; CONSTANTS[64] = 2.71430000000000008e-5; CONSTANTS[65] = 0.26714; CONSTANTS[66] = 1.0; CONSTANTS[67] = 1.124; CONSTANTS[68] = 0.0087; CONSTANTS[69] = 0.047; CONSTANTS[70] = 0.00087; CONSTANTS[71] = 0.05; CONSTANTS[72] = 10.0; CONSTANTS[73] = 0.8; STATES[31] = 6.73518785672381992e-1; CONSTANTS[74] = 0.10408; CONSTANTS[75] = 0.00238; CONSTANTS[76] = 0.052633; CONSTANTS[77] = 0.0005; CONSTANTS[78] = 0.07; STATES[32] = 0.013394; STATES[33] = 0.023413; STATES[34] = 6.8659; STATES[35] = 0.023413; CONSTANTS[79] = 0.05; CONSTANTS[80] = 0.25; CONSTANTS[81] = 0.0015; CONSTANTS[82] = 0.1; CONSTANTS[83] = 0.05; CONSTANTS[84] = 0.00068; STATES[36] = 0.0; STATES[37] = 0.0; STATES[38] = 0.0; STATES[39] = 0.0; STATES[40] = 0.0; STATES[41] = 0.0; CONSTANTS[85] = 100000.0; CONSTANTS[86] = 10000.0; STATES[42] = 0.0017546; STATES[43] = 3.47102959606005013e-1; STATES[44] = 4.74081735738210996e-1; STATES[45] = 9.62359241535767040e+00; CONSTANTS[87] = 96487.0; CONSTANTS[88] = 0.01; CONSTANTS[89] = 3.14159265358979312e+00; CONSTANTS[90] = 0.0011; STATES[46] = 20.273; STATES[47] = 20.273; CONSTANTS[91] = 1.77e-5; CONSTANTS[92] = 87.8251; CONSTANTS[93] = 2.46108000000000016e-5; STATES[48] = 6.8909; STATES[49] = 6.8909; CONSTANTS[94] = 0.2; CONSTANTS[95] = 0.02; CONSTANTS[96] = 75.0; CONSTANTS[97] = 1.8; CONSTANTS[98] = 100.0; CONSTANTS[99] = 5.4; CONSTANTS[100] = 140.0; STATES[50] = -87.491; CONSTANTS[101] = 1.995e-07; STATES[51] = 1.0; STATES[52] = 0.0; STATES[53] = 0.0; STATES[54] = 0.0; STATES[55] = 0.0; STATES[56] = 0.0; STATES[57] = 0.0; STATES[58] = 0.0; CONSTANTS[102] = 1.0; CONSTANTS[103] = 1e-06; STATES[59] = 1.0; STATES[60] = 0.0; STATES[61] = 0.0; STATES[62] = 0.0; STATES[63] = 0.0; STATES[64] = 0.0; STATES[65] = 0.0; STATES[66] = 0.0; CONSTANTS[104] = 1.0; CONSTANTS[105] = 1e-06; CONSTANTS[106] = 0.000225; CONSTANTS[107] = 9e-07; STATES[67] = 0.99604; CONSTANTS[108] = 0.4; CONSTANTS[109] = 8.0; STATES[68] = 1.23059999999999995e-08; CONSTANTS[110] = 0.025; STATES[69] = 9.37220000000000071e-16; STATES[70] = 1.65950000000000014e-17; STATES[71] = 1.12010000000000000e-15; STATES[72] = 1.66129999999999997e-18; STATES[73] = 0.91141; STATES[74] = 5.36959999999999959e-07; STATES[75] = 2.48610000000000001e-08; STATES[76] = 2.87759999999999997e-10; STATES[77] = 1.12169999999999999e-10; STATES[78] = 2.59670000000000003e-12; STATES[79] = 8.78740000000000076e-15; STATES[80] = 0.084395; STATES[81] = 0.0029306; STATES[82] = 4.52285000000000024e-05; STATES[83] = 2.61750000000000024e-07; STATES[84] = 0.0011424; STATES[85] = 7.93370000000000029e-05; STATES[86] = 1.83659999999999992e-06; STATES[87] = 1.41719999999999995e-08; CONSTANTS[111] = 0.0027304; STATES[88] = 0.95624; STATES[89] = 3.19559999999999984e-07; STATES[90] = 7.039e-09; STATES[91] = 3.87629999999999971e-11; STATES[92] = 5.02769999999999999e-11; STATES[93] = 5.53740000000000021e-13; STATES[94] = 2.96639999999999984e-15; STATES[95] = 0.042127; STATES[96] = 6.95969999999999965e-04; STATES[97] = 5.11010000000000042e-06; STATES[98] = 1.407e-08; STATES[99] = 9.02690000000000046e-04; STATES[100] = 2.98259999999999987e-05; STATES[101] = 3.285e-07; STATES[102] = 1.206e-09; CONSTANTS[112] = 0.0046171; STATES[103] = 7.65988420110534033e-04; CONSTANTS[113] = 0.01; CONSTANTS[114] = 9.97940000000000003e-05; CONSTANTS[115] = 1.11470000000000002e-04; CONSTANTS[116] = 0.0001; CONSTANTS[117] = 0.01; CONSTANTS[118] = 0.025; CONSTANTS[119] = 0.16305; CONSTANTS[120] = 1.0542; CONSTANTS[121] = 0.27623; CONSTANTS[122] = 0.002331; STATES[104] = 5.89379755147717982e-02; CONSTANTS[123] = 0.00384; CONSTANTS[124] = 0.069537; CONSTANTS[125] = 0.317; CONSTANTS[126] = 0.10988; CONSTANTS[127] = 7.8605; STATES[105] = 2.39479458960527997e-01; STATES[106] = 0.83805; STATES[107] = 0.99281; STATES[108] = 6.81269999999999988e-04; STATES[109] = 0.0068172; STATES[110] = 0.99709; STATES[111] = 0.90163; STATES[112] = 0.001236; STATES[113] = 0.99123; STATES[114] = 0.79472; CONSTANTS[128] = 0.01368; CONSTANTS[129] = 0.052811; CONSTANTS[130] = 3.25; CONSTANTS[131] = 3.7; CONSTANTS[132] = 4.9; CONSTANTS[133] = 3.2e-09; CONSTANTS[134] = 0.000125; CONSTANTS[135] = 0.0036; CONSTANTS[136] = 1.3; CONSTANTS[137] = 12.3; CONSTANTS[138] = 87.5; CONSTANTS[139] = 0.27; CONSTANTS[140] = 0.32; CONSTANTS[141] = 4.5; CONSTANTS[142] = 0.0011001; CONSTANTS[143] = 5.7392; STATES[115] = 1.26345311579565994e-01; CONSTANTS[144] = 1.4; CONSTANTS[145] = 0.015265; CONSTANTS[146] = 1.5; CONSTANTS[147] = 2.6; CONSTANTS[148] = 1.846; CONSTANTS[149] = 0.092455; STATES[116] = 0.36003; STATES[117] = 0.0007053; CONSTANTS[150] = 600.0; CONSTANTS[151] = 0.0575; CONSTANTS[152] = 0.0005; STATES[118] = 3.66750000000000000e-09; STATES[119] = 7.30739999999999981e-09; CONSTANTS[153] = 20.0; CONSTANTS[154] = 1.1; CONSTANTS[155] = 0.000175; CONSTANTS[156] = 0.0005; CONSTANTS[157] = 0.4975; STATES[120] = 1.76869999999999985e-05; STATES[121] = 1.0; STATES[122] = 0.99798; STATES[123] = 1.0; STATES[124] = 0.98747; CONSTANTS[158] = 9.88539999999999992e-04; CONSTANTS[159] = 0.00092; CONSTANTS[160] = 0.80737; STATES[125] = 5.92167467082830967e-01; CONSTANTS[161] = 0.004375; CONSTANTS[162] = 0.11348; CONSTANTS[163] = 0.48302; CONSTANTS[164] = 15.0; CONSTANTS[165] = 0.01833; STATES[126] = 145.62; CONSTANTS[166] = 0.52218; CONSTANTS[167] = 21.58; CONSTANTS[168] = 2.642; CONSTANTS[169] = 11.89; CONSTANTS[170] = 50.0; CONSTANTS[171] = 0.8; CONSTANTS[172] = 1.4; CONSTANTS[173] = 0.029268; STATES[127] = 2.36821659448036986e-02; STATES[128] = 1.28402905095187994e-02; STATES[129] = 6.37363047239019025e-03; STATES[130] = 9.17039986149184062e-03; STATES[131] = 4.29171113639321980e-05; CONSTANTS[174] = 3.0; CONSTANTS[175] = 0.16957; CONSTANTS[176] = 2.12570000000000006e-04; CONSTANTS[177] = 0.12481; CONSTANTS[178] = 0.125; CONSTANTS[179] = 0.2; CONSTANTS[180] = 0.35; CONSTANTS[181] = 1.167; CONSTANTS[182] = 0.7629; CONSTANTS[183] = 0.9024; CONSTANTS[184] = 0.0; CONSTANTS[185] = 20.0; CONSTANTS[186] = 2.5; CONSTANTS[187] = 4.0; CONSTANTS[188] = 0.0196; CONSTANTS[189] = 3.71; CONSTANTS[190] = 8314.0; CONSTANTS[191] = 310.0; CONSTANTS[192] = 0.5; CONSTANTS[193] = 0.0388; CONSTANTS[194] = 0.1; CONSTANTS[195] = 50.0; STATES[132] = 2.25475702283052998e-01; STATES[133] = 2.76490711096605019e-03; STATES[134] = 9.04820284659604013e-02; CONSTANTS[196] = 2.4984; CONSTANTS[197] = 11.359; CONSTANTS[198] = 0.3755; STATES[135] = 1.92819110624504991e-01; CONSTANTS[199] = 100.0; CONSTANTS[200] = 100.0; CONSTANTS[201] = 100.0; STATES[136] = 4.89063888619455989e-01; STATES[137] = 6.64997605558790977e-02; STATES[138] = 6.46928309115710060e-02; CONSTANTS[202] = 0.1088; CONSTANTS[203] = 0.4612; CONSTANTS[204] = 0.3755; STATES[139] = 1.26950532507959013e-01; STATES[140] = 8.17161796756963987e-01; STATES[141] = 1.74057375932567010e-01; STATES[142] = 2.05444874210056000e-01; STATES[143] = 2.49911886495889995e-01; CONSTANTS[205] = 0.001; CONSTANTS[206] = 1.95259999999999991e-05; CONSTANTS[207] = 0.001469; CONSTANTS[208] = 0.2; CONSTANTS[209] = 0.3; STATES[144] = 2.82662056977524001e-02; CONSTANTS[210] = 0.0035731; CONSTANTS[211] = 0.010145; CONSTANTS[212] = 0.5; CONSTANTS[213] = 100.0; CONSTANTS[214] = 1000.0; CONSTANTS[215] = 1.00000 - CONSTANTS[36]; CONSTANTS[216] = (1.00000 - CONSTANTS[37]) - CONSTANTS[38]; CONSTANTS[217] = CONSTANTS[57]*0.000983300; CONSTANTS[218] = CONSTANTS[57]*0.00133000; CONSTANTS[219] = CONSTANTS[55]; CONSTANTS[220] = CONSTANTS[57]*0.00650000; CONSTANTS[221] = CONSTANTS[56]; CONSTANTS[222] = ( (CONSTANTS[51]+CONSTANTS[59])*(CONSTANTS[54]+CONSTANTS[59]))/CONSTANTS[54]; CONSTANTS[223] = ( ( CONSTANTS[48]*CONSTANTS[53])*(CONSTANTS[47]+CONSTANTS[59]))*(CONSTANTS[52]+CONSTANTS[59]); CONSTANTS[224] = ( (CONSTANTS[47]+CONSTANTS[59])*(CONSTANTS[48]+CONSTANTS[59]))/CONSTANTS[48]; CONSTANTS[225] = ( (CONSTANTS[51]+CONSTANTS[59])*(CONSTANTS[54]+CONSTANTS[59]))/CONSTANTS[54]; CONSTANTS[226] = ( ( CONSTANTS[48]*CONSTANTS[53])*(CONSTANTS[47]+CONSTANTS[59]))*(CONSTANTS[52]+CONSTANTS[59]); CONSTANTS[227] = CONSTANTS[0]/(CONSTANTS[1]+CONSTANTS[0]); CONSTANTS[228] = CONSTANTS[69]+CONSTANTS[67]; CONSTANTS[229] = 1.50000*CONSTANTS[77]; CONSTANTS[230] = CONSTANTS[70]*CONSTANTS[68]; CONSTANTS[231] = CONSTANTS[86]; CONSTANTS[232] = CONSTANTS[85]; CONSTANTS[233] = CONSTANTS[85]; CONSTANTS[234] = CONSTANTS[85]; CONSTANTS[235] = 7.50000e-14*1.00000e+06; CONSTANTS[236] = 5.00000e-15*1.00000e+06; CONSTANTS[237] = 9.00000e-15*1.00000e+06; CONSTANTS[238] = ( CONSTANTS[190]*CONSTANTS[191])/CONSTANTS[87]; CONSTANTS[239] = 0.500000* pow((CONSTANTS[99]/5.40000), 1.0 / 2); CONSTANTS[240] = 0.0138542* pow((CONSTANTS[99]/5.40000), 1.0 / 2); CONSTANTS[241] = ( 2.15000*8.25000)*1.10000; CONSTANTS[242] = CONSTANTS[99]/(CONSTANTS[99]+CONSTANTS[146]); CONSTANTS[243] = 0.666700*4.75000; CONSTANTS[244] = CONSTANTS[166]*CONSTANTS[188]; CONSTANTS[245] = 0.0100000/50.0000; CONSTANTS[246] = CONSTANTS[199]*CONSTANTS[196]; CONSTANTS[247] = CONSTANTS[200]*CONSTANTS[197]; CONSTANTS[248] = CONSTANTS[201]*CONSTANTS[198]; CONSTANTS[249] = CONSTANTS[199]; CONSTANTS[250] = CONSTANTS[200]; CONSTANTS[251] = CONSTANTS[201]; CONSTANTS[252] = CONSTANTS[196]; CONSTANTS[253] = CONSTANTS[197]; CONSTANTS[254] = CONSTANTS[198]; CONSTANTS[255] = (CONSTANTS[209]/(1.00000 - CONSTANTS[209]))*CONSTANTS[205]+ CONSTANTS[209]*CONSTANTS[208]; CONSTANTS[256] = - 80.0000; CONSTANTS[257] = 0.156290*CONSTANTS[220]; CONSTANTS[258] = ( ( ( CONSTANTS[46]*CONSTANTS[47])*CONSTANTS[53])*(CONSTANTS[52]+CONSTANTS[59]))*(CONSTANTS[48]+CONSTANTS[59]); CONSTANTS[259] = ( ( ( CONSTANTS[46]*CONSTANTS[47])*CONSTANTS[53])*(CONSTANTS[52]+CONSTANTS[59]))*(CONSTANTS[48]+CONSTANTS[59]); CONSTANTS[260] = 1.00000/(1.00000+0.350000); CONSTANTS[261] = CONSTANTS[70]+CONSTANTS[68]; CONSTANTS[262] = ( CONSTANTS[69]*CONSTANTS[68]+ CONSTANTS[67]*CONSTANTS[70])+CONSTANTS[230]; CONSTANTS[263] = 1.00000/CONSTANTS[238]; CONSTANTS[264] = CONSTANTS[195]*CONSTANTS[245]; CONSTANTS[265] = CONSTANTS[249]*CONSTANTS[202]; CONSTANTS[266] = CONSTANTS[250]*CONSTANTS[203]; CONSTANTS[267] = CONSTANTS[251]*CONSTANTS[204]; CONSTANTS[268] = CONSTANTS[199]; CONSTANTS[269] = CONSTANTS[200]; CONSTANTS[270] = CONSTANTS[201]; CONSTANTS[271] = ( ( ( CONSTANTS[50]*CONSTANTS[52])*CONSTANTS[48])*(CONSTANTS[47]+CONSTANTS[59]))*(CONSTANTS[53]+CONSTANTS[59]); CONSTANTS[272] = ( ( ( CONSTANTS[50]*CONSTANTS[52])*CONSTANTS[48])*(CONSTANTS[47]+CONSTANTS[59]))*(CONSTANTS[53]+CONSTANTS[59]); CONSTANTS[273] = 1.00000+(CONSTANTS[16] - CONSTANTS[17])/CONSTANTS[24]; CONSTANTS[274] = CONSTANTS[228]+CONSTANTS[261]; CONSTANTS[275] = CONSTANTS[87]*CONSTANTS[263]; CONSTANTS[276] = CONSTANTS[268]*CONSTANTS[252]; CONSTANTS[277] = CONSTANTS[269]*CONSTANTS[253]; CONSTANTS[278] = CONSTANTS[270]*CONSTANTS[254]; CONSTANTS[279] = ( ( ( ( CONSTANTS[46]*CONSTANTS[50])*CONSTANTS[47])*CONSTANTS[52])*(CONSTANTS[48]+CONSTANTS[59]))*(CONSTANTS[53]+CONSTANTS[59]); CONSTANTS[280] = ( ( ( ( CONSTANTS[46]*CONSTANTS[50])*CONSTANTS[47])*CONSTANTS[52])*(CONSTANTS[48]+CONSTANTS[59]))*(CONSTANTS[53]+CONSTANTS[59]); CONSTANTS[281] = (CONSTANTS[24]/2.00000)*( pow((pow(CONSTANTS[273], 2.00000)+( 4.00000*CONSTANTS[17])/CONSTANTS[24]), 1.0 / 2) - CONSTANTS[273]); CONSTANTS[282] = (((CONSTANTS[16]+CONSTANTS[29])+CONSTANTS[20])+CONSTANTS[23]) - CONSTANTS[28]; CONSTANTS[283] = (( CONSTANTS[16]*CONSTANTS[23]+ CONSTANTS[29]*CONSTANTS[20])+ CONSTANTS[20]*CONSTANTS[23]) - CONSTANTS[28]*(CONSTANTS[20]+CONSTANTS[23]); CONSTANTS[284] = ( CONSTANTS[28]*CONSTANTS[20])*CONSTANTS[23]; CONSTANTS[285] = ((( (- CONSTANTS[284]/27.0000)*pow(CONSTANTS[282], 3.00000) - ( ( ( CONSTANTS[282]*CONSTANTS[282])*CONSTANTS[283])*CONSTANTS[283])/108.000)+( ( CONSTANTS[282]*CONSTANTS[283])*CONSTANTS[284])/6.00000)+pow(CONSTANTS[283], 3.00000)/27.0000)+( CONSTANTS[284]*CONSTANTS[284])/4.00000; CONSTANTS[286] = (CONSTANTS[285]<0.00000 ? pow(- CONSTANTS[285], 1.0 / 2) : 0.00000); CONSTANTS[287] = (((CONSTANTS[285]>0.00000 ? pow(CONSTANTS[285], 1.0 / 2) : 0.00000)+CONSTANTS[284]/2.00000)+( CONSTANTS[282]*CONSTANTS[283])/6.00000) - pow(CONSTANTS[282], 3.00000)/27.0000; CONSTANTS[288] = atan(CONSTANTS[286]/CONSTANTS[287])/3.00000; CONSTANTS[289] = pow( CONSTANTS[287]*CONSTANTS[287]+ CONSTANTS[286]*CONSTANTS[286], 1.00000/6.00000); CONSTANTS[290] = (CONSTANTS[283]/3.00000 - ( CONSTANTS[282]*CONSTANTS[282])/9.00000)/( CONSTANTS[289]*CONSTANTS[289]); CONSTANTS[291] = ( CONSTANTS[289]*cos(CONSTANTS[288]))*(1.00000 - CONSTANTS[290]) - CONSTANTS[282]/3.00000; CONSTANTS[292] = 1.00000+(CONSTANTS[29] - CONSTANTS[30])/CONSTANTS[25]; CONSTANTS[293] = (CONSTANTS[25]/2.00000)*( pow((pow(CONSTANTS[292], 2.00000)+( 4.00000*CONSTANTS[30])/CONSTANTS[25]), 1.0 / 2) - CONSTANTS[292]); CONSTANTS[294] = 0.850000*0.0250000; CONSTANTS[295] = 224.000*CONSTANTS[294]; CONSTANTS[296] = 3.00000*CONSTANTS[294]; CONSTANTS[297] = 0.150000*0.0250000; CONSTANTS[298] = (1.00000 - CONSTANTS[39]) - CONSTANTS[40]; CONSTANTS[299] = 1.00000 - CONSTANTS[41]; CONSTANTS[300] = ( ( 2.00000*CONSTANTS[89])*CONSTANTS[90])*(CONSTANTS[90]+CONSTANTS[88]); CONSTANTS[301] = 2.00000*CONSTANTS[300]; CONSTANTS[302] = CONSTANTS[301]/CONSTANTS[87]; CONSTANTS[303] = ( ( ( 1000.00*CONSTANTS[89])*CONSTANTS[90])*CONSTANTS[90])*CONSTANTS[88]; CONSTANTS[304] = CONSTANTS[303]*0.00200000; CONSTANTS[305] = CONSTANTS[302]/( 2.00000*CONSTANTS[304]); CONSTANTS[306] = 0.0200000*CONSTANTS[303]; CONSTANTS[307] = CONSTANTS[303]*0.678000; CONSTANTS[308] = CONSTANTS[302]/( 2.00000*CONSTANTS[307]); CONSTANTS[309] = 0.0400000*CONSTANTS[303]; CONSTANTS[310] = CONSTANTS[303]*0.00480000; CONSTANTS[311] = CONSTANTS[303]*0.0552000; CONSTANTS[312] = CONSTANTS[310]/CONSTANTS[311]; CONSTANTS[313] = CONSTANTS[311]/CONSTANTS[307]; CONSTANTS[314] = CONSTANTS[303]*0.0200000; CONSTANTS[315] = CONSTANTS[314]/CONSTANTS[304]; CONSTANTS[316] = - CONSTANTS[302]/CONSTANTS[314]; CONSTANTS[317] = - CONSTANTS[310]/CONSTANTS[314]; CONSTANTS[318] = CONSTANTS[314]/CONSTANTS[307]; CONSTANTS[319] = CONSTANTS[303]/CONSTANTS[306]; CONSTANTS[320] = ( ( CONSTANTS[11]*CONSTANTS[260])*CONSTANTS[296])*CONSTANTS[319]; CONSTANTS[321] = CONSTANTS[303]/CONSTANTS[307]; CONSTANTS[322] = ( CONSTANTS[39]*CONSTANTS[294])*CONSTANTS[319]; CONSTANTS[323] = ( CONSTANTS[41]*CONSTANTS[297])*CONSTANTS[319]; CONSTANTS[324] = ( ( (1.00000 - CONSTANTS[10])*(1.00000 - CONSTANTS[260]))*CONSTANTS[296])*CONSTANTS[321]; CONSTANTS[325] = ( CONSTANTS[298]*CONSTANTS[294])*CONSTANTS[321]; CONSTANTS[326] = CONSTANTS[303]/CONSTANTS[309]; CONSTANTS[327] = (1.00000 - CONSTANTS[193]) - CONSTANTS[194]; CONSTANTS[328] = ( ( (1.00000 - CONSTANTS[11])*CONSTANTS[260])*CONSTANTS[296])*CONSTANTS[321]; CONSTANTS[329] = ( ( CONSTANTS[10]*(1.00000 - CONSTANTS[260]))*CONSTANTS[296])*CONSTANTS[326]; CONSTANTS[330] = ( CONSTANTS[40]*CONSTANTS[294])*CONSTANTS[326]; CONSTANTS[331] = ( CONSTANTS[299]*CONSTANTS[297])*CONSTANTS[326]; CONSTANTS[332] = CONSTANTS[302]/CONSTANTS[307]; CONSTANTS[333] = (1.00000 - CONSTANTS[175]) - CONSTANTS[176]; CONSTANTS[334] = CONSTANTS[175]+CONSTANTS[176]; CONSTANTS[335] = ( CONSTANTS[327]*CONSTANTS[192])*CONSTANTS[321]; CONSTANTS[336] = 0.200000*CONSTANTS[192]; CONSTANTS[337] = CONSTANTS[314]/CONSTANTS[307]; CONSTANTS[338] = pow( CONSTANTS[184]*1.00000, CONSTANTS[181]); CONSTANTS[339] = 1.00000 - CONSTANTS[178]; CONSTANTS[340] = CONSTANTS[193]; CONSTANTS[341] = CONSTANTS[302]/CONSTANTS[314]; CONSTANTS[342] = (1.00000 - CONSTANTS[338]/(CONSTANTS[167]+CONSTANTS[338]))*CONSTANTS[173]; CONSTANTS[343] = CONSTANTS[178] - CONSTANTS[177]; CONSTANTS[344] = ( CONSTANTS[340]*CONSTANTS[336])*CONSTANTS[319]; CONSTANTS[345] = CONSTANTS[194]; CONSTANTS[346] = pow(87.8251, 4.00000); CONSTANTS[347] = ( CONSTANTS[342]*CONSTANTS[175])*CONSTANTS[319]; CONSTANTS[348] = ( CONSTANTS[342]*CONSTANTS[333])*CONSTANTS[321]; CONSTANTS[349] = ( CONSTANTS[342]*CONSTANTS[176])*CONSTANTS[326]; CONSTANTS[350] = pow( CONSTANTS[184]*1.00000, CONSTANTS[182]); CONSTANTS[351] = ( CONSTANTS[345]*CONSTANTS[336])*CONSTANTS[326]; CONSTANTS[352] = (1.00000 - CONSTANTS[340]) - CONSTANTS[345]; CONSTANTS[353] = 1.00000+(CONSTANTS[118] - CONSTANTS[110])/CONSTANTS[116]; CONSTANTS[354] = pow( CONSTANTS[184]*1.00000, CONSTANTS[183]); CONSTANTS[355] = ( CONSTANTS[352]*CONSTANTS[336])*CONSTANTS[321]; CONSTANTS[356] = (CONSTANTS[116]/2.00000)*( pow((pow(CONSTANTS[353], 2.00000)+( 4.00000*CONSTANTS[110])/CONSTANTS[116]), 1.0 / 2) - CONSTANTS[353]); CONSTANTS[357] = CONSTANTS[180]/(1.00000 - CONSTANTS[180]); CONSTANTS[358] = 1.00000+(CONSTANTS[118] - CONSTANTS[82])/CONSTANTS[113]; CONSTANTS[359] = CONSTANTS[357]*( CONSTANTS[178]*(((1.00000+CONSTANTS[189]) - CONSTANTS[189]*CONSTANTS[334]) - CONSTANTS[179])+ CONSTANTS[334]*(CONSTANTS[179] - 1.00000))+ ( CONSTANTS[189]*CONSTANTS[178])*(CONSTANTS[179] - CONSTANTS[334]); CONSTANTS[360] = (CONSTANTS[113]/2.00000)*( pow((pow(CONSTANTS[358], 2.00000)+( 4.00000*CONSTANTS[82])/CONSTANTS[113]), 1.0 / 2) - CONSTANTS[358]); CONSTANTS[361] = CONSTANTS[178]*((1.00000+CONSTANTS[189])+ CONSTANTS[179]*(CONSTANTS[357] - CONSTANTS[189])) - CONSTANTS[179]*(1.00000+CONSTANTS[357]); CONSTANTS[362] = pow(CONSTANTS[137], 3.00000); CONSTANTS[363] = (CONSTANTS[359]/CONSTANTS[361])*CONSTANTS[173]; CONSTANTS[364] = pow(CONSTANTS[138], 3.00000); CONSTANTS[365] = ( (CONSTANTS[179] - CONSTANTS[334])*CONSTANTS[173]+ CONSTANTS[179]*CONSTANTS[363])/( (1.00000+CONSTANTS[189])*CONSTANTS[178] - CONSTANTS[179]); CONSTANTS[366] = pow(CONSTANTS[100], 3.00000); CONSTANTS[367] = ( ( CONSTANTS[189]*CONSTANTS[178])*CONSTANTS[365])/CONSTANTS[363]; CONSTANTS[368] = (1.00000 - CONSTANTS[354]/(CONSTANTS[169]+CONSTANTS[354]))*CONSTANTS[365]; CONSTANTS[369] = CONSTANTS[159] - 0.000170000; CONSTANTS[370] = ( CONSTANTS[368]*CONSTANTS[177])*CONSTANTS[319]; CONSTANTS[371] = ( CONSTANTS[368]*CONSTANTS[339])*CONSTANTS[321]; CONSTANTS[372] = ( CONSTANTS[368]*CONSTANTS[343])*CONSTANTS[326]; CONSTANTS[373] = 1.00000 - CONSTANTS[367]; CONSTANTS[374] = CONSTANTS[159]*(1.00000 - 0.460000); CONSTANTS[375] = (1.00000 - CONSTANTS[350]/(CONSTANTS[168]+CONSTANTS[350]))*CONSTANTS[363]; CONSTANTS[376] = CONSTANTS[374]; CONSTANTS[377] = ( CONSTANTS[375]*CONSTANTS[367])*CONSTANTS[319]; CONSTANTS[378] = ( CONSTANTS[375]*CONSTANTS[373])*CONSTANTS[321]; CONSTANTS[379] = 3.25000*CONSTANTS[161]; CONSTANTS[380] = ( CONSTANTS[193]*CONSTANTS[192])*CONSTANTS[319]; CONSTANTS[381] = (((CONSTANTS[16]+CONSTANTS[29])+CONSTANTS[26])+CONSTANTS[27]) - CONSTANTS[380]; CONSTANTS[382] = (( CONSTANTS[16]*CONSTANTS[27]+ CONSTANTS[29]*CONSTANTS[26])+ CONSTANTS[26]*CONSTANTS[27]) - CONSTANTS[380]*(CONSTANTS[26]+CONSTANTS[27]); CONSTANTS[383] = ( CONSTANTS[380]*CONSTANTS[26])*CONSTANTS[27]; CONSTANTS[384] = ((( (- CONSTANTS[383]/27.0000)*pow(CONSTANTS[381], 3.00000) - ( ( ( CONSTANTS[381]*CONSTANTS[381])*CONSTANTS[382])*CONSTANTS[382])/108.000)+( ( CONSTANTS[381]*CONSTANTS[382])*CONSTANTS[383])/6.00000)+pow(CONSTANTS[382], 3.00000)/27.0000)+( CONSTANTS[383]*CONSTANTS[383])/4.00000; CONSTANTS[385] = (CONSTANTS[384]<0.00000 ? pow(- CONSTANTS[384], 1.0 / 2) : 0.00000); CONSTANTS[386] = (((CONSTANTS[384]>0.00000 ? pow(CONSTANTS[384], 1.0 / 2) : 0.00000)+CONSTANTS[383]/2.00000)+( CONSTANTS[381]*CONSTANTS[382])/6.00000) - pow(CONSTANTS[381], 3.00000)/27.0000; CONSTANTS[387] = atan(CONSTANTS[385]/CONSTANTS[386])/3.00000; CONSTANTS[388] = pow( CONSTANTS[386]*CONSTANTS[386]+ CONSTANTS[385]*CONSTANTS[385], 1.00000/6.00000); CONSTANTS[389] = (CONSTANTS[382]/3.00000 - ( CONSTANTS[381]*CONSTANTS[381])/9.00000)/( CONSTANTS[388]*CONSTANTS[388]); CONSTANTS[390] = ( CONSTANTS[388]*cos(CONSTANTS[387]))*(1.00000 - CONSTANTS[389]) - CONSTANTS[381]/3.00000; CONSTANTS[391] = ((CONSTANTS[16] - CONSTANTS[17])+CONSTANTS[281])/( (CONSTANTS[291]/CONSTANTS[20]+1.00000)*(CONSTANTS[390]/CONSTANTS[26]+1.00000)); CONSTANTS[392] = ( ( CONSTANTS[281]*CONSTANTS[391])*CONSTANTS[390])/( CONSTANTS[24]*CONSTANTS[26]); CONSTANTS[393] = ( CONSTANTS[392]*CONSTANTS[291])/CONSTANTS[20]; CONSTANTS[394] = ((CONSTANTS[29] - CONSTANTS[30])+CONSTANTS[293])/( (CONSTANTS[291]/CONSTANTS[23]+1.00000)*(CONSTANTS[390]/CONSTANTS[27]+1.00000)); CONSTANTS[395] = ( ( CONSTANTS[293]*CONSTANTS[394])*CONSTANTS[390])/( CONSTANTS[25]*CONSTANTS[27]); CONSTANTS[396] = ( CONSTANTS[395]*CONSTANTS[291])/CONSTANTS[23]; CONSTANTS[397] = 0.0269000+CONSTANTS[392]/CONSTANTS[17]; CONSTANTS[398] = 0.0329000+CONSTANTS[395]/CONSTANTS[30]; CONSTANTS[399] = ( CONSTANTS[194]*CONSTANTS[192])*CONSTANTS[326]; CONSTANTS[400] = 1.00000+(CONSTANTS[118] - CONSTANTS[399])/CONSTANTS[117]; CONSTANTS[401] = (CONSTANTS[117]/2.00000)*( pow((pow(CONSTANTS[400], 2.00000)+( 4.00000*CONSTANTS[399])/CONSTANTS[117]), 1.0 / 2) - CONSTANTS[400]); CONSTANTS[402] = ((CONSTANTS[118] - CONSTANTS[110])+CONSTANTS[356])/( (1.00000+CONSTANTS[360]/CONSTANTS[113])*(1.00000+CONSTANTS[401]/CONSTANTS[117])); CONSTANTS[403] = ( ( CONSTANTS[356]*CONSTANTS[402])*CONSTANTS[401])/( CONSTANTS[116]*CONSTANTS[117]); CONSTANTS[404] = 0.0306000+CONSTANTS[403]/CONSTANTS[110]; CONSTANTS[405] = ( CONSTANTS[403]*CONSTANTS[360])/CONSTANTS[113]; CONSTANTS[406] = - CONSTANTS[302]/CONSTANTS[307]; CONSTANTS[407] = - CONSTANTS[302]/CONSTANTS[307]; CONSTANTS[408] = CONSTANTS[314]/CONSTANTS[307]; CONSTANTS[409] = ( 3.00000*CONSTANTS[302])/CONSTANTS[314]; RATES[4] = 0.1001; RATES[5] = 0.1001; RATES[7] = 0.1001; RATES[8] = 0.1001; RATES[0] = 0.1001; RATES[9] = 0.1001; RATES[1] = 0.1001; RATES[10] = 0.1001; RATES[11] = 0.1001; RATES[12] = 0.1001; RATES[13] = 0.1001; RATES[14] = 0.1001; RATES[15] = 0.1001; RATES[2] = 0.1001; RATES[16] = 0.1001; RATES[17] = 0.1001; RATES[18] = 0.1001; RATES[20] = 0.1001; RATES[21] = 0.1001; RATES[22] = 0.1001; RATES[23] = 0.1001; RATES[3] = 0.1001; RATES[24] = 0.1001; RATES[25] = 0.1001; RATES[26] = 0.1001; RATES[27] = 0.1001; RATES[28] = 0.1001; RATES[30] = 0.1001; RATES[31] = 0.1001; RATES[32] = 0.1001; RATES[33] = 0.1001; RATES[34] = 0.1001; RATES[35] = 0.1001; RATES[36] = 0.1001; RATES[37] = 0.1001; RATES[38] = 0.1001; RATES[39] = 0.1001; RATES[40] = 0.1001; RATES[41] = 0.1001; RATES[42] = 0.1001; RATES[43] = 0.1001; RATES[44] = 0.1001; RATES[45] = 0.1001; RATES[46] = 0.1001; RATES[47] = 0.1001; RATES[51] = 0.1001; RATES[52] = 0.1001; RATES[53] = 0.1001; RATES[54] = 0.1001; RATES[55] = 0.1001; RATES[56] = 0.1001; RATES[57] = 0.1001; RATES[58] = 0.1001; RATES[59] = 0.1001; RATES[60] = 0.1001; RATES[61] = 0.1001; RATES[62] = 0.1001; RATES[63] = 0.1001; RATES[64] = 0.1001; RATES[65] = 0.1001; RATES[66] = 0.1001; RATES[67] = 0.1001; RATES[68] = 0.1001; RATES[73] = 0.1001; RATES[74] = 0.1001; RATES[75] = 0.1001; RATES[76] = 0.1001; RATES[77] = 0.1001; RATES[78] = 0.1001; RATES[79] = 0.1001; RATES[80] = 0.1001; RATES[81] = 0.1001; RATES[82] = 0.1001; RATES[83] = 0.1001; RATES[84] = 0.1001; RATES[85] = 0.1001; RATES[86] = 0.1001; RATES[87] = 0.1001; RATES[69] = 0.1001; RATES[70] = 0.1001; RATES[88] = 0.1001; RATES[89] = 0.1001; RATES[90] = 0.1001; RATES[91] = 0.1001; RATES[92] = 0.1001; RATES[93] = 0.1001; RATES[94] = 0.1001; RATES[95] = 0.1001; RATES[96] = 0.1001; RATES[97] = 0.1001; RATES[98] = 0.1001; RATES[99] = 0.1001; RATES[100] = 0.1001; RATES[101] = 0.1001; RATES[102] = 0.1001; RATES[71] = 0.1001; RATES[72] = 0.1001; RATES[103] = 0.1001; RATES[104] = 0.1001; RATES[105] = 0.1001; RATES[106] = 0.1001; RATES[107] = 0.1001; RATES[108] = 0.1001; RATES[109] = 0.1001; RATES[110] = 0.1001; RATES[111] = 0.1001; RATES[112] = 0.1001; RATES[113] = 0.1001; RATES[114] = 0.1001; RATES[115] = 0.1001; RATES[116] = 0.1001; RATES[117] = 0.1001; RATES[118] = 0.1001; RATES[119] = 0.1001; RATES[120] = 0.1001; RATES[121] = 0.1001; RATES[122] = 0.1001; RATES[123] = 0.1001; RATES[124] = 0.1001; RATES[125] = 0.1001; RATES[50] = 0.1001; RATES[127] = 0.1001; RATES[128] = 0.1001; RATES[129] = 0.1001; RATES[130] = 0.1001; RATES[131] = 0.1001; RATES[132] = 0.1001; RATES[133] = 0.1001; RATES[134] = 0.1001; RATES[6] = 0.1001; RATES[135] = 0.1001; RATES[136] = 0.1001; RATES[137] = 0.1001; RATES[138] = 0.1001; RATES[19] = 0.1001; RATES[139] = 0.1001; RATES[140] = 0.1001; RATES[141] = 0.1001; RATES[142] = 0.1001; RATES[29] = 0.1001; RATES[143] = 0.1001; RATES[126] = 0.1001; RATES[144] = 0.1001; RATES[48] = 0.1001; RATES[49] = 0.1001; } void computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { resid[0] = RATES[4] - 0.00100000*(( ( CONSTANTS[31]*STATES[6])*ALGEBRAIC[9])/(CONSTANTS[18]+ALGEBRAIC[9]) - ( ( CONSTANTS[33]*CONSTANTS[28])*STATES[4])/(CONSTANTS[21]+STATES[4])); resid[1] = RATES[5] - 0.00100000*(( ( CONSTANTS[32]*STATES[6])*ALGEBRAIC[10])/(CONSTANTS[19]+ALGEBRAIC[10]) - ( ( CONSTANTS[34]*CONSTANTS[28])*STATES[5])/(CONSTANTS[22]+STATES[5])); resid[2] = RATES[7] - 0.00100000*( CONSTANTS[219]*STATES[8] - ( CONSTANTS[221]*STATES[0])*STATES[7]); resid[3] = RATES[8] - 0.00100000*(( CONSTANTS[44]*ALGEBRAIC[249]+ CONSTANTS[42]*ALGEBRAIC[299]) - CONSTANTS[219]*STATES[8]); resid[4] = RATES[0] - 0.00100000*(( CONSTANTS[44]*ALGEBRAIC[249]+ CONSTANTS[42]*ALGEBRAIC[299]) - ( CONSTANTS[221]*STATES[0])*STATES[7]); resid[5] = RATES[9] - 0.00100000*( CONSTANTS[55]*STATES[1] - ( CONSTANTS[56]*STATES[10])*STATES[9]); resid[6] = RATES[1] - 0.00100000*(( CONSTANTS[45]*ALGEBRAIC[358]+ CONSTANTS[43]*ALGEBRAIC[357]) - CONSTANTS[55]*STATES[1]); resid[7] = RATES[10] - 0.00100000*(( CONSTANTS[45]*ALGEBRAIC[358]+ CONSTANTS[43]*ALGEBRAIC[357]) - ( CONSTANTS[56]*STATES[10])*STATES[9]); resid[8] = RATES[11] - 0.00100000*( ( CONSTANTS[218]*CONSTANTS[58])*(ALGEBRAIC[334]+ALGEBRAIC[335]) - CONSTANTS[217]*STATES[11]); resid[9] = RATES[12] - 0.00100000*( ( CONSTANTS[220]*STATES[6])*ALGEBRAIC[15] - CONSTANTS[257]*STATES[12]); resid[10] = RATES[13] - 0.00100000*( ( CONSTANTS[218]*CONSTANTS[58])*(ALGEBRAIC[336]+ALGEBRAIC[337]) - CONSTANTS[217]*STATES[13]); resid[11] = RATES[14] - 0.00100000*( ( CONSTANTS[220]*STATES[6])*ALGEBRAIC[16] - CONSTANTS[257]*STATES[14]); resid[12] = RATES[15] - 0.00100000*( CONSTANTS[55]*STATES[2] - ( CONSTANTS[56]*STATES[16])*STATES[15]); resid[13] = RATES[2] - 0.00100000*(( CONSTANTS[45]*ALGEBRAIC[255]+ CONSTANTS[43]*ALGEBRAIC[253]) - CONSTANTS[55]*STATES[2]); resid[14] = RATES[16] - 0.00100000*(( CONSTANTS[45]*ALGEBRAIC[255]+ CONSTANTS[43]*ALGEBRAIC[253]) - ( CONSTANTS[56]*STATES[16])*STATES[15]); resid[15] = RATES[17] - 0.00100000*( ( CONSTANTS[218]*CONSTANTS[61])*(ALGEBRAIC[254]+ALGEBRAIC[253]) - CONSTANTS[217]*STATES[17]); resid[16] = RATES[18] - 0.00100000*( ( CONSTANTS[220]*STATES[19])*ALGEBRAIC[26] - CONSTANTS[257]*STATES[18]); resid[17] = RATES[20] - 0.00100000*( CONSTANTS[219]*STATES[21] - ( CONSTANTS[221]*STATES[22])*STATES[20]); resid[18] = RATES[21] - 0.00100000*(( CONSTANTS[44]*ALGEBRAIC[257]+ CONSTANTS[42]*ALGEBRAIC[303]) - CONSTANTS[219]*STATES[21]); resid[19] = RATES[22] - 0.00100000*(( CONSTANTS[44]*ALGEBRAIC[257]+ CONSTANTS[42]*ALGEBRAIC[303]) - ( CONSTANTS[221]*STATES[22])*STATES[20]); resid[20] = RATES[23] - 0.00100000*( CONSTANTS[55]*STATES[3] - ( CONSTANTS[56]*STATES[24])*STATES[23]); resid[21] = RATES[3] - 0.00100000*(( CONSTANTS[45]*ALGEBRAIC[360]+ CONSTANTS[43]*ALGEBRAIC[359]) - CONSTANTS[55]*STATES[3]); resid[22] = RATES[24] - 0.00100000*(( CONSTANTS[45]*ALGEBRAIC[360]+ CONSTANTS[43]*ALGEBRAIC[359]) - ( CONSTANTS[56]*STATES[24])*STATES[23]); resid[23] = RATES[25] - 0.00100000*( ( CONSTANTS[218]*CONSTANTS[62])*(ALGEBRAIC[340]+ALGEBRAIC[341]) - CONSTANTS[217]*STATES[25]); resid[24] = RATES[26] - 0.00100000*( ( CONSTANTS[220]*STATES[29])*ALGEBRAIC[31] - CONSTANTS[257]*STATES[26]); resid[25] = RATES[27] - 0.00100000*( ( CONSTANTS[218]*CONSTANTS[62])*(ALGEBRAIC[342]+ALGEBRAIC[343]) - CONSTANTS[217]*STATES[27]); resid[26] = RATES[28] - 0.00100000*( ( CONSTANTS[220]*STATES[29])*ALGEBRAIC[32] - CONSTANTS[257]*STATES[28]); resid[27] = RATES[30] - ALGEBRAIC[366] - CONSTANTS[312]*ALGEBRAIC[197]; resid[28] = RATES[31] - 0.00100000*(( ( CONSTANTS[74]*STATES[19])*(1.00000 - STATES[31]))/(CONSTANTS[64]+ (1.00000 - STATES[31])*1.00000) - ( ( CONSTANTS[76]*CONSTANTS[66])*STATES[31])/(CONSTANTS[65]+ STATES[31]*1.00000)); resid[29] = RATES[32] - ( - CONSTANTS[308]*((ALGEBRAIC[308]+ALGEBRAIC[326]) - 2.00000*ALGEBRAIC[352]) - CONSTANTS[313]*ALGEBRAIC[366])+ CONSTANTS[318]*ALGEBRAIC[307]; resid[30] = RATES[33] - - CONSTANTS[305]*ALGEBRAIC[269]+ CONSTANTS[315]*ALGEBRAIC[196]; resid[31] = RATES[34] - ALGEBRAIC[197] - ALGEBRAIC[327]; resid[32] = RATES[35] - - ((( CONSTANTS[316]*ALGEBRAIC[283]+ CONSTANTS[317]*ALGEBRAIC[327])+ALGEBRAIC[307])+ALGEBRAIC[196]); resid[33] = RATES[36] - (ALGEBRAIC[265] - STATES[36])/CONSTANTS[231]; resid[34] = RATES[37] - (ALGEBRAIC[265] - STATES[37])/CONSTANTS[232]; resid[35] = RATES[38] - (ALGEBRAIC[265] - STATES[38])/CONSTANTS[233]; resid[36] = RATES[39] - (ALGEBRAIC[265] - STATES[39])/CONSTANTS[234]; resid[37] = RATES[40] - (ALGEBRAIC[265] - STATES[40])/CONSTANTS[85]; resid[38] = RATES[41] - (ALGEBRAIC[266] - STATES[41])/CONSTANTS[86]; resid[39] = RATES[42] - ( CONSTANTS[83]*ALGEBRAIC[190])*ALGEBRAIC[264] - ( CONSTANTS[84]*STATES[42])*(0.100000+( 0.900000*ALGEBRAIC[263])/0.137100); resid[40] = RATES[43] - 0.00100000*((((ALGEBRAIC[164]+ALGEBRAIC[174]) - ALGEBRAIC[191]) - ALGEBRAIC[52]) - ALGEBRAIC[53]); resid[41] = RATES[44] - 0.00100000*(((((ALGEBRAIC[166]+ALGEBRAIC[172])+ALGEBRAIC[175]) - ALGEBRAIC[192])+ALGEBRAIC[54])+ALGEBRAIC[55]); resid[42] = RATES[45] - 0.00100000*((((ALGEBRAIC[168]+ALGEBRAIC[173]) - ALGEBRAIC[193])+ALGEBRAIC[56]) - ALGEBRAIC[57]); resid[43] = RATES[46] - (( CONSTANTS[332]*ALGEBRAIC[216]+ALGEBRAIC[268])+ALGEBRAIC[267])+ CONSTANTS[337]*ALGEBRAIC[58]; resid[44] = RATES[47] - CONSTANTS[341]*ALGEBRAIC[348] - ALGEBRAIC[58]; resid[45] = RATES[51] - (( - ((ALGEBRAIC[202]+ALGEBRAIC[270])+ALGEBRAIC[209])*STATES[51]+ ALGEBRAIC[203]*STATES[55])+ CONSTANTS[102]*STATES[54])+ ALGEBRAIC[208]*STATES[52]; resid[46] = RATES[52] - (( - ((ALGEBRAIC[202]+ALGEBRAIC[363])+ALGEBRAIC[208])*STATES[52]+ ALGEBRAIC[209]*STATES[51])+ CONSTANTS[103]*STATES[53])+ ALGEBRAIC[203]*STATES[56]; resid[47] = RATES[53] - (( - ((ALGEBRAIC[202]+CONSTANTS[103])+ALGEBRAIC[310])*STATES[53]+ ALGEBRAIC[311]*STATES[54])+ ALGEBRAIC[363]*STATES[52])+ ALGEBRAIC[203]*STATES[57]; resid[48] = RATES[54] - (( - ((ALGEBRAIC[202]+CONSTANTS[102])+ALGEBRAIC[311])*STATES[54]+ ALGEBRAIC[270]*STATES[51])+ ALGEBRAIC[203]*STATES[58])+ ALGEBRAIC[310]*STATES[53]; resid[49] = RATES[55] - (( - ((ALGEBRAIC[203]+ALGEBRAIC[270])+ALGEBRAIC[209])*STATES[55]+ ALGEBRAIC[202]*STATES[51])+ CONSTANTS[102]*STATES[58])+ ALGEBRAIC[208]*STATES[56]; resid[50] = RATES[56] - (( - ((ALGEBRAIC[203]+ALGEBRAIC[363])+ALGEBRAIC[208])*STATES[56]+ ALGEBRAIC[209]*STATES[55])+ CONSTANTS[103]*STATES[57])+ ALGEBRAIC[202]*STATES[52]; resid[51] = RATES[57] - (( - ((ALGEBRAIC[203]+CONSTANTS[103])+ALGEBRAIC[310])*STATES[57]+ ALGEBRAIC[311]*STATES[58])+ ALGEBRAIC[363]*STATES[56])+ ALGEBRAIC[202]*STATES[53]; resid[52] = RATES[58] - (( - ((ALGEBRAIC[203]+CONSTANTS[102])+ALGEBRAIC[311])*STATES[58]+ ALGEBRAIC[270]*STATES[55])+ ALGEBRAIC[202]*STATES[54])+ ALGEBRAIC[310]*STATES[57]; resid[53] = RATES[59] - (( - ((ALGEBRAIC[71]+ALGEBRAIC[273])+ALGEBRAIC[81])*STATES[59]+ ALGEBRAIC[72]*STATES[63])+ CONSTANTS[104]*STATES[62])+ ALGEBRAIC[80]*STATES[60]; resid[54] = RATES[60] - (( - ((ALGEBRAIC[71]+ALGEBRAIC[364])+ALGEBRAIC[80])*STATES[60]+ ALGEBRAIC[81]*STATES[59])+ CONSTANTS[105]*STATES[61])+ ALGEBRAIC[72]*STATES[64]; resid[55] = RATES[61] - (( - ((ALGEBRAIC[71]+CONSTANTS[105])+ALGEBRAIC[313])*STATES[61]+ ALGEBRAIC[314]*STATES[62])+ ALGEBRAIC[364]*STATES[60])+ ALGEBRAIC[72]*STATES[65]; resid[56] = RATES[62] - (( - ((ALGEBRAIC[71]+CONSTANTS[104])+ALGEBRAIC[314])*STATES[62]+ ALGEBRAIC[273]*STATES[59])+ ALGEBRAIC[72]*STATES[66])+ ALGEBRAIC[313]*STATES[61]; resid[57] = RATES[63] - (( - ((ALGEBRAIC[72]+ALGEBRAIC[273])+ALGEBRAIC[81])*STATES[63]+ ALGEBRAIC[71]*STATES[59])+ CONSTANTS[104]*STATES[66])+ ALGEBRAIC[80]*STATES[64]; resid[58] = RATES[64] - (( - ((ALGEBRAIC[72]+ALGEBRAIC[364])+ALGEBRAIC[80])*STATES[64]+ ALGEBRAIC[81]*STATES[63])+ CONSTANTS[105]*STATES[65])+ ALGEBRAIC[71]*STATES[60]; resid[59] = RATES[65] - (( - ((ALGEBRAIC[72]+CONSTANTS[105])+ALGEBRAIC[313])*STATES[65]+ ALGEBRAIC[314]*STATES[66])+ ALGEBRAIC[364]*STATES[64])+ ALGEBRAIC[71]*STATES[61]; resid[60] = RATES[66] - (( - ((ALGEBRAIC[72]+CONSTANTS[104])+ALGEBRAIC[314])*STATES[66]+ ALGEBRAIC[273]*STATES[63])+ ALGEBRAIC[71]*STATES[62])+ ALGEBRAIC[313]*STATES[65]; resid[61] = RATES[67] - (ALGEBRAIC[82]/(ALGEBRAIC[82]+ALGEBRAIC[83]) - STATES[67])/CONSTANTS[109]; resid[62] = RATES[68] - (ALGEBRAIC[86] - STATES[68])/ALGEBRAIC[85]; resid[63] = RATES[73] - ALGEBRAIC[89]*STATES[80] - STATES[73]*( 4.00000*ALGEBRAIC[88]); resid[64] = RATES[74] - ( ALGEBRAIC[89]*STATES[75]+ ALGEBRAIC[92]*STATES[85]) - STATES[74]*( 2.00000*ALGEBRAIC[88]+ 2.00000*ALGEBRAIC[90]); resid[65] = RATES[75] - ((( ( 2.00000*ALGEBRAIC[88])*STATES[74]+ ( 2.00000*ALGEBRAIC[89])*STATES[76])+ ( 2.00000*ALGEBRAIC[92])*STATES[86])+ ( 3.00000*ALGEBRAIC[90])*STATES[77]) - STATES[75]*(((ALGEBRAIC[88]+ALGEBRAIC[89])+ALGEBRAIC[92])+ 2.00000*ALGEBRAIC[90]); resid[66] = RATES[76] - (( ALGEBRAIC[88]*STATES[75]+ ( 3.00000*ALGEBRAIC[92])*STATES[87])+ ( 3.00000*ALGEBRAIC[90])*STATES[78]) - STATES[76]*(( 2.00000*ALGEBRAIC[89]+ 2.00000*ALGEBRAIC[92])+ 2.00000*ALGEBRAIC[90]); resid[67] = RATES[77] - ( ALGEBRAIC[89]*STATES[78]+ ALGEBRAIC[92]*STATES[75]) - STATES[77]*(ALGEBRAIC[88]+ 3.00000*ALGEBRAIC[90]); resid[68] = RATES[78] - (( ALGEBRAIC[88]*STATES[77]+ ( 2.00000*ALGEBRAIC[92])*STATES[76])+ ( 4.00000*ALGEBRAIC[90])*STATES[79]) - STATES[78]*((ALGEBRAIC[89]+ALGEBRAIC[92])+ 3.00000*ALGEBRAIC[90]); resid[69] = RATES[79] - ( ALGEBRAIC[92]*STATES[78] - STATES[79]*( 4.00000*ALGEBRAIC[90]+CONSTANTS[111]))+ ALGEBRAIC[91]*STATES[69]; resid[70] = RATES[80] - (( ( 4.00000*ALGEBRAIC[88])*STATES[73]+ ( 2.00000*ALGEBRAIC[89])*STATES[81])+ ALGEBRAIC[90]*STATES[84]) - STATES[80]*(( 3.00000*ALGEBRAIC[88]+ALGEBRAIC[89])+ALGEBRAIC[92]); resid[71] = RATES[81] - (( ( 3.00000*ALGEBRAIC[88])*STATES[80]+ ( 3.00000*ALGEBRAIC[89])*STATES[82])+ ALGEBRAIC[90]*STATES[85]) - STATES[81]*(( 2.00000*ALGEBRAIC[88]+ 2.00000*ALGEBRAIC[89])+ 2.00000*ALGEBRAIC[92]); resid[72] = RATES[82] - (( ( 2.00000*ALGEBRAIC[88])*STATES[81]+ ( 4.00000*ALGEBRAIC[89])*STATES[83])+ ALGEBRAIC[90]*STATES[86]) - STATES[82]*((ALGEBRAIC[88]+ 3.00000*ALGEBRAIC[89])+ 3.00000*ALGEBRAIC[92]); resid[73] = RATES[83] - ( ALGEBRAIC[88]*STATES[82]+ ALGEBRAIC[90]*STATES[87]) - STATES[83]*( 4.00000*ALGEBRAIC[89]+ 4.00000*ALGEBRAIC[92]); resid[74] = RATES[84] - ( ALGEBRAIC[89]*STATES[85]+ ALGEBRAIC[92]*STATES[80]) - STATES[84]*( 3.00000*ALGEBRAIC[88]+ALGEBRAIC[90]); resid[75] = RATES[85] - ((( ( 3.00000*ALGEBRAIC[88])*STATES[84]+ ( 2.00000*ALGEBRAIC[89])*STATES[86])+ ( 2.00000*ALGEBRAIC[92])*STATES[81])+ ( 2.00000*ALGEBRAIC[90])*STATES[74]) - STATES[85]*((( 2.00000*ALGEBRAIC[88]+ALGEBRAIC[89])+ALGEBRAIC[92])+ALGEBRAIC[90]); resid[76] = RATES[86] - ((( ( 2.00000*ALGEBRAIC[88])*STATES[85]+ ( 3.00000*ALGEBRAIC[89])*STATES[87])+ ( 3.00000*ALGEBRAIC[92])*STATES[82])+ ( 2.00000*ALGEBRAIC[90])*STATES[75]) - STATES[86]*(((ALGEBRAIC[88]+ 2.00000*ALGEBRAIC[89])+ 2.00000*ALGEBRAIC[92])+ALGEBRAIC[90]); resid[77] = RATES[87] - (( ALGEBRAIC[88]*STATES[86]+ ( 4.00000*ALGEBRAIC[92])*STATES[83])+ ( 2.00000*ALGEBRAIC[90])*STATES[76]) - STATES[87]*(( 3.00000*ALGEBRAIC[89]+ 3.00000*ALGEBRAIC[92])+ALGEBRAIC[90]); resid[78] = RATES[69] - ( - (ALGEBRAIC[91]+ALGEBRAIC[94])*STATES[69]+ ALGEBRAIC[93]*STATES[70])+ CONSTANTS[111]*STATES[79]; resid[79] = RATES[70] - ALGEBRAIC[94]*STATES[69] - ALGEBRAIC[93]*STATES[70]; resid[80] = RATES[88] - ALGEBRAIC[96]*STATES[95] - STATES[88]*( 4.00000*ALGEBRAIC[95]); resid[81] = RATES[89] - ( ALGEBRAIC[96]*STATES[90]+ ALGEBRAIC[99]*STATES[100]) - STATES[89]*( 2.00000*ALGEBRAIC[95]+ 2.00000*ALGEBRAIC[97]); resid[82] = RATES[90] - ((( ( 2.00000*ALGEBRAIC[95])*STATES[89]+ ( 2.00000*ALGEBRAIC[96])*STATES[91])+ ( 2.00000*ALGEBRAIC[99])*STATES[101])+ ( 3.00000*ALGEBRAIC[97])*STATES[92]) - STATES[90]*(((ALGEBRAIC[95]+ALGEBRAIC[96])+ALGEBRAIC[99])+ 2.00000*ALGEBRAIC[97]); resid[83] = RATES[91] - (( ALGEBRAIC[95]*STATES[90]+ ( 3.00000*ALGEBRAIC[99])*STATES[102])+ ( 3.00000*ALGEBRAIC[97])*STATES[93]) - STATES[91]*(( 2.00000*ALGEBRAIC[96]+ 2.00000*ALGEBRAIC[99])+ 2.00000*ALGEBRAIC[97]); resid[84] = RATES[92] - ( ALGEBRAIC[96]*STATES[93]+ ALGEBRAIC[99]*STATES[90]) - STATES[92]*(ALGEBRAIC[95]+ 3.00000*ALGEBRAIC[97]); resid[85] = RATES[93] - (( ALGEBRAIC[95]*STATES[92]+ ( 2.00000*ALGEBRAIC[99])*STATES[91])+ ( 4.00000*ALGEBRAIC[97])*STATES[94]) - STATES[93]*((ALGEBRAIC[96]+ALGEBRAIC[99])+ 3.00000*ALGEBRAIC[97]); resid[86] = RATES[94] - ( ALGEBRAIC[99]*STATES[93] - STATES[94]*( 4.00000*ALGEBRAIC[97]+CONSTANTS[112]))+ ALGEBRAIC[98]*STATES[71]; resid[87] = RATES[95] - (( ( 4.00000*ALGEBRAIC[95])*STATES[88]+ ( 2.00000*ALGEBRAIC[96])*STATES[96])+ ALGEBRAIC[97]*STATES[99]) - STATES[95]*(( 3.00000*ALGEBRAIC[95]+ALGEBRAIC[96])+ALGEBRAIC[99]); resid[88] = RATES[96] - (( ( 3.00000*ALGEBRAIC[95])*STATES[95]+ ( 3.00000*ALGEBRAIC[96])*STATES[97])+ ALGEBRAIC[97]*STATES[100]) - STATES[96]*(( 2.00000*ALGEBRAIC[95]+ 2.00000*ALGEBRAIC[96])+ 2.00000*ALGEBRAIC[99]); resid[89] = RATES[97] - (( ( 2.00000*ALGEBRAIC[95])*STATES[96]+ ( 4.00000*ALGEBRAIC[96])*STATES[98])+ ALGEBRAIC[97]*STATES[101]) - STATES[97]*((ALGEBRAIC[95]+ 3.00000*ALGEBRAIC[96])+ 3.00000*ALGEBRAIC[99]); resid[90] = RATES[98] - ( ALGEBRAIC[95]*STATES[97]+ ALGEBRAIC[97]*STATES[102]) - STATES[98]*( 4.00000*ALGEBRAIC[96]+ 4.00000*ALGEBRAIC[99]); resid[91] = RATES[99] - ( ALGEBRAIC[96]*STATES[100]+ ALGEBRAIC[99]*STATES[95]) - STATES[99]*( 3.00000*ALGEBRAIC[95]+ALGEBRAIC[97]); resid[92] = RATES[100] - ((( ( 3.00000*ALGEBRAIC[95])*STATES[99]+ ( 2.00000*ALGEBRAIC[96])*STATES[101])+ ( 2.00000*ALGEBRAIC[99])*STATES[96])+ ( 2.00000*ALGEBRAIC[97])*STATES[89]) - STATES[100]*((( 2.00000*ALGEBRAIC[95]+ALGEBRAIC[96])+ALGEBRAIC[99])+ALGEBRAIC[97]); resid[93] = RATES[101] - ((( ( 2.00000*ALGEBRAIC[95])*STATES[100]+ ( 3.00000*ALGEBRAIC[96])*STATES[102])+ ( 3.00000*ALGEBRAIC[99])*STATES[97])+ ( 2.00000*ALGEBRAIC[97])*STATES[90]) - STATES[101]*(((ALGEBRAIC[95]+ 2.00000*ALGEBRAIC[96])+ 2.00000*ALGEBRAIC[99])+ALGEBRAIC[97]); resid[94] = RATES[102] - (( ALGEBRAIC[95]*STATES[101]+ ( 4.00000*ALGEBRAIC[99])*STATES[98])+ ( 2.00000*ALGEBRAIC[97])*STATES[91]) - STATES[102]*(( 3.00000*ALGEBRAIC[96]+ 3.00000*ALGEBRAIC[99])+ALGEBRAIC[97]); resid[95] = RATES[71] - ( - (ALGEBRAIC[98]+ALGEBRAIC[101])*STATES[71]+ ALGEBRAIC[100]*STATES[72])+ CONSTANTS[112]*STATES[94]; resid[96] = RATES[72] - ALGEBRAIC[101]*STATES[71] - ALGEBRAIC[100]*STATES[72]; resid[97] = RATES[103] - 0.00100000*(( ( CONSTANTS[119]*STATES[29])*ALGEBRAIC[103])/(CONSTANTS[114]+ALGEBRAIC[103]) - ( ( CONSTANTS[120]*CONSTANTS[82])*STATES[103])/(CONSTANTS[115]+STATES[103])); resid[98] = RATES[104] - 0.00100000*(( ( CONSTANTS[124]*STATES[29])*(1.00000 - STATES[104]))/(CONSTANTS[121]+ (1.00000 - STATES[104])*1.00000) - ( ( CONSTANTS[125]*CONSTANTS[82])*STATES[104])/(CONSTANTS[122]+ STATES[104]*1.00000)); resid[99] = RATES[105] - 0.00100000*(( ( CONSTANTS[128]*STATES[6])*(1.00000 - STATES[105]))/(CONSTANTS[126]+ (1.00000 - STATES[105])*1.00000) - ( ( CONSTANTS[129]*CONSTANTS[28])*STATES[105])/(CONSTANTS[127]+ STATES[105]*1.00000)); resid[100] = RATES[106] - ALGEBRAIC[106]*(1.00000 - STATES[106]) - ALGEBRAIC[107]*STATES[106]; resid[101] = RATES[107] - ALGEBRAIC[108]*(1.00000 - STATES[107]) - ALGEBRAIC[109]*STATES[107]; resid[102] = RATES[108] - ALGEBRAIC[110]*(1.00000 - STATES[108]) - ALGEBRAIC[111]*STATES[108]; resid[103] = RATES[109] - ALGEBRAIC[112]*(1.00000 - STATES[109]) - ALGEBRAIC[113]*STATES[109]; resid[104] = RATES[110] - ALGEBRAIC[114]*(1.00000 - STATES[110]) - ALGEBRAIC[115]*STATES[110]; resid[105] = RATES[111] - ALGEBRAIC[116]*(1.00000 - STATES[111]) - ALGEBRAIC[117]*STATES[111]; resid[106] = RATES[112] - ALGEBRAIC[118]*(1.00000 - STATES[112]) - ALGEBRAIC[119]*STATES[112]; resid[107] = RATES[113] - ALGEBRAIC[120]*(1.00000 - STATES[113]) - ALGEBRAIC[121]*STATES[113]; resid[108] = RATES[114] - ALGEBRAIC[122]*(1.00000 - STATES[114]) - ALGEBRAIC[123]*STATES[114]; resid[109] = RATES[115] - 0.00100000*(( ( CONSTANTS[145]*STATES[6])*(1.00000 - STATES[115]))/(CONSTANTS[142]+ (1.00000 - STATES[115])*1.00000) - ( ( CONSTANTS[149]*CONSTANTS[28])*STATES[115])/(CONSTANTS[143]+ STATES[115]*1.00000)); resid[110] = RATES[116] - (ALGEBRAIC[133] - STATES[116])/CONSTANTS[150]; resid[111] = RATES[117] - ALGEBRAIC[134]*(1.00000 - STATES[117]) - ALGEBRAIC[135]*STATES[117]; resid[112] = RATES[118] - - (ALGEBRAIC[328]+STATES[118])/ALGEBRAIC[289]; resid[113] = RATES[119] - - (ALGEBRAIC[329]+STATES[119])/ALGEBRAIC[290]; resid[114] = RATES[120] - (ALGEBRAIC[140] - STATES[120])/ALGEBRAIC[244]; resid[115] = RATES[121] - ALGEBRAIC[146]*(1.00000 - STATES[121]) - ALGEBRAIC[143]*STATES[121]; resid[116] = RATES[122] - ALGEBRAIC[147]*(1.00000 - STATES[122]) - ALGEBRAIC[143]*STATES[122]; resid[117] = RATES[123] - ALGEBRAIC[148]*(1.00000 - STATES[123]) - ALGEBRAIC[143]*STATES[123]; resid[118] = RATES[124] - ALGEBRAIC[149]*(1.00000 - STATES[124]) - ALGEBRAIC[143]*STATES[124]; resid[119] = RATES[125] - 0.00100000*(( ( CONSTANTS[162]*STATES[19])*(1.00000 - STATES[125]))/(CONSTANTS[158]+ (1.00000 - STATES[125])*1.00000) - ( ( CONSTANTS[163]*ALGEBRAIC[247])*STATES[125])/(CONSTANTS[160]+ STATES[125]*1.00000)); resid[120] = RATES[50] - - (ALGEBRAIC[368]+ALGEBRAIC[171])/1.00000; resid[121] = RATES[127] - 0.00100000*( ( CONSTANTS[188]*STATES[6])*(CONSTANTS[377] - STATES[127]) - CONSTANTS[244]*STATES[127]); resid[122] = RATES[128] - 0.00100000*( ( CONSTANTS[188]*STATES[19])*(CONSTANTS[378] - STATES[128]) - CONSTANTS[244]*STATES[128]); resid[123] = RATES[129] - 0.00100000*( ( CONSTANTS[188]*STATES[6])*(CONSTANTS[370] - STATES[129]) - CONSTANTS[244]*STATES[129]); resid[124] = RATES[130] - 0.00100000*( ( CONSTANTS[188]*STATES[19])*(CONSTANTS[371] - STATES[130]) - CONSTANTS[244]*STATES[130]); resid[125] = RATES[131] - 0.00100000*( ( CONSTANTS[188]*STATES[29])*(CONSTANTS[372] - STATES[131]) - CONSTANTS[244]*STATES[131]); resid[126] = RATES[132] - 0.00100000*( CONSTANTS[201]*STATES[133] - ( CONSTANTS[248]*STATES[132])*STATES[6]); resid[127] = RATES[133] - 0.00100000*(( ( CONSTANTS[200]*STATES[134])*STATES[43] - (CONSTANTS[247]+CONSTANTS[201])*STATES[133])+ ( CONSTANTS[248]*STATES[132])*STATES[6]); resid[128] = RATES[134] - 0.00100000*((( ( CONSTANTS[199]*ALGEBRAIC[163])*STATES[43] - CONSTANTS[246]*STATES[134]) - ( CONSTANTS[200]*STATES[134])*STATES[43])+ CONSTANTS[247]*STATES[133]); resid[129] = RATES[6] - 0.00100000*((( CONSTANTS[201]*STATES[133] - ( CONSTANTS[248]*STATES[132])*STATES[6])+ CONSTANTS[264]*STATES[135]) - ( CONSTANTS[195]*(CONSTANTS[344] - STATES[135]))*STATES[6]); resid[130] = RATES[135] - 0.00100000*( ( CONSTANTS[195]*(CONSTANTS[344] - STATES[135]))*STATES[6] - CONSTANTS[264]*STATES[135]); resid[131] = RATES[136] - 0.00100000*( CONSTANTS[251]*STATES[137] - ( CONSTANTS[267]*STATES[136])*STATES[19]); resid[132] = RATES[137] - 0.00100000*(( ( CONSTANTS[250]*STATES[138])*STATES[44] - (CONSTANTS[266]+CONSTANTS[251])*STATES[137])+ ( CONSTANTS[267]*STATES[136])*STATES[19]); resid[133] = RATES[138] - 0.00100000*((( ( CONSTANTS[249]*ALGEBRAIC[165])*STATES[44] - CONSTANTS[265]*STATES[138]) - ( CONSTANTS[250]*STATES[138])*STATES[44])+ CONSTANTS[266]*STATES[137]); resid[134] = RATES[19] - 0.00100000*((( CONSTANTS[251]*STATES[137] - ( CONSTANTS[267]*STATES[136])*STATES[19])+ CONSTANTS[264]*STATES[139]) - ( CONSTANTS[195]*(CONSTANTS[355] - STATES[139]))*STATES[19]); resid[135] = RATES[139] - 0.00100000*( ( CONSTANTS[195]*(CONSTANTS[355] - STATES[139]))*STATES[19] - CONSTANTS[264]*STATES[139]); resid[136] = RATES[140] - 0.00100000*( CONSTANTS[270]*STATES[141] - ( CONSTANTS[278]*STATES[140])*STATES[29]); resid[137] = RATES[141] - 0.00100000*(( ( CONSTANTS[269]*STATES[142])*STATES[45] - (CONSTANTS[277]+CONSTANTS[270])*STATES[141])+ ( CONSTANTS[278]*STATES[140])*STATES[29]); resid[138] = RATES[142] - 0.00100000*((( ( CONSTANTS[268]*ALGEBRAIC[167])*STATES[45] - CONSTANTS[276]*STATES[142]) - ( CONSTANTS[269]*STATES[142])*STATES[45])+ CONSTANTS[277]*STATES[141]); resid[139] = RATES[29] - 0.00100000*((( CONSTANTS[270]*STATES[141] - ( CONSTANTS[278]*STATES[140])*STATES[29])+ CONSTANTS[264]*STATES[143]) - ( CONSTANTS[195]*(CONSTANTS[351] - STATES[143]))*STATES[29]); resid[140] = RATES[143] - 0.00100000*( ( CONSTANTS[195]*(CONSTANTS[351] - STATES[143]))*STATES[29] - CONSTANTS[264]*STATES[143]); resid[141] = RATES[126] - CONSTANTS[406]*(ALGEBRAIC[367]+ALGEBRAIC[171])+ALGEBRAIC[267]; resid[142] = RATES[144] - 0.00100000*(( ( CONSTANTS[211]*STATES[19])*ALGEBRAIC[169])/(CONSTANTS[207]+ALGEBRAIC[169]) - ( ( CONSTANTS[210]*CONSTANTS[66])*STATES[144])/(CONSTANTS[206]+STATES[144])); resid[143] = RATES[48] - ( CONSTANTS[407]*ALGEBRAIC[355]+ CONSTANTS[408]*ALGEBRAIC[59])+ALGEBRAIC[268]; resid[144] = RATES[49] - - ( CONSTANTS[409]*ALGEBRAIC[283]+ALGEBRAIC[59]); } void computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { } void computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[9] = CONSTANTS[393] - STATES[4]; ALGEBRAIC[10] = CONSTANTS[396] - STATES[5]; ALGEBRAIC[15] = (CONSTANTS[322] - STATES[12]) - STATES[11]; ALGEBRAIC[16] = (CONSTANTS[323] - STATES[14]) - STATES[13]; ALGEBRAIC[26] = (CONSTANTS[325] - STATES[18]) - STATES[17]; ALGEBRAIC[31] = (CONSTANTS[330] - STATES[26]) - STATES[25]; ALGEBRAIC[32] = (CONSTANTS[331] - STATES[28]) - STATES[27]; ALGEBRAIC[52] = ( CONSTANTS[236]*(STATES[43] - STATES[45]))/CONSTANTS[306]; ALGEBRAIC[53] = ( CONSTANTS[235]*(STATES[43] - STATES[44]))/CONSTANTS[306]; ALGEBRAIC[54] = ( CONSTANTS[235]*(STATES[43] - STATES[44]))/CONSTANTS[307]; ALGEBRAIC[55] = ( CONSTANTS[237]*(STATES[45] - STATES[44]))/CONSTANTS[307]; ALGEBRAIC[56] = ( CONSTANTS[236]*(STATES[43] - STATES[45]))/CONSTANTS[309]; ALGEBRAIC[57] = ( CONSTANTS[237]*(STATES[45] - STATES[44]))/CONSTANTS[309]; ALGEBRAIC[58] = (STATES[47] - STATES[46])/CONSTANTS[94]; ALGEBRAIC[59] = (STATES[49] - STATES[48])/CONSTANTS[94]; ALGEBRAIC[70] = 0.590000+( 0.800000*exp( 0.0520000*(STATES[50]+13.0000)))/(1.00000+exp( 0.132000*(STATES[50]+13.0000))); ALGEBRAIC[69] = 1.00000/( (1.00000+exp((13.5600 - STATES[50])/9.45000))*(1.00000+exp((25.0000+STATES[50])/- 5.00000))); ALGEBRAIC[71] = ALGEBRAIC[69]/ALGEBRAIC[70]; ALGEBRAIC[72] = (1.00000 - ALGEBRAIC[69])/ALGEBRAIC[70]; ALGEBRAIC[77] = 1.00000/(1.00000+exp((17.5000+STATES[50])/3.00000)); ALGEBRAIC[78] = (0.247400+ALGEBRAIC[77])/1.24740; ALGEBRAIC[75] = 1.00000/( ( 70.0000*(1.00000 - 0.500000*STATES[36]))*(1.00000+exp((STATES[50]+49.1000)/10.3490))); ALGEBRAIC[76] = 1.00000/(1.00000+exp((STATES[50]+0.213000)/- 10.8070)); ALGEBRAIC[79] = 1.00000/(ALGEBRAIC[75]+ALGEBRAIC[76]/26.5530); ALGEBRAIC[80] = ALGEBRAIC[78]/ALGEBRAIC[79]; ALGEBRAIC[81] = (1.00000 - ALGEBRAIC[78])/ALGEBRAIC[79]; ALGEBRAIC[82] = 0.0250000/(1.00000+exp((STATES[50]+58.0000)/5.00000)); ALGEBRAIC[83] = 0.200000/(1.00000+exp((STATES[50]+19.0000)/- 9.00000)); ALGEBRAIC[85] = 1.00000/(( 0.000600000*(STATES[50] - 1.73840))/(1.00000 - exp( - 0.136000*(STATES[50] - 1.73840))) - ( 0.000300000*(STATES[50]+38.3608))/(1.00000 - exp( 0.152200*(STATES[50]+38.3608)))); ALGEBRAIC[86] = 1.00000/(1.00000+exp((STATES[50]+10.0850)/- 4.25000)); ALGEBRAIC[88] = 0.00739900/(1.00000+exp(( CONSTANTS[263]*(STATES[50] - 0.0311960))/- 0.800190)); ALGEBRAIC[89] = 0.00569920/(1.00000+exp(( CONSTANTS[263]*(STATES[50] - 0.0415200))/1.34890)); ALGEBRAIC[90] = 0.0906540*exp( ( - 0.111570*STATES[50])*CONSTANTS[263]); ALGEBRAIC[91] = 0.00311240+(0.0283300 - 0.00311240)/(1.00000+exp(( CONSTANTS[263]*(STATES[50]+0.0516600))/1.55220)); ALGEBRAIC[92] = 0.388390/(1.00000+exp(( CONSTANTS[263]*(STATES[50]+0.150190))/- 0.606930)); ALGEBRAIC[93] = 0.000441980*exp( ( - 1.20220*STATES[50])*CONSTANTS[263]); ALGEBRAIC[94] = 0.000401730*exp( ( 0.000208730*STATES[50])*CONSTANTS[263]); ALGEBRAIC[95] = 0.00994150/(1.00000+exp(( CONSTANTS[263]*(STATES[50] - 0.0448090))/- 0.581720)); ALGEBRAIC[96] = 0.00332010/(1.00000+exp(( CONSTANTS[263]*(STATES[50] - 0.0942170))/0.953640)); ALGEBRAIC[97] = 0.0657000*exp( ( - 0.118990*STATES[50])*CONSTANTS[263]); ALGEBRAIC[98] = 0.000385250+(0.0124060 - 0.000385250)/(1.00000+exp(( CONSTANTS[263]*(STATES[50]+0.0641180))/0.779920)); ALGEBRAIC[99] = 0.563560/(1.00000+exp(( CONSTANTS[263]*(STATES[50]+0.179860))/- 0.583810)); ALGEBRAIC[100] = 0.000237300*exp( ( - 1.97420*STATES[50])*CONSTANTS[263]); ALGEBRAIC[101] = 0.000226520*exp( ( 0.000246900*STATES[50])*CONSTANTS[263]); ALGEBRAIC[103] = CONSTANTS[405] - STATES[103]; ALGEBRAIC[106] = (CONDVAR[13]>=0.00000 ? 0.00000 : 0.135000*exp(((87.0000+STATES[50])+CONSTANTS[130])/- 6.80000)); ALGEBRAIC[107] = (CONDVAR[14]>=0.00000 ? 1.00000/( 0.130000*(1.00000+exp(((STATES[50]+CONSTANTS[130])+27.4034)/- 11.1000))) : 3.56000*exp( 0.0790000*((STATES[50]+CONSTANTS[130])+7.00000))+ 310000.*exp( 0.350000*((STATES[50]+CONSTANTS[130])+7.00000))); ALGEBRAIC[108] = (CONDVAR[15]>=0.00000 ? 0.00000 : ( ( - 127140.*exp( 0.244400*(STATES[50]+CONSTANTS[130]))+ - 6.94800e-05*exp( - 0.0439100*(STATES[50]+CONSTANTS[130])))*((STATES[50]+CONSTANTS[130])+37.7800))/(1.00000+exp( 0.311000*((STATES[50]+CONSTANTS[130])+79.2300)))); ALGEBRAIC[109] = (CONDVAR[16]>=0.00000 ? ( 0.300000*exp( - 2.53500e-07*(STATES[50]+CONSTANTS[130])))/(1.00000+exp( - 0.100000*((STATES[50]+CONSTANTS[130])+32.0000))) : ( 0.121200*exp( - 0.0105200*(STATES[50]+CONSTANTS[130])))/(1.00000+exp( - 0.137800*((STATES[50]+CONSTANTS[130])+40.1400)))); ALGEBRAIC[110] = ( 0.320000*(STATES[50]+58.4729))/(1.00000 - exp( - 0.100000*(STATES[50]+58.4729))); ALGEBRAIC[111] = 0.0800000*exp((13.7299 - STATES[50])/11.0000); ALGEBRAIC[112] = (CONDVAR[17]>=0.00000 ? 0.00000 : 0.135000*exp((87.0000+STATES[50])/- 6.80000)); ALGEBRAIC[113] = (CONDVAR[18]>=0.00000 ? 1.00000/( 0.130000*(1.00000+exp((STATES[50]+27.4034)/- 11.1000))) : 3.56000*exp( 0.0790000*(STATES[50]+7.00000))+ 310000.*exp( 0.350000*(STATES[50]+7.00000))); ALGEBRAIC[114] = (CONDVAR[19]>=0.00000 ? 0.00000 : ( ( - 127140.*exp( 0.244400*STATES[50]) - 6.94800e-05*exp( - 0.0439100*STATES[50]))*(STATES[50]+37.7800))/(1.00000+exp( 0.311000*(STATES[50]+79.2300)))); ALGEBRAIC[115] = (CONDVAR[20]>=0.00000 ? ( 0.300000*exp( - 2.53500e-07*STATES[50]))/(1.00000+exp( - 0.100000*(STATES[50]+32.0000))) : ( 0.121200*exp( - 0.0105200*STATES[50]))/(1.00000+exp( - 0.137800*(STATES[50]+40.1400)))); ALGEBRAIC[116] = ( 0.320000*(STATES[50]+58.4729))/(1.00000 - exp( - 0.100000*(STATES[50]+58.4729))); ALGEBRAIC[117] = 0.0800000*exp((13.7299 - STATES[50])/11.0000); ALGEBRAIC[118] = (CONDVAR[21]>=0.00000 ? 0.00000 : 0.135000*exp(((87.0000+STATES[50])+CONSTANTS[132])/- 6.80000)); ALGEBRAIC[119] = (CONDVAR[22]>=0.00000 ? (1.00000/0.130000)/(1.00000+exp(((STATES[50]+CONSTANTS[132])+27.4034)/- 11.1000)) : 3.56000*exp( 0.0790000*((STATES[50]+CONSTANTS[132])+7.00000))+ 310000.*exp( 0.350000*((STATES[50]+CONSTANTS[132])+7.00000))); ALGEBRAIC[120] = (CONDVAR[23]>=0.00000 ? 0.00000 : ( ( - 127140.*exp( 0.244400*(STATES[50]+CONSTANTS[132])) - 6.94800e-05*exp( - 0.0439100*(STATES[50]+CONSTANTS[132])))*((STATES[50]+CONSTANTS[132])+37.7800))/(1.00000+exp( 0.311000*((STATES[50]+CONSTANTS[132])+79.2300)))); ALGEBRAIC[121] = (CONDVAR[24]>=0.00000 ? ( 0.300000*exp( - 2.53500e-07*(STATES[50]+CONSTANTS[132])))/(1.00000+exp( - 0.100000*((STATES[50]+CONSTANTS[132])+32.0000))) : ( 0.121200*exp( - 0.0105200*(STATES[50]+CONSTANTS[132])))/(1.00000+exp( - 0.137800*((STATES[50]+CONSTANTS[132])+40.1400)))); ALGEBRAIC[122] = ( 0.320000*((STATES[50]+CONSTANTS[131])+58.4729))/(1.00000 - exp( - 0.100000*((STATES[50]+CONSTANTS[131])+58.4729))); ALGEBRAIC[123] = 0.0800000*exp(((STATES[50]+CONSTANTS[131]) - 13.7299)/- 11.0000); ALGEBRAIC[133] = 1.00000/(1.00000+exp((STATES[50]+91.0000)/6.10000)); ALGEBRAIC[134] = ( 0.320000*(STATES[50]+47.1300))/(1.00000 - exp( - 0.100000*(STATES[50]+47.1300))); ALGEBRAIC[135] = 0.0800000*exp(STATES[50]/- 11.0000); ALGEBRAIC[140] = 1.00000/(1.00000+exp((STATES[50]+9.43700)/- 7.13300)); ALGEBRAIC[143] = ((1.00000/(1.00000+exp((STATES[50]+19.0000)/- 9.00000)))/0.500000)/9.79530; ALGEBRAIC[141] = 1.00000/(1.00000+exp((STATES[50]+58.0000)/5.00000)); ALGEBRAIC[146] = 0.0479600*ALGEBRAIC[141]; ALGEBRAIC[147] = 0.0214400*ALGEBRAIC[141]; ALGEBRAIC[142] = (1.00000/(1.00000+exp((STATES[50]+60.0000)/5.00000)))/250.000; ALGEBRAIC[148] = 2.46000*ALGEBRAIC[142]; ALGEBRAIC[149] = 0.560340*ALGEBRAIC[142]; ALGEBRAIC[163] = ((CONSTANTS[380] - STATES[134]) - STATES[133]) - STATES[132]; ALGEBRAIC[164] = (( ( - CONSTANTS[199]*ALGEBRAIC[163])*STATES[43]+ CONSTANTS[246]*STATES[134]) - ( CONSTANTS[200]*STATES[134])*STATES[43])+ CONSTANTS[247]*STATES[133]; ALGEBRAIC[165] = ((CONSTANTS[335] - STATES[138]) - STATES[137]) - STATES[136]; ALGEBRAIC[166] = (( ( - CONSTANTS[249]*ALGEBRAIC[165])*STATES[44]+ CONSTANTS[265]*STATES[138]) - ( CONSTANTS[250]*STATES[138])*STATES[44])+ CONSTANTS[266]*STATES[137]; ALGEBRAIC[167] = ((CONSTANTS[399] - STATES[142]) - STATES[141]) - STATES[140]; ALGEBRAIC[168] = (( ( - CONSTANTS[268]*ALGEBRAIC[167])*STATES[45]+ CONSTANTS[276]*STATES[142]) - ( CONSTANTS[269]*STATES[142])*STATES[45])+ CONSTANTS[277]*STATES[141]; ALGEBRAIC[169] = CONSTANTS[255] - STATES[144]; ALGEBRAIC[171] = (CONDVAR[28]<0.00000 ? 1.00000 : 0.00000)*CONSTANTS[256]; ALGEBRAIC[0] = pow( STATES[2]*1.00000, CONSTANTS[12]); ALGEBRAIC[5] = CONSTANTS[6]*(CONSTANTS[8]+ALGEBRAIC[0]/(CONSTANTS[3]+ALGEBRAIC[0])); ALGEBRAIC[172] = ( ALGEBRAIC[5]*CONSTANTS[324])*CONSTANTS[227]; ALGEBRAIC[1] = pow( STATES[3]*1.00000, CONSTANTS[12]); ALGEBRAIC[6] = CONSTANTS[6]*(CONSTANTS[8]+ALGEBRAIC[1]/(CONSTANTS[3]+ALGEBRAIC[1])); ALGEBRAIC[173] = ( ALGEBRAIC[6]*CONSTANTS[329])*CONSTANTS[227]; ALGEBRAIC[2] = pow( STATES[1]*1.00000, CONSTANTS[13]); ALGEBRAIC[4] = pow( STATES[1]*1.00000, CONSTANTS[14]); ALGEBRAIC[7] = ( CONSTANTS[7]*(CONSTANTS[9]+ALGEBRAIC[2]/(CONSTANTS[4]+ALGEBRAIC[2])))*(1.00000 - ( (1.00000 - ( CONSTANTS[15]*ALGEBRAIC[4])/(CONSTANTS[5]+ALGEBRAIC[4]))*STATES[0])/(CONSTANTS[2]+STATES[0])); ALGEBRAIC[174] = ( ALGEBRAIC[7]*CONSTANTS[320])*CONSTANTS[227]; ALGEBRAIC[3] = pow( STATES[2]*1.00000, CONSTANTS[13]); ALGEBRAIC[8] = CONSTANTS[7]*(CONSTANTS[9]+ALGEBRAIC[3]/(CONSTANTS[4]+ALGEBRAIC[3])); ALGEBRAIC[175] = ( ALGEBRAIC[8]*CONSTANTS[328])*CONSTANTS[227]; ALGEBRAIC[46] = CONSTANTS[274] - STATES[35]; ALGEBRAIC[47] = CONSTANTS[262] - STATES[35]*CONSTANTS[261]; ALGEBRAIC[48] = - CONSTANTS[230]*STATES[35]; ALGEBRAIC[187] = - ALGEBRAIC[46]/3.00000+ ( (2.00000/3.00000)* pow(( ALGEBRAIC[46]*ALGEBRAIC[46] - 3.00000*ALGEBRAIC[47]), 1.0 / 2))*cos(acos((( ( 9.00000*ALGEBRAIC[46])*ALGEBRAIC[47] - ( ( 2.00000*ALGEBRAIC[46])*ALGEBRAIC[46])*ALGEBRAIC[46]) - 27.0000*ALGEBRAIC[48])/( 2.00000*pow( ALGEBRAIC[46]*ALGEBRAIC[46] - 3.00000*ALGEBRAIC[47], 1.50000)))/3.00000); ALGEBRAIC[190] = ( CONSTANTS[79]*(1.00000 - STATES[42]))/(1.00000+CONSTANTS[81]/ALGEBRAIC[187]); ALGEBRAIC[155] = ( CONSTANTS[347]*CONSTANTS[185])/(1.00000+CONSTANTS[170]/STATES[43]); ALGEBRAIC[158] = ( (CONSTANTS[377]+ (CONSTANTS[174] - 1.00000)*STATES[127])*CONSTANTS[186])/(1.00000+CONSTANTS[171]/STATES[43]); ALGEBRAIC[160] = ( (CONSTANTS[370]+ (CONSTANTS[174] - 1.00000)*STATES[129])*CONSTANTS[187])/(1.00000+CONSTANTS[172]/STATES[43]); ALGEBRAIC[191] = (ALGEBRAIC[155]+ALGEBRAIC[158])+ALGEBRAIC[160]; ALGEBRAIC[156] = ( CONSTANTS[348]*CONSTANTS[185])/(1.00000+CONSTANTS[170]/STATES[44]); ALGEBRAIC[159] = ( (CONSTANTS[378]+ (CONSTANTS[174] - 1.00000)*STATES[128])*CONSTANTS[186])/(1.00000+CONSTANTS[171]/STATES[44]); ALGEBRAIC[161] = ( (CONSTANTS[371]+ (CONSTANTS[174] - 1.00000)*STATES[130])*CONSTANTS[187])/(1.00000+CONSTANTS[172]/STATES[44]); ALGEBRAIC[192] = (ALGEBRAIC[156]+ALGEBRAIC[159])+ALGEBRAIC[161]; ALGEBRAIC[157] = ( CONSTANTS[349]*CONSTANTS[185])/(1.00000+CONSTANTS[170]/STATES[45]); ALGEBRAIC[162] = ( (CONSTANTS[372]+ (CONSTANTS[174] - 1.00000)*STATES[131])*CONSTANTS[187])/(1.00000+CONSTANTS[172]/STATES[45]); ALGEBRAIC[193] = ALGEBRAIC[157]+ALGEBRAIC[162]; ALGEBRAIC[41] = CONSTANTS[274] - STATES[33]; ALGEBRAIC[42] = CONSTANTS[262] - STATES[33]*CONSTANTS[261]; ALGEBRAIC[43] = - CONSTANTS[230]*STATES[33]; ALGEBRAIC[185] = - ALGEBRAIC[41]/3.00000+ ( (2.00000/3.00000)* pow(( ALGEBRAIC[41]*ALGEBRAIC[41] - 3.00000*ALGEBRAIC[42]), 1.0 / 2))*cos(acos((( ( 9.00000*ALGEBRAIC[41])*ALGEBRAIC[42] - ( ( 2.00000*ALGEBRAIC[41])*ALGEBRAIC[41])*ALGEBRAIC[41]) - 27.0000*ALGEBRAIC[43])/( 2.00000*pow( ALGEBRAIC[41]*ALGEBRAIC[41] - 3.00000*ALGEBRAIC[42], 1.50000)))/3.00000); ALGEBRAIC[196] = (ALGEBRAIC[187] - ALGEBRAIC[185])/CONSTANTS[95]; ALGEBRAIC[44] = (CONSTANTS[72]+CONSTANTS[73]) - STATES[34]; ALGEBRAIC[45] = STATES[34]*CONSTANTS[73]; ALGEBRAIC[186] = ( pow(( ALGEBRAIC[44]*ALGEBRAIC[44]+ 4.00000*ALGEBRAIC[45]), 1.0 / 2) - ALGEBRAIC[44])/2.00000; ALGEBRAIC[197] = (STATES[30] - ALGEBRAIC[186])/CONSTANTS[96]; ALGEBRAIC[63] = 1.00000/( (1.00000+exp((4.79800+STATES[50])/- 7.56990))*(1.00000+exp((25.0000+STATES[50])/- 5.00000))); ALGEBRAIC[202] = ALGEBRAIC[63]/ALGEBRAIC[70]; ALGEBRAIC[203] = (1.00000 - ALGEBRAIC[63])/ALGEBRAIC[70]; ALGEBRAIC[66] = 1.00000/(1.00000+exp((29.9790+STATES[50])/3.17750)); ALGEBRAIC[67] = (0.100000+ALGEBRAIC[66])/1.10000; ALGEBRAIC[205] = 1.00000/(ALGEBRAIC[75]+ALGEBRAIC[76]/38.4940); ALGEBRAIC[208] = ALGEBRAIC[67]/ALGEBRAIC[205]; ALGEBRAIC[209] = (1.00000 - ALGEBRAIC[67])/ALGEBRAIC[205]; ALGEBRAIC[151] = - CONSTANTS[238]*log(CONSTANTS[98]/STATES[46]); ALGEBRAIC[216] = CONSTANTS[106]*(STATES[50] - ALGEBRAIC[151]); ALGEBRAIC[144] = 1.00000/(1.00000+exp((STATES[50] - 18.4099)/- 29.3814)); ALGEBRAIC[145] = 1.00000/(1.00000+exp((STATES[50]+100.000)/29.3814)); ALGEBRAIC[244] = 1.00000/(ALGEBRAIC[144]/1.20890+ 3.50000*ALGEBRAIC[145]); ALGEBRAIC[170] = (CONSTANTS[205] - CONSTANTS[208])+STATES[144]; ALGEBRAIC[247] = 0.500000*( pow((pow(ALGEBRAIC[170], 2.00000)+ ( 4.00000*CONSTANTS[205])*CONSTANTS[208]), 1.0 / 2) - ALGEBRAIC[170]); ALGEBRAIC[13] = ( ( CONSTANTS[36]*CONSTANTS[35])*CONSTANTS[319] - STATES[8]) - STATES[7]; ALGEBRAIC[23] = ( ALGEBRAIC[13]*(CONSTANTS[59]+CONSTANTS[51]) - STATES[14]*(CONSTANTS[51]+CONSTANTS[59]))+ ( CONSTANTS[49]*CONSTANTS[51])*(1.00000+CONSTANTS[59]/CONSTANTS[54]); ALGEBRAIC[24] = ( - STATES[14]*CONSTANTS[49])*CONSTANTS[51]; ALGEBRAIC[176] = (- ALGEBRAIC[23]+ pow(( ALGEBRAIC[23]*ALGEBRAIC[23] - ( 4.00000*CONSTANTS[222])*ALGEBRAIC[24]), 1.0 / 2))/( 2.00000*CONSTANTS[222]); ALGEBRAIC[248] = ALGEBRAIC[13]/(1.00000+ (ALGEBRAIC[176]/CONSTANTS[49])*(1.00000+CONSTANTS[59]/CONSTANTS[51])); ALGEBRAIC[249] = ( ALGEBRAIC[176]*ALGEBRAIC[248])/CONSTANTS[49]; ALGEBRAIC[25] = ( ( CONSTANTS[216]*CONSTANTS[295])*CONSTANTS[321] - STATES[2]) - STATES[15]; ALGEBRAIC[27] = ( ALGEBRAIC[25]*(CONSTANTS[47]+CONSTANTS[59]) - ALGEBRAIC[26]*(CONSTANTS[47]+CONSTANTS[59]))+ ( CONSTANTS[46]*CONSTANTS[47])*(1.00000+CONSTANTS[59]/CONSTANTS[48]); ALGEBRAIC[28] = ( - ALGEBRAIC[26]*CONSTANTS[47])*CONSTANTS[46]; ALGEBRAIC[180] = (- ALGEBRAIC[27]+ pow(( ALGEBRAIC[27]*ALGEBRAIC[27] - ( 4.00000*CONSTANTS[224])*ALGEBRAIC[28]), 1.0 / 2))/( 2.00000*CONSTANTS[224]); ALGEBRAIC[252] = ALGEBRAIC[25]/(1.00000+ (ALGEBRAIC[180]/CONSTANTS[46])*(1.00000+CONSTANTS[59]/CONSTANTS[47])); ALGEBRAIC[253] = ( ( CONSTANTS[59]*ALGEBRAIC[180])*ALGEBRAIC[252])/( CONSTANTS[46]*CONSTANTS[47]); ALGEBRAIC[254] = ( CONSTANTS[59]*ALGEBRAIC[180])/CONSTANTS[48]; ALGEBRAIC[255] = ( ALGEBRAIC[252]*ALGEBRAIC[180])/CONSTANTS[46]; ALGEBRAIC[29] = ( ( CONSTANTS[215]*CONSTANTS[35])*CONSTANTS[326] - STATES[21]) - STATES[20]; ALGEBRAIC[39] = ( ALGEBRAIC[29]*(CONSTANTS[59]+CONSTANTS[51]) - STATES[28]*(CONSTANTS[51]+CONSTANTS[59]))+ ( CONSTANTS[49]*CONSTANTS[51])*(1.00000+CONSTANTS[59]/CONSTANTS[54]); ALGEBRAIC[40] = ( - STATES[28]*CONSTANTS[49])*CONSTANTS[51]; ALGEBRAIC[181] = (- ALGEBRAIC[39]+ pow(( ALGEBRAIC[39]*ALGEBRAIC[39] - ( 4.00000*CONSTANTS[225])*ALGEBRAIC[40]), 1.0 / 2))/( 2.00000*CONSTANTS[225]); ALGEBRAIC[256] = ALGEBRAIC[29]/(1.00000+ (ALGEBRAIC[181]/CONSTANTS[49])*(1.00000+CONSTANTS[59]/CONSTANTS[51])); ALGEBRAIC[257] = ( ALGEBRAIC[181]*ALGEBRAIC[256])/CONSTANTS[49]; ALGEBRAIC[263] = (CONSTANTS[28]/CONSTANTS[319]+CONSTANTS[82]/CONSTANTS[326])+ALGEBRAIC[247]/CONSTANTS[321]; ALGEBRAIC[264] = ALGEBRAIC[190]+STATES[42]; ALGEBRAIC[265] = ALGEBRAIC[264]/(ALGEBRAIC[264]+CONSTANTS[80]); ALGEBRAIC[266] = 1.00000/(1.00000+pow(CONSTANTS[80]/ALGEBRAIC[264], 2.00000)); ALGEBRAIC[152] = CONSTANTS[238]*log(CONSTANTS[99]/STATES[126]); ALGEBRAIC[194] = ALGEBRAIC[152] - ALGEBRAIC[151]; ALGEBRAIC[267] = ( CONSTANTS[91]*ALGEBRAIC[194])/(ALGEBRAIC[194]+CONSTANTS[92]); ALGEBRAIC[154] = CONSTANTS[238]*log(CONSTANTS[100]/STATES[48]); ALGEBRAIC[195] = pow(ALGEBRAIC[154] - ALGEBRAIC[151], 4.00000); ALGEBRAIC[268] = ( CONSTANTS[93]*ALGEBRAIC[195])/(ALGEBRAIC[195]+CONSTANTS[346]); ALGEBRAIC[11] = (STATES[4]+CONSTANTS[392])/CONSTANTS[17]; ALGEBRAIC[61] = (ALGEBRAIC[11] - CONSTANTS[397])/(0.927300 - CONSTANTS[397]); ALGEBRAIC[199] = (CONDVAR[5]<0.00000 ? 0.00000 : ALGEBRAIC[61]); ALGEBRAIC[62] = 0.000257900*(1.00000+ 0.100000*STATES[36]); ALGEBRAIC[65] = exp( ( 2.00000*STATES[50])*CONSTANTS[263]); ALGEBRAIC[200] = ( ( ( ( ALGEBRAIC[62]*4.00000)*STATES[50])*CONSTANTS[275])*( ALGEBRAIC[187]*ALGEBRAIC[65] - 0.341000*CONSTANTS[97]))/(ALGEBRAIC[65] - 1.00000); ALGEBRAIC[201] = ALGEBRAIC[200]*(STATES[55]+STATES[58]); ALGEBRAIC[68] = 0.000155200*(1.00000+ 0.400000*STATES[36]); ALGEBRAIC[74] = exp( ( 2.00000*STATES[50])*CONSTANTS[263]); ALGEBRAIC[210] = ( ( ( ( ALGEBRAIC[68]*4.00000)*STATES[50])*CONSTANTS[275])*( ALGEBRAIC[187]*ALGEBRAIC[74] - 0.341000*CONSTANTS[97]))/(ALGEBRAIC[74] - 1.00000); ALGEBRAIC[211] = ALGEBRAIC[210]*(STATES[63]+STATES[66]); ALGEBRAIC[269] = (1.00000 - ALGEBRAIC[199])*ALGEBRAIC[211]+ ALGEBRAIC[199]*ALGEBRAIC[201]; ALGEBRAIC[207] = 1.00000+pow(0.00200000/ALGEBRAIC[187], 4.00000); ALGEBRAIC[270] = 6.00000/ALGEBRAIC[207]; ALGEBRAIC[215] = 1.00000+pow(0.00110000/ALGEBRAIC[187], 4.00000); ALGEBRAIC[273] = 14.9186/ALGEBRAIC[215]; ALGEBRAIC[230] = 1.00000+pow(CONSTANTS[134]/ALGEBRAIC[187], 2.00000); ALGEBRAIC[128] = exp( ( (CONSTANTS[139] - 1.00000)*STATES[50])*CONSTANTS[263]); ALGEBRAIC[129] = 1.00000+ CONSTANTS[140]*ALGEBRAIC[128]; ALGEBRAIC[126] = pow(STATES[49], 3.00000); ALGEBRAIC[231] = ( CONSTANTS[136]*ALGEBRAIC[126]+ CONSTANTS[364]*ALGEBRAIC[187])+ ( CONSTANTS[362]*CONSTANTS[97])*(1.00000+ALGEBRAIC[187]/CONSTANTS[135]); ALGEBRAIC[232] = ( ( CONSTANTS[135]*CONSTANTS[366])*(1.00000+ALGEBRAIC[126]/CONSTANTS[362])+ ALGEBRAIC[126]*CONSTANTS[97])+ CONSTANTS[366]*ALGEBRAIC[187]; ALGEBRAIC[127] = exp( ( CONSTANTS[139]*STATES[50])*CONSTANTS[263]); ALGEBRAIC[233] = ( 0.200000*CONSTANTS[141])*( ( ALGEBRAIC[126]*CONSTANTS[97])*ALGEBRAIC[127] - ( CONSTANTS[366]*ALGEBRAIC[187])*ALGEBRAIC[128]); ALGEBRAIC[283] = ALGEBRAIC[233]/( ( ALGEBRAIC[230]*ALGEBRAIC[129])*(ALGEBRAIC[231]+ALGEBRAIC[232])); ALGEBRAIC[136] = CONSTANTS[243]*(1.00000+ 2.00000*STATES[41]); ALGEBRAIC[243] = 1.00000+0.0123000/ALGEBRAIC[186]; ALGEBRAIC[289] = ALGEBRAIC[136]/ALGEBRAIC[243]; ALGEBRAIC[137] = CONSTANTS[243]*(1.00000+ 0.00000*STATES[41]); ALGEBRAIC[290] = ( 0.535700*ALGEBRAIC[137])/ALGEBRAIC[243]; ALGEBRAIC[299] = ( ALGEBRAIC[249]*CONSTANTS[59])/CONSTANTS[51]; ALGEBRAIC[303] = (CONSTANTS[59]/CONSTANTS[51])*ALGEBRAIC[257]; ALGEBRAIC[49] = (STATES[31] - 0.673519)/(0.999180 - 0.673519); ALGEBRAIC[50] = (CONDVAR[4]<0.00000 ? 0.00000 : ALGEBRAIC[49]); ALGEBRAIC[51] = (1.00000 - ALGEBRAIC[50])*CONSTANTS[77]+ ALGEBRAIC[50]*CONSTANTS[229]; ALGEBRAIC[189] = ALGEBRAIC[51]+CONSTANTS[75]; ALGEBRAIC[260] = ((ALGEBRAIC[189] - STATES[32])+CONSTANTS[71])+CONSTANTS[78]; ALGEBRAIC[188] = ALGEBRAIC[51]*CONSTANTS[75]; ALGEBRAIC[261] = ((ALGEBRAIC[188] - STATES[32]*ALGEBRAIC[189])+ CONSTANTS[78]*CONSTANTS[75])+ CONSTANTS[71]*ALGEBRAIC[51]; ALGEBRAIC[262] = - ALGEBRAIC[188]*STATES[32]; ALGEBRAIC[306] = - ALGEBRAIC[260]/3.00000+ ( (2.00000/3.00000)* pow(( ALGEBRAIC[260]*ALGEBRAIC[260] - 3.00000*ALGEBRAIC[261]), 1.0 / 2))*cos(acos((( ( 9.00000*ALGEBRAIC[260])*ALGEBRAIC[261] - ( ( 2.00000*ALGEBRAIC[260])*ALGEBRAIC[260])*ALGEBRAIC[260]) - 27.0000*ALGEBRAIC[262])/( 2.00000*pow( ALGEBRAIC[260]*ALGEBRAIC[260] - 3.00000*ALGEBRAIC[261], 1.50000)))/3.00000); ALGEBRAIC[307] = (ALGEBRAIC[187] - ALGEBRAIC[306])/CONSTANTS[94]; ALGEBRAIC[60] = ( 2.00000*STATES[50])*CONSTANTS[263]; ALGEBRAIC[198] = exp(ALGEBRAIC[60]); ALGEBRAIC[308] = ( ( ( ( CONSTANTS[101]*2.00000)*CONSTANTS[87])*ALGEBRAIC[60])*( ALGEBRAIC[306]*ALGEBRAIC[198] - 0.341000*CONSTANTS[97]))/(ALGEBRAIC[198] - 1.00000); ALGEBRAIC[204] = (0.000100000+ALGEBRAIC[66])/1.00010; ALGEBRAIC[64] = 0.100000*STATES[36]; ALGEBRAIC[206] = 1.00000+pow(0.0100000/ALGEBRAIC[187], 10.0000); ALGEBRAIC[272] = (32.5000 - (18.0000 - ALGEBRAIC[64])/ALGEBRAIC[207]) - 10.0000/ALGEBRAIC[206]; ALGEBRAIC[309] = 1.00000/(ALGEBRAIC[75]+ALGEBRAIC[76]/ALGEBRAIC[272]); ALGEBRAIC[310] = ALGEBRAIC[204]/ALGEBRAIC[309]; ALGEBRAIC[311] = (1.00000 - ALGEBRAIC[204])/ALGEBRAIC[309]; ALGEBRAIC[213] = (0.00100000+ALGEBRAIC[77])/1.00100; ALGEBRAIC[73] = 5.00000*STATES[36]; ALGEBRAIC[214] = 1.00000+pow(0.0120000/ALGEBRAIC[187], 10.0000); ALGEBRAIC[274] = (13.8250 - (6.38360 - ALGEBRAIC[73])/ALGEBRAIC[215]) - 3.36960/ALGEBRAIC[214]; ALGEBRAIC[312] = 1.00000/(ALGEBRAIC[75]+ALGEBRAIC[76]/ALGEBRAIC[274]); ALGEBRAIC[313] = ALGEBRAIC[213]/ALGEBRAIC[312]; ALGEBRAIC[314] = (1.00000 - ALGEBRAIC[213])/ALGEBRAIC[312]; ALGEBRAIC[326] = ( CONSTANTS[151]*ALGEBRAIC[306])/(CONSTANTS[152]+ALGEBRAIC[306]); ALGEBRAIC[12] = (STATES[5]+CONSTANTS[395])/CONSTANTS[30]; ALGEBRAIC[138] = (ALGEBRAIC[12] - CONSTANTS[398])/(0.958600 - CONSTANTS[398]); ALGEBRAIC[242] = (CONDVAR[26]<0.00000 ? 0.00000 : ALGEBRAIC[138]); ALGEBRAIC[288] = (1.00000 - ALGEBRAIC[242])*STATES[118]+ ALGEBRAIC[242]*STATES[119]; ALGEBRAIC[238] = ( CONSTANTS[155]*exp(ALGEBRAIC[186]/CONSTANTS[153]))*(ALGEBRAIC[186] - ALGEBRAIC[187]); ALGEBRAIC[239] = ( CONSTANTS[156]*exp(ALGEBRAIC[186]/CONSTANTS[154]))*(ALGEBRAIC[186] - ALGEBRAIC[187]); ALGEBRAIC[287] = (1.00000 - ALGEBRAIC[242])*ALGEBRAIC[238]+ ALGEBRAIC[242]*ALGEBRAIC[239]; ALGEBRAIC[327] = ALGEBRAIC[287]+ALGEBRAIC[288]; ALGEBRAIC[240] = 0.112500*ALGEBRAIC[136]; ALGEBRAIC[291] = ( ALGEBRAIC[269]*1.00000)/(1.00000+pow(1.00000/ALGEBRAIC[186], 8.00000)); ALGEBRAIC[328] = ALGEBRAIC[240]*ALGEBRAIC[291]; ALGEBRAIC[241] = 0.112500*ALGEBRAIC[137]; ALGEBRAIC[329] = ( 1.99250*ALGEBRAIC[241])*ALGEBRAIC[291]; ALGEBRAIC[14] = ( ( CONSTANTS[37]*CONSTANTS[295])*CONSTANTS[319] - STATES[1]) - STATES[9]; ALGEBRAIC[17] = (((CONSTANTS[258]+CONSTANTS[271])/CONSTANTS[223]+ALGEBRAIC[15])+ALGEBRAIC[16]) - ALGEBRAIC[14]; ALGEBRAIC[18] = (( CONSTANTS[271]*(ALGEBRAIC[15] - ALGEBRAIC[14])+ CONSTANTS[258]*(ALGEBRAIC[16] - ALGEBRAIC[14]))+CONSTANTS[279])/CONSTANTS[223]; ALGEBRAIC[19] = ( ALGEBRAIC[14]*CONSTANTS[279])/CONSTANTS[223]; ALGEBRAIC[20] = ((( (- ALGEBRAIC[19]/27.0000)*pow(ALGEBRAIC[17], 3.00000) - ( ( ( ALGEBRAIC[17]*ALGEBRAIC[17])*ALGEBRAIC[18])*ALGEBRAIC[18])/108.000)+( ( ALGEBRAIC[17]*ALGEBRAIC[18])*ALGEBRAIC[19])/6.00000)+pow(ALGEBRAIC[18], 3.00000)/27.0000)+( ALGEBRAIC[19]*ALGEBRAIC[19])/4.00000; ALGEBRAIC[21] = (CONDVAR[0]<0.00000 ? pow(- ALGEBRAIC[20], 1.0 / 2) : 0.00000); ALGEBRAIC[22] = (((CONDVAR[1]>0.00000 ? pow(ALGEBRAIC[20], 1.0 / 2) : 0.00000)+ALGEBRAIC[19]/2.00000)+( ALGEBRAIC[17]*ALGEBRAIC[18])/6.00000) - pow(ALGEBRAIC[17], 3.00000)/27.0000; ALGEBRAIC[177] = atan(ALGEBRAIC[21]/ALGEBRAIC[22])/3.00000; ALGEBRAIC[178] = pow( ALGEBRAIC[22]*ALGEBRAIC[22]+ ALGEBRAIC[21]*ALGEBRAIC[21], 1.00000/6.00000); ALGEBRAIC[179] = (ALGEBRAIC[18]/3.00000 - ( ALGEBRAIC[17]*ALGEBRAIC[17])/9.00000)/( ALGEBRAIC[178]*ALGEBRAIC[178]); ALGEBRAIC[250] = ( ALGEBRAIC[178]* sin(ALGEBRAIC[177]))*(1.00000+ALGEBRAIC[179]); ALGEBRAIC[251] = ( ALGEBRAIC[178]*cos(ALGEBRAIC[177]))*(1.00000 - ALGEBRAIC[179]) - ALGEBRAIC[17]/3.00000; ALGEBRAIC[298] = pow(( ALGEBRAIC[251]*ALGEBRAIC[251]+ ALGEBRAIC[250]*ALGEBRAIC[250]), 1.0 / 2); ALGEBRAIC[300] = ALGEBRAIC[15]/((1.00000+CONSTANTS[59]/CONSTANTS[48])+( ALGEBRAIC[298]*(CONSTANTS[47]+CONSTANTS[59]))/( CONSTANTS[46]*CONSTANTS[47])); ALGEBRAIC[334] = ( CONSTANTS[59]*ALGEBRAIC[300])/CONSTANTS[48]; ALGEBRAIC[335] = ( ( CONSTANTS[59]*ALGEBRAIC[300])*ALGEBRAIC[298])/( CONSTANTS[46]*CONSTANTS[47]); ALGEBRAIC[301] = ALGEBRAIC[16]/((1.00000+CONSTANTS[59]/CONSTANTS[53])+( ALGEBRAIC[298]*(CONSTANTS[52]+CONSTANTS[59]))/( CONSTANTS[50]*CONSTANTS[52])); ALGEBRAIC[336] = ( CONSTANTS[59]*ALGEBRAIC[301])/CONSTANTS[53]; ALGEBRAIC[337] = ( ( CONSTANTS[59]*ALGEBRAIC[301])*ALGEBRAIC[298])/( CONSTANTS[50]*CONSTANTS[52]); ALGEBRAIC[30] = ( ( CONSTANTS[38]*CONSTANTS[295])*CONSTANTS[326] - STATES[3]) - STATES[23]; ALGEBRAIC[33] = (((CONSTANTS[259]+CONSTANTS[272])/CONSTANTS[226]+ALGEBRAIC[31])+ALGEBRAIC[32]) - ALGEBRAIC[30]; ALGEBRAIC[34] = (( CONSTANTS[272]*(ALGEBRAIC[31] - ALGEBRAIC[30])+ CONSTANTS[259]*(ALGEBRAIC[32] - ALGEBRAIC[30]))+CONSTANTS[280])/CONSTANTS[226]; ALGEBRAIC[35] = ( ALGEBRAIC[30]*CONSTANTS[280])/CONSTANTS[226]; ALGEBRAIC[36] = ((( (- ALGEBRAIC[35]/27.0000)*pow(ALGEBRAIC[33], 3.00000) - ( ( ( ALGEBRAIC[33]*ALGEBRAIC[33])*ALGEBRAIC[34])*ALGEBRAIC[34])/108.000)+( ( ALGEBRAIC[33]*ALGEBRAIC[34])*ALGEBRAIC[35])/6.00000)+pow(ALGEBRAIC[34], 3.00000)/27.0000)+( ALGEBRAIC[35]*ALGEBRAIC[35])/4.00000; ALGEBRAIC[37] = (CONDVAR[2]<0.00000 ? pow(- ALGEBRAIC[36], 1.0 / 2) : 0.00000); ALGEBRAIC[38] = (((CONDVAR[3]>0.00000 ? pow(ALGEBRAIC[36], 1.0 / 2) : 0.00000)+ALGEBRAIC[35]/2.00000)+( ALGEBRAIC[33]*ALGEBRAIC[34])/6.00000) - pow(ALGEBRAIC[33], 3.00000)/27.0000; ALGEBRAIC[182] = atan(ALGEBRAIC[37]/ALGEBRAIC[38])/3.00000; ALGEBRAIC[183] = pow( ALGEBRAIC[38]*ALGEBRAIC[38]+ ALGEBRAIC[37]*ALGEBRAIC[37], 1.00000/6.00000); ALGEBRAIC[184] = (ALGEBRAIC[34]/3.00000 - ( ALGEBRAIC[33]*ALGEBRAIC[33])/9.00000)/( ALGEBRAIC[183]*ALGEBRAIC[183]); ALGEBRAIC[258] = ( ALGEBRAIC[183]* sin(ALGEBRAIC[182]))*(1.00000+ALGEBRAIC[184]); ALGEBRAIC[259] = ( ALGEBRAIC[183]*cos(ALGEBRAIC[182]))*(1.00000 - ALGEBRAIC[184]) - ALGEBRAIC[33]/3.00000; ALGEBRAIC[302] = pow(( ALGEBRAIC[259]*ALGEBRAIC[259]+ ALGEBRAIC[258]*ALGEBRAIC[258]), 1.0 / 2); ALGEBRAIC[304] = ALGEBRAIC[31]/((1.00000+CONSTANTS[59]/CONSTANTS[48])+( ALGEBRAIC[302]*(CONSTANTS[47]+CONSTANTS[59]))/( CONSTANTS[46]*CONSTANTS[47])); ALGEBRAIC[340] = ( CONSTANTS[59]*ALGEBRAIC[304])/CONSTANTS[48]; ALGEBRAIC[341] = ( ( CONSTANTS[59]*ALGEBRAIC[304])*ALGEBRAIC[302])/( CONSTANTS[46]*CONSTANTS[47]); ALGEBRAIC[305] = ALGEBRAIC[32]/((1.00000+CONSTANTS[59]/CONSTANTS[53])+( ALGEBRAIC[302]*(CONSTANTS[52]+CONSTANTS[59]))/( CONSTANTS[50]*CONSTANTS[52])); ALGEBRAIC[342] = ( CONSTANTS[59]*ALGEBRAIC[305])/CONSTANTS[53]; ALGEBRAIC[343] = ( ( CONSTANTS[59]*ALGEBRAIC[305])*ALGEBRAIC[302])/( CONSTANTS[50]*CONSTANTS[52]); ALGEBRAIC[84] = exp( STATES[50]*CONSTANTS[263]); ALGEBRAIC[217] = ( ( ( CONSTANTS[107]*STATES[50])*CONSTANTS[275])*(STATES[46] - CONSTANTS[98]*ALGEBRAIC[84]))/(1.00000 - ALGEBRAIC[84]); ALGEBRAIC[315] = 1.00000 - 1.00000/(1.00000+pow(ALGEBRAIC[288]/CONSTANTS[108], 2.00000)); ALGEBRAIC[348] = ( ALGEBRAIC[217]*ALGEBRAIC[315])*STATES[67]; ALGEBRAIC[321] = 1.00000+pow(CONSTANTS[134]/ALGEBRAIC[306], 2.00000); ALGEBRAIC[130] = 1.00000+ CONSTANTS[140]*ALGEBRAIC[128]; ALGEBRAIC[125] = pow(STATES[48], 3.00000); ALGEBRAIC[322] = ( CONSTANTS[136]*ALGEBRAIC[125]+ CONSTANTS[364]*ALGEBRAIC[306])+ ( CONSTANTS[362]*CONSTANTS[97])*(1.00000+ALGEBRAIC[306]/CONSTANTS[135]); ALGEBRAIC[323] = ( ( CONSTANTS[135]*CONSTANTS[366])*(1.00000+ALGEBRAIC[125]/CONSTANTS[362])+ ALGEBRAIC[125]*CONSTANTS[97])+ CONSTANTS[366]*ALGEBRAIC[306]; ALGEBRAIC[324] = ( 0.800000*CONSTANTS[141])*( ( ALGEBRAIC[125]*CONSTANTS[97])*ALGEBRAIC[127] - ( CONSTANTS[366]*ALGEBRAIC[306])*ALGEBRAIC[128]); ALGEBRAIC[352] = ALGEBRAIC[324]/( ( ALGEBRAIC[321]*ALGEBRAIC[130])*(ALGEBRAIC[322]+ALGEBRAIC[323])); ALGEBRAIC[224] = ( ( ( CONSTANTS[241]*pow(STATES[114], 3.00000))*STATES[106])*STATES[107])*(STATES[50] - ALGEBRAIC[154]); ALGEBRAIC[225] = ( ( ( CONSTANTS[241]*pow(STATES[108], 3.00000))*STATES[106])*STATES[107])*(STATES[50] - ALGEBRAIC[154]); ALGEBRAIC[226] = ( ( ( CONSTANTS[241]*pow(STATES[111], 3.00000))*STATES[109])*STATES[110])*(STATES[50] - ALGEBRAIC[154]); ALGEBRAIC[227] = ( ( ( ( CONSTANTS[241]*pow(STATES[114], 3.00000))*STATES[112])*STATES[113])*(STATES[50] - ALGEBRAIC[154]))*1.25000; ALGEBRAIC[105] = (STATES[105] - 0.239480)/(0.950143 - 0.239480); ALGEBRAIC[228] = (CONDVAR[12]<0.00000 ? 0.00000 : ALGEBRAIC[105]); ALGEBRAIC[279] = ALGEBRAIC[228]*STATES[38]; ALGEBRAIC[280] = STATES[38] - ALGEBRAIC[279]; ALGEBRAIC[281] = ALGEBRAIC[228] - ALGEBRAIC[279]; ALGEBRAIC[320] = ((1.00000 - ALGEBRAIC[281]) - ALGEBRAIC[280]) - ALGEBRAIC[279]; ALGEBRAIC[351] = (( ALGEBRAIC[320]*ALGEBRAIC[226]+ ALGEBRAIC[281]*ALGEBRAIC[227])+ ALGEBRAIC[280]*ALGEBRAIC[225])+ ALGEBRAIC[279]*ALGEBRAIC[224]; ALGEBRAIC[124] = STATES[50]*CONSTANTS[263]; ALGEBRAIC[229] = exp(ALGEBRAIC[124]); ALGEBRAIC[282] = ( ( ( CONSTANTS[133]*CONSTANTS[87])*ALGEBRAIC[124])*( STATES[48]*ALGEBRAIC[229] - CONSTANTS[100]))/(ALGEBRAIC[229] - 1.00000); ALGEBRAIC[132] = ( CONSTANTS[144]*CONSTANTS[242])/(1.00000+exp( - (STATES[50]+92.0000)*CONSTANTS[263])); ALGEBRAIC[234] = ALGEBRAIC[132]*pow(STATES[48]/(STATES[48]+CONSTANTS[147]), 3.00000); ALGEBRAIC[235] = ALGEBRAIC[132]*pow(STATES[48]/(STATES[48]+CONSTANTS[148]), 3.00000); ALGEBRAIC[131] = (STATES[115] - 0.126345)/(0.998014 - 0.126345); ALGEBRAIC[236] = (CONDVAR[25]<0.00000 ? 0.00000 : ALGEBRAIC[131]); ALGEBRAIC[284] = (1.00000 - ALGEBRAIC[236])*ALGEBRAIC[234]+ ALGEBRAIC[236]*ALGEBRAIC[235]; ALGEBRAIC[237] = ( pow(STATES[117], 3.00000)*STATES[116])*(STATES[50] - ALGEBRAIC[154]); ALGEBRAIC[285] = 0.0160000*ALGEBRAIC[237]; ALGEBRAIC[286] = 0.00650000*ALGEBRAIC[237]; ALGEBRAIC[325] = (1.00000 - STATES[38])*ALGEBRAIC[286]+ STATES[38]*ALGEBRAIC[285]; ALGEBRAIC[355] = (((ALGEBRAIC[351]+ALGEBRAIC[282])+ALGEBRAIC[325])+ ALGEBRAIC[284]*3.00000)+ ALGEBRAIC[352]*3.00000; ALGEBRAIC[357] = ALGEBRAIC[335]+ CONSTANTS[60]*ALGEBRAIC[337]; ALGEBRAIC[338] = ( ALGEBRAIC[300]*ALGEBRAIC[298])/CONSTANTS[46]; ALGEBRAIC[339] = ( ALGEBRAIC[301]*ALGEBRAIC[298])/CONSTANTS[50]; ALGEBRAIC[358] = ALGEBRAIC[338]+ CONSTANTS[60]*ALGEBRAIC[339]; ALGEBRAIC[359] = ALGEBRAIC[341]+ CONSTANTS[63]*ALGEBRAIC[343]; ALGEBRAIC[344] = ( ALGEBRAIC[304]*ALGEBRAIC[302])/CONSTANTS[46]; ALGEBRAIC[345] = ( ALGEBRAIC[305]*ALGEBRAIC[302])/CONSTANTS[50]; ALGEBRAIC[360] = ALGEBRAIC[344]+ CONSTANTS[63]*ALGEBRAIC[345]; ALGEBRAIC[346] = (CONDVAR[6]<0.00000 ? 1.00000e-12 : ALGEBRAIC[310]); ALGEBRAIC[271] = (CONDVAR[7]<0.00000 ? 1.00000e-12 : ALGEBRAIC[209]); ALGEBRAIC[363] = ( CONSTANTS[103]*( ( ALGEBRAIC[208]*ALGEBRAIC[311])*ALGEBRAIC[270]))/( ( ALGEBRAIC[271]*ALGEBRAIC[346])*CONSTANTS[102]); ALGEBRAIC[347] = (CONDVAR[8]<0.00000 ? 1.00000e-12 : ALGEBRAIC[313]); ALGEBRAIC[212] = (CONDVAR[9]<0.00000 ? 1.00000e-12 : ALGEBRAIC[81]); ALGEBRAIC[364] = ( CONSTANTS[105]*( ( ALGEBRAIC[80]*ALGEBRAIC[314])*ALGEBRAIC[273]))/( ( ALGEBRAIC[212]*ALGEBRAIC[347])*CONSTANTS[104]); ALGEBRAIC[294] = 1.00000/(1.00000+pow(0.0300000/ALGEBRAIC[264], 2.00000)); ALGEBRAIC[331] = (1.00000 - ALGEBRAIC[294])*CONSTANTS[161]+ ALGEBRAIC[294]*CONSTANTS[379]; ALGEBRAIC[333] = ( ALGEBRAIC[331]*STATES[30])/CONSTANTS[164]; ALGEBRAIC[150] = (STATES[125] - 0.659100)/(0.994500 - 0.659100); ALGEBRAIC[246] = (CONDVAR[27]<0.00000 ? 0.00000 : ALGEBRAIC[150]); ALGEBRAIC[295] = ALGEBRAIC[246]*STATES[40]; ALGEBRAIC[296] = STATES[40] - ALGEBRAIC[295]; ALGEBRAIC[297] = ALGEBRAIC[246] - ALGEBRAIC[295]; ALGEBRAIC[332] = ((1.00000 - ALGEBRAIC[297]) - ALGEBRAIC[296]) - ALGEBRAIC[295]; ALGEBRAIC[353] = (( ALGEBRAIC[332]*CONSTANTS[159]+ ALGEBRAIC[297]*CONSTANTS[374])+ ALGEBRAIC[296]*CONSTANTS[369])+ ALGEBRAIC[295]*CONSTANTS[376]; ALGEBRAIC[354] = ( ALGEBRAIC[331]*ALGEBRAIC[306])/(ALGEBRAIC[306]+ALGEBRAIC[353]); ALGEBRAIC[366] = ALGEBRAIC[354] - ALGEBRAIC[333]; ALGEBRAIC[218] = STATES[50] - ALGEBRAIC[152]; ALGEBRAIC[275] = 1.02000/(1.00000+exp( 0.238500*(ALGEBRAIC[218] - 59.2150))); ALGEBRAIC[276] = ( 0.491240*exp( 0.0803200*(ALGEBRAIC[218]+5.47600))+exp( 0.0617500*(ALGEBRAIC[218] - 594.310)))/(1.00000+exp( - 0.514300*(ALGEBRAIC[218]+4.75300))); ALGEBRAIC[316] = ( CONSTANTS[239]*(ALGEBRAIC[275]/(ALGEBRAIC[275]+ALGEBRAIC[276])))*ALGEBRAIC[218]; ALGEBRAIC[349] = ALGEBRAIC[316]*1.20000; ALGEBRAIC[365] = (1.00000 - STATES[37])*ALGEBRAIC[316]+ STATES[37]*ALGEBRAIC[349]; ALGEBRAIC[87] = 1.00000/(1.00000+exp((STATES[50]+10.0000)/15.4000)); ALGEBRAIC[219] = ( ( CONSTANTS[240]*STATES[68])*ALGEBRAIC[87])*(STATES[50] - ALGEBRAIC[152]); ALGEBRAIC[153] = CONSTANTS[238]*log((CONSTANTS[99]+ CONSTANTS[165]*CONSTANTS[100])/(STATES[126]+ CONSTANTS[165]*STATES[48])); ALGEBRAIC[317] = 0.195610*(1.00000+0.600000/(1.00000+pow(3.80000e-05/ALGEBRAIC[306], 1.40000))); ALGEBRAIC[318] = ( ALGEBRAIC[317]*(STATES[69]+STATES[70]))*(STATES[50] - ALGEBRAIC[153]); ALGEBRAIC[319] = ( ALGEBRAIC[317]*(STATES[71]+STATES[72]))*(STATES[50] - ALGEBRAIC[153]); ALGEBRAIC[102] = (STATES[103]+CONSTANTS[403])/CONSTANTS[110]; ALGEBRAIC[220] = (ALGEBRAIC[102] - CONSTANTS[404])/(0.785000 - CONSTANTS[404]); ALGEBRAIC[277] = (CONDVAR[10]<0.00000 ? 0.00000 : ALGEBRAIC[220]); ALGEBRAIC[350] = ALGEBRAIC[277]*ALGEBRAIC[319]+ (1.00000 - ALGEBRAIC[277])*ALGEBRAIC[318]; ALGEBRAIC[221] = ( CONSTANTS[123]*(STATES[50] - ALGEBRAIC[152]))/(1.00000+exp((15.0000 - STATES[50])/17.0000)); ALGEBRAIC[222] = (( CONSTANTS[123]*(STATES[50] - ALGEBRAIC[152]))/(1.00000+exp((36.0000 - STATES[50])/17.0000)))*3.62000; ALGEBRAIC[104] = (STATES[104] - 0.0589380)/(0.393747 - 0.0589380); ALGEBRAIC[223] = (CONDVAR[11]<0.00000 ? 0.00000 : ALGEBRAIC[104]); ALGEBRAIC[278] = (1.00000 - ALGEBRAIC[223])*ALGEBRAIC[221]+ ALGEBRAIC[223]*ALGEBRAIC[222]; ALGEBRAIC[139] = exp(STATES[50]/550.000); ALGEBRAIC[245] = ( ( CONSTANTS[157]*pow(STATES[120], 3.00000))*ALGEBRAIC[139])*(STATES[50] - ALGEBRAIC[152]); ALGEBRAIC[292] = ALGEBRAIC[245]*( 0.735600*STATES[121]+ 0.264400*STATES[123]); ALGEBRAIC[293] = ALGEBRAIC[245]*( 0.735600*STATES[122]+ 0.264400*STATES[124]); ALGEBRAIC[330] = (1.00000 - STATES[39])*ALGEBRAIC[293]+ STATES[39]*ALGEBRAIC[292]; ALGEBRAIC[367] = ((((ALGEBRAIC[365]+ALGEBRAIC[219])+ALGEBRAIC[350])+ALGEBRAIC[278])+ALGEBRAIC[330]) - 2.00000*ALGEBRAIC[284]; ALGEBRAIC[361] = (((ALGEBRAIC[269]+ALGEBRAIC[308])+ALGEBRAIC[326]) - ALGEBRAIC[352]*2.00000) - ALGEBRAIC[283]*2.00000; ALGEBRAIC[362] = ALGEBRAIC[216]+ALGEBRAIC[348]; ALGEBRAIC[356] = ALGEBRAIC[355]+ ALGEBRAIC[283]*3.00000; ALGEBRAIC[368] = ((ALGEBRAIC[356]+ALGEBRAIC[367])+ALGEBRAIC[361])+ALGEBRAIC[362]; } void getStateInformation(double* SI) { SI[0] = 1.0; SI[1] = 1.0; SI[2] = 1.0; SI[3] = 1.0; SI[4] = 1.0; SI[5] = 1.0; SI[6] = 1.0; SI[7] = 1.0; SI[8] = 1.0; SI[9] = 1.0; SI[10] = 1.0; SI[11] = 1.0; SI[12] = 1.0; SI[13] = 1.0; SI[14] = 1.0; SI[15] = 1.0; SI[16] = 1.0; SI[17] = 1.0; SI[18] = 1.0; SI[19] = 1.0; SI[20] = 1.0; SI[21] = 1.0; SI[22] = 1.0; SI[23] = 1.0; SI[24] = 1.0; SI[25] = 1.0; SI[26] = 1.0; SI[27] = 1.0; SI[28] = 1.0; SI[29] = 1.0; SI[30] = 1.0; SI[31] = 1.0; SI[32] = 1.0; SI[33] = 1.0; SI[34] = 1.0; SI[35] = 1.0; SI[36] = 1.0; SI[37] = 1.0; SI[38] = 1.0; SI[39] = 1.0; SI[40] = 1.0; SI[41] = 1.0; SI[42] = 1.0; SI[43] = 1.0; SI[44] = 1.0; SI[45] = 1.0; SI[46] = 1.0; SI[47] = 1.0; SI[48] = 1.0; SI[49] = 1.0; SI[50] = 1.0; SI[51] = 1.0; SI[52] = 1.0; SI[53] = 1.0; SI[54] = 1.0; SI[55] = 1.0; SI[56] = 1.0; SI[57] = 1.0; SI[58] = 1.0; SI[59] = 1.0; SI[60] = 1.0; SI[61] = 1.0; SI[62] = 1.0; SI[63] = 1.0; SI[64] = 1.0; SI[65] = 1.0; SI[66] = 1.0; SI[67] = 1.0; SI[68] = 1.0; SI[69] = 1.0; SI[70] = 1.0; SI[71] = 1.0; SI[72] = 1.0; SI[73] = 1.0; SI[74] = 1.0; SI[75] = 1.0; SI[76] = 1.0; SI[77] = 1.0; SI[78] = 1.0; SI[79] = 1.0; SI[80] = 1.0; SI[81] = 1.0; SI[82] = 1.0; SI[83] = 1.0; SI[84] = 1.0; SI[85] = 1.0; SI[86] = 1.0; SI[87] = 1.0; SI[88] = 1.0; SI[89] = 1.0; SI[90] = 1.0; SI[91] = 1.0; SI[92] = 1.0; SI[93] = 1.0; SI[94] = 1.0; SI[95] = 1.0; SI[96] = 1.0; SI[97] = 1.0; SI[98] = 1.0; SI[99] = 1.0; SI[100] = 1.0; SI[101] = 1.0; SI[102] = 1.0; SI[103] = 1.0; SI[104] = 1.0; SI[105] = 1.0; SI[106] = 1.0; SI[107] = 1.0; SI[108] = 1.0; SI[109] = 1.0; SI[110] = 1.0; SI[111] = 1.0; SI[112] = 1.0; SI[113] = 1.0; SI[114] = 1.0; SI[115] = 1.0; SI[116] = 1.0; SI[117] = 1.0; SI[118] = 1.0; SI[119] = 1.0; SI[120] = 1.0; SI[121] = 1.0; SI[122] = 1.0; SI[123] = 1.0; SI[124] = 1.0; SI[125] = 1.0; SI[126] = 1.0; SI[127] = 1.0; SI[128] = 1.0; SI[129] = 1.0; SI[130] = 1.0; SI[131] = 1.0; SI[132] = 1.0; SI[133] = 1.0; SI[134] = 1.0; SI[135] = 1.0; SI[136] = 1.0; SI[137] = 1.0; SI[138] = 1.0; SI[139] = 1.0; SI[140] = 1.0; SI[141] = 1.0; SI[142] = 1.0; SI[143] = 1.0; SI[144] = 1.0; } void computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { CONDVAR[0] = ALGEBRAIC[20] - 0.00000; CONDVAR[1] = ALGEBRAIC[20] - 0.00000; CONDVAR[2] = ALGEBRAIC[36] - 0.00000; CONDVAR[3] = ALGEBRAIC[36] - 0.00000; CONDVAR[4] = ALGEBRAIC[49] - 0.00000; CONDVAR[5] = ALGEBRAIC[61] - 0.00000; CONDVAR[6] = fabs(ALGEBRAIC[310]) - 1.00000e-12; CONDVAR[7] = fabs(ALGEBRAIC[209]) - 1.00000e-12; CONDVAR[8] = fabs(ALGEBRAIC[313]) - 1.00000e-12; CONDVAR[9] = fabs(ALGEBRAIC[81]) - 1.00000e-12; CONDVAR[10] = ALGEBRAIC[220] - 0.00000; CONDVAR[11] = ALGEBRAIC[104] - 0.00000; CONDVAR[12] = ALGEBRAIC[105] - 0.00000; CONDVAR[13] = (STATES[50]+CONSTANTS[130]) - - 40.0000; CONDVAR[14] = (STATES[50]+CONSTANTS[130]) - - 40.0000; CONDVAR[15] = (STATES[50]+CONSTANTS[130]) - - 40.0000; CONDVAR[16] = (STATES[50]+CONSTANTS[130]) - - 40.0000; CONDVAR[17] = STATES[50] - - 40.0000; CONDVAR[18] = STATES[50] - - 40.0000; CONDVAR[19] = STATES[50] - - 40.0000; CONDVAR[20] = STATES[50] - - 40.0000; CONDVAR[21] = STATES[50] - - 40.0000; CONDVAR[22] = STATES[50] - - 40.0000; CONDVAR[23] = STATES[50] - - 40.0000; CONDVAR[24] = STATES[50] - - 40.0000; CONDVAR[25] = ALGEBRAIC[131] - 0.00000; CONDVAR[26] = ALGEBRAIC[138] - 0.00000; CONDVAR[27] = ALGEBRAIC[150] - 0.00000; CONDVAR[28] = ((VOI - CONSTANTS[213]) - CONSTANTS[214]*floor((VOI - CONSTANTS[213])/CONSTANTS[214])) - CONSTANTS[212]; }