Generated Code
The following is c code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
/* There are a total of 369 entries in the algebraic variable array. There are a total of 145 entries in each of the rate and state variable arrays. There are a total of 410 entries in the constant variable array. */ /* * CONSTANTS[324] is AC47_cyt in component ac (uM). * CONSTANTS[329] is AC47_eca in component ac (uM). * CONSTANTS[320] is AC56_cav in component ac (uM). * CONSTANTS[328] is AC56_cyt in component ac (uM). * CONSTANTS[296] is AC_tot in component ac (uM). * CONSTANTS[0] is ATP in component ac (uM). * CONSTANTS[1] is KmATP in component ac (uM). * CONSTANTS[2] is KmGiAC56 in component ac (uM). * CONSTANTS[3] is KmGsAC47 in component ac (dimensionless). * CONSTANTS[4] is KmGsAC56 in component ac (dimensionless). * CONSTANTS[5] is KmGsGiAC56 in component ac (dimensionless). * ALGEBRAIC[0] is ac_kAC47_cyt_gsa in component ac (dimensionless). * ALGEBRAIC[1] is ac_kAC47_eca_gsa in component ac (dimensionless). * ALGEBRAIC[2] is ac_kAC56_cav_gsa in component ac (dimensionless). * ALGEBRAIC[30] is ac_kAC56_cyt_gsa in component ac (dimensionless). * CONSTANTS[6] is afAC47 in component ac (hertz). * CONSTANTS[7] is afAC56 in component ac (hertz). * CONSTANTS[8] is basalAC47 in component ac (dimensionless). * CONSTANTS[9] is basalAC56 in component ac (dimensionless). * CONSTANTS[294] is R_b1_tot in component beta (uM). * STATES[0] is Gi_bg in component beta_cav (uM). * STATES[1] is Gs_aGTP in component beta_cav (uM). * STATES[2] is Gs_aGTP in component beta_cyt (uM). * STATES[3] is Gs_aGTP in component beta_eca (uM). * ALGEBRAIC[68] is dcAMP_AC47_cyt in component ac (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[67] is dcAMP_AC47_eca in component ac (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[82] is dcAMP_AC56_cav in component ac (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[106] is dcAMP_AC56_cyt in component ac (mol_per_m3_per_s_times_1e_minus_3). * CONSTANTS[227] is fATP in component ac (dimensionless). * CONSTANTS[10] is f_AC47_eca in component ac (dimensionless). * CONSTANTS[260] is f_AC56_AC47 in component ac (dimensionless). * CONSTANTS[11] is f_AC56_cav in component ac (dimensionless). * ALGEBRAIC[32] is gsi in component ac (dimensionless). * CONSTANTS[12] is hGsAC47 in component ac (dimensionless). * CONSTANTS[13] is hGsAC56 in component ac (dimensionless). * CONSTANTS[14] is hGsGiAC56 in component ac (dimensionless). * ALGEBRAIC[55] is kAC47_cyt in component ac (hertz). * ALGEBRAIC[31] is kAC47_eca in component ac (hertz). * ALGEBRAIC[56] is kAC56_cav in component ac (hertz). * ALGEBRAIC[84] is kAC56_cyt in component ac (hertz). * CONSTANTS[15] is vGsGiAC56 in component ac (dimensionless). * CONSTANTS[319] is vr_cav in component cell (dimensionless). * CONSTANTS[321] is vr_cyt in component cell (dimensionless). * CONSTANTS[326] is vr_eca in component cell (dimensionless). * CONSTANTS[16] is ICaL_akap in component akap_sig (uM). * CONSTANTS[391] is ICaL_akapf in component akap_sig (uM). * CONSTANTS[392] is ICaL_arn in component akap_sig (uM). * CONSTANTS[393] is ICaL_arp in component akap_sig (uM). * CONSTANTS[17] is ICaL_tot in component akap_sig (uM). * CONSTANTS[281] is ICaLf in component akap_sig (uM). * STATES[4] is ICaLp in component akap_sig (uM). * CONSTANTS[18] is Ka_ical in component akap_sig (uM). * CONSTANTS[19] is Ka_ryr in component akap_sig (uM). * CONSTANTS[20] is Ki in component akap_sig (uM). * CONSTANTS[21] is Kp_ical in component akap_sig (uM). * CONSTANTS[22] is Kp_ryr in component akap_sig (uM). * CONSTANTS[23] is Kr in component akap_sig (uM). * CONSTANTS[24] is Li in component akap_sig (uM). * CONSTANTS[25] is Lr in component akap_sig (uM). * CONSTANTS[26] is Mi in component akap_sig (uM). * CONSTANTS[27] is Mr in component akap_sig (uM). * CONSTANTS[380] is PKA_cav in component pka (uM). * CONSTANTS[390] is PKAf in component akap_sig (uM). * CONSTANTS[28] is PP1_cav in component pp1 (uM). * CONSTANTS[291] is PP1f_cav in component akap_sig (uM). * CONSTANTS[29] is RyR_akap in component akap_sig (uM). * CONSTANTS[394] is RyR_akapf in component akap_sig (uM). * CONSTANTS[395] is RyR_arn in component akap_sig (uM). * CONSTANTS[396] is RyR_arp in component akap_sig (uM). * CONSTANTS[30] is RyR_tot in component akap_sig (uM). * CONSTANTS[293] is RyRf in component akap_sig (uM). * STATES[5] is RyRp in component akap_sig (uM). * CONSTANTS[273] is akap_sig_ICaLf_sum in component akap_sig (dimensionless). * ALGEBRAIC[3] is akap_sig_ICaLp_dif in component akap_sig (uM). * CONSTANTS[387] is akap_sig_PKAf_arg in component akap_sig (dimensionless). * CONSTANTS[381] is akap_sig_PKAf_b in component akap_sig (uM). * CONSTANTS[382] is akap_sig_PKAf_c in component akap_sig (mM2_times_1e_minus_6). * CONSTANTS[383] is akap_sig_PKAf_d in component akap_sig (mM3_times_1e_minus_9). * CONSTANTS[388] is akap_sig_PKAf_mag in component akap_sig (uM). * CONSTANTS[384] is akap_sig_PKAf_rr in component akap_sig (mol6_per_m18_times_1e_minus_18). * CONSTANTS[389] is akap_sig_PKAf_x in component akap_sig (dimensionless). * CONSTANTS[385] is akap_sig_PKAf_yi in component akap_sig (mM3_times_1e_minus_9). * CONSTANTS[386] is akap_sig_PKAf_yr in component akap_sig (mM3_times_1e_minus_9). * CONSTANTS[288] is akap_sig_PP1f_cav_arg in component akap_sig (dimensionless). * CONSTANTS[282] is akap_sig_PP1f_cav_b in component akap_sig (uM). * CONSTANTS[283] is akap_sig_PP1f_cav_c in component akap_sig (mM2_times_1e_minus_6). * CONSTANTS[284] is akap_sig_PP1f_cav_d in component akap_sig (mM3_times_1e_minus_9). * CONSTANTS[289] is akap_sig_PP1f_cav_mag in component akap_sig (uM). * CONSTANTS[285] is akap_sig_PP1f_cav_rr in component akap_sig (mol6_per_m18_times_1e_minus_18). * CONSTANTS[290] is akap_sig_PP1f_cav_x in component akap_sig (dimensionless). * CONSTANTS[286] is akap_sig_PP1f_cav_yi in component akap_sig (mM3_times_1e_minus_9). * CONSTANTS[287] is akap_sig_PP1f_cav_yr in component akap_sig (mM3_times_1e_minus_9). * CONSTANTS[292] is akap_sig_RyRf_sum in component akap_sig (dimensionless). * ALGEBRAIC[4] is akap_sig_RyRp_dif in component akap_sig (uM). * ALGEBRAIC[10] is fp_ICaL in component akap_sig (dimensionless). * ALGEBRAIC[38] is fp_RyR in component akap_sig (dimensionless). * CONSTANTS[31] is ka_ical in component akap_sig (hertz). * CONSTANTS[32] is ka_ryr in component akap_sig (hertz). * CONSTANTS[33] is kp_ical in component akap_sig (hertz). * CONSTANTS[34] is kp_ryr in component akap_sig (hertz). * STATES[6] is C in component pka_cav (uM). * VOI is time in component engine (ms). * CONSTANTS[35] is Gi_tot in component beta (uM). * CONSTANTS[295] is Gs_tot in component beta (uM). * CONSTANTS[297] is R_b2_tot in component beta (uM). * CONSTANTS[36] is f_Gi_cav in component beta (dimensionless). * CONSTANTS[215] is f_Gi_eca in component beta (dimensionless). * CONSTANTS[37] is f_Gs_cav in component beta (dimensionless). * CONSTANTS[216] is f_Gs_cyt in component beta (dimensionless). * CONSTANTS[38] is f_Gs_eca in component beta (dimensionless). * CONSTANTS[39] is f_Rb1_cav in component beta (dimensionless). * CONSTANTS[298] is f_Rb1_cyt in component beta (dimensionless). * CONSTANTS[40] is f_Rb1_eca in component beta (dimensionless). * CONSTANTS[41] is f_Rb2_cav in component beta (dimensionless). * CONSTANTS[299] is f_Rb2_eca in component beta (dimensionless). * CONSTANTS[42] is k_act1_Gi in component beta (hertz). * CONSTANTS[43] is k_act1_Gs in component beta (hertz). * CONSTANTS[44] is k_act2_Gi in component beta (hertz). * CONSTANTS[45] is k_act2_Gs in component beta (hertz). * CONSTANTS[46] is k_b1_c in component beta (uM). * CONSTANTS[47] is k_b1_h in component beta (uM). * CONSTANTS[48] is k_b1_l in component beta (uM). * CONSTANTS[49] is k_b2_a in component beta (uM). * CONSTANTS[50] is k_b2_c in component beta (uM). * CONSTANTS[51] is k_b2_f in component beta (uM). * CONSTANTS[52] is k_b2_h in component beta (uM). * CONSTANTS[53] is k_b2_l in component beta (uM). * CONSTANTS[54] is k_b2_n in component beta (uM). * CONSTANTS[217] is k_grk_dp in component beta (hertz). * CONSTANTS[218] is k_grk_p in component beta (hertz). * CONSTANTS[219] is k_hydr_Gi in component beta (hertz). * CONSTANTS[55] is k_hydr_Gs in component beta (hertz). * CONSTANTS[257] is k_pka_dp in component beta (hertz). * CONSTANTS[220] is k_pka_p in component beta (per_mM_per_ms). * CONSTANTS[221] is k_reas_Gi in component beta (per_mM_per_ms). * CONSTANTS[56] is k_reas_Gs in component beta (per_mM_per_ms). * CONSTANTS[57] is rate_bds in component beta (per_mM_per_ms). * CONSTANTS[58] is GRK in component beta_cav (dimensionless). * STATES[7] is Gi_aGDP in component beta_cav (uM). * STATES[8] is Gi_aGTP in component beta_cav (uM). * ALGEBRAIC[5] is Gi_abg in component beta_cav (uM). * ALGEBRAIC[86] is Gi_f in component beta_cav (uM). * STATES[9] is Gs_aGDP in component beta_cav (uM). * ALGEBRAIC[6] is Gs_abg in component beta_cav (uM). * STATES[10] is Gs_bg in component beta_cav (uM). * ALGEBRAIC[156] is Gs_f in component beta_cav (uM). * ALGEBRAIC[188] is LRGs_tot in component beta_cav (uM). * ALGEBRAIC[164] is LRb1 in component beta_cav (uM). * ALGEBRAIC[168] is LRb1Gs in component beta_cav (uM). * ALGEBRAIC[180] is LRb2 in component beta_cav (uM). * ALGEBRAIC[108] is LRb2Gi in component beta_cav (uM). * ALGEBRAIC[184] is LRb2Gs in component beta_cav (uM). * ALGEBRAIC[196] is RGs_tot in component beta_cav (uM). * CONSTANTS[322] is R_b1_tot in component beta_cav (uM). * CONSTANTS[323] is R_b2_tot in component beta_cav (uM). * ALGEBRAIC[172] is Rb1Gs in component beta_cav (uM). * ALGEBRAIC[160] is Rb1_f in component beta_cav (uM). * STATES[11] is Rb1_grk_tot in component beta_cav (uM). * ALGEBRAIC[33] is Rb1_np_tot in component beta_cav (uM). * STATES[12] is Rb1_pka_tot in component beta_cav (uM). * ALGEBRAIC[98] is Rb2Gi in component beta_cav (uM). * ALGEBRAIC[192] is Rb2Gs in component beta_cav (uM). * ALGEBRAIC[176] is Rb2_f in component beta_cav (uM). * STATES[13] is Rb2_grk_tot in component beta_cav (uM). * ALGEBRAIC[57] is Rb2_np_tot in component beta_cav (uM). * ALGEBRAIC[70] is Rb2_pka_f in component beta_cav (uM). * STATES[14] is Rb2_pka_tot in component beta_cav (uM). * CONSTANTS[223] is beta_cav_Gs_f_a in component beta_cav (mol4_per_m12_times_1e_minus_12). * ALGEBRAIC[131] is beta_cav_Gs_f_arg in component beta_cav (dimensionless). * ALGEBRAIC[69] is beta_cav_Gs_f_b in component beta_cav (uM). * ALGEBRAIC[85] is beta_cav_Gs_f_c in component beta_cav (mM2_times_1e_minus_6). * CONSTANTS[258] is beta_cav_Gs_f_c11 in component beta_cav (mol5_per_m15_times_1e_minus_15). * CONSTANTS[271] is beta_cav_Gs_f_c22 in component beta_cav (mol5_per_m15_times_1e_minus_15). * CONSTANTS[279] is beta_cav_Gs_f_c33 in component beta_cav (mol6_per_m18_times_1e_minus_18). * ALGEBRAIC[97] is beta_cav_Gs_f_d in component beta_cav (mM3_times_1e_minus_9). * ALGEBRAIC[147] is beta_cav_Gs_f_i in component beta_cav (uM). * ALGEBRAIC[137] is beta_cav_Gs_f_mag in component beta_cav (uM). * ALGEBRAIC[151] is beta_cav_Gs_f_r in component beta_cav (uM). * ALGEBRAIC[109] is beta_cav_Gs_f_rr in component beta_cav (mol6_per_m18_times_1e_minus_18). * ALGEBRAIC[142] is beta_cav_Gs_f_x in component beta_cav (dimensionless). * ALGEBRAIC[117] is beta_cav_Gs_f_yi in component beta_cav (mM3_times_1e_minus_9). * ALGEBRAIC[125] is beta_cav_Gs_f_yr in component beta_cav (mM3_times_1e_minus_9). * CONSTANTS[222] is beta_cav_Rb2_pka_f_a in component beta_cav (uM). * ALGEBRAIC[34] is beta_cav_Rb2_pka_f_b in component beta_cav (mM2_times_1e_minus_6). * ALGEBRAIC[58] is beta_cav_Rb2_pka_f_c in component beta_cav (mM3_times_1e_minus_9). * CONSTANTS[59] is L in component iso (uM). * CONSTANTS[60] is k_GsAct_b2 in component beta_cav (dimensionless). * CONSTANTS[61] is GRK in component beta_cyt (dimensionless). * STATES[15] is Gs_aGDP in component beta_cyt (uM). * ALGEBRAIC[7] is Gs_abg in component beta_cyt (uM). * STATES[16] is Gs_bg in component beta_cyt (uM). * ALGEBRAIC[99] is Gs_f in component beta_cyt (uM). * ALGEBRAIC[110] is LRb1Gs_np in component beta_cyt (uM). * ALGEBRAIC[118] is LRb1_np in component beta_cyt (uM). * CONSTANTS[325] is R_b1_tot in component beta_cyt (uM). * ALGEBRAIC[119] is Rb1Gs_np in component beta_cyt (uM). * STATES[17] is Rb1_grk_tot in component beta_cyt (uM). * ALGEBRAIC[87] is Rb1_np_f in component beta_cyt (uM). * ALGEBRAIC[35] is Rb1_np_tot in component beta_cyt (uM). * STATES[18] is Rb1_pka_tot in component beta_cyt (uM). * CONSTANTS[224] is beta_cyt_Rb1_np_f_a in component beta_cyt (uM). * ALGEBRAIC[59] is beta_cyt_Rb1_np_f_b in component beta_cyt (mM2_times_1e_minus_6). * ALGEBRAIC[71] is beta_cyt_Rb1_np_f_c in component beta_cyt (mM3_times_1e_minus_9). * STATES[19] is C in component pka_cyt (uM). * CONSTANTS[62] is GRK in component beta_eca (dimensionless). * STATES[20] is Gi_aGDP in component beta_eca (uM). * STATES[21] is Gi_aGTP in component beta_eca (uM). * ALGEBRAIC[8] is Gi_abg in component beta_eca (uM). * STATES[22] is Gi_bg in component beta_eca (uM). * ALGEBRAIC[89] is Gi_f in component beta_eca (uM). * STATES[23] is Gs_aGDP in component beta_eca (uM). * ALGEBRAIC[9] is Gs_abg in component beta_eca (uM). * STATES[24] is Gs_bg in component beta_eca (uM). * ALGEBRAIC[157] is Gs_f in component beta_eca (uM). * ALGEBRAIC[189] is LRGs_tot in component beta_eca (uM). * ALGEBRAIC[165] is LRb1 in component beta_eca (uM). * ALGEBRAIC[169] is LRb1Gs in component beta_eca (uM). * ALGEBRAIC[181] is LRb2 in component beta_eca (uM). * ALGEBRAIC[111] is LRb2Gi in component beta_eca (uM). * ALGEBRAIC[185] is LRb2Gs in component beta_eca (uM). * ALGEBRAIC[197] is RGs_tot in component beta_eca (uM). * CONSTANTS[330] is R_b1_tot in component beta_eca (uM). * CONSTANTS[331] is R_b2_tot in component beta_eca (uM). * ALGEBRAIC[173] is Rb1Gs in component beta_eca (uM). * ALGEBRAIC[161] is Rb1_f in component beta_eca (uM). * STATES[25] is Rb1_grk_tot in component beta_eca (uM). * ALGEBRAIC[36] is Rb1_np_tot in component beta_eca (uM). * STATES[26] is Rb1_pka_tot in component beta_eca (uM). * ALGEBRAIC[101] is Rb2Gi in component beta_eca (uM). * ALGEBRAIC[193] is Rb2Gs in component beta_eca (uM). * ALGEBRAIC[177] is Rb2_f in component beta_eca (uM). * STATES[27] is Rb2_grk_tot in component beta_eca (uM). * ALGEBRAIC[60] is Rb2_np_tot in component beta_eca (uM). * ALGEBRAIC[73] is Rb2_pka_f in component beta_eca (uM). * STATES[28] is Rb2_pka_tot in component beta_eca (uM). * CONSTANTS[226] is beta_eca_Gs_f_a in component beta_eca (mol4_per_m12_times_1e_minus_12). * ALGEBRAIC[132] is beta_eca_Gs_f_arg in component beta_eca (dimensionless). * ALGEBRAIC[72] is beta_eca_Gs_f_b in component beta_eca (uM). * ALGEBRAIC[88] is beta_eca_Gs_f_c in component beta_eca (mM2_times_1e_minus_6). * CONSTANTS[259] is beta_eca_Gs_f_c11 in component beta_eca (mol5_per_m15_times_1e_minus_15). * CONSTANTS[272] is beta_eca_Gs_f_c22 in component beta_eca (mol5_per_m15_times_1e_minus_15). * CONSTANTS[280] is beta_eca_Gs_f_c33 in component beta_eca (mol6_per_m18_times_1e_minus_18). * ALGEBRAIC[100] is beta_eca_Gs_f_d in component beta_eca (mM3_times_1e_minus_9). * ALGEBRAIC[148] is beta_eca_Gs_f_i in component beta_eca (uM). * ALGEBRAIC[138] is beta_eca_Gs_f_mag in component beta_eca (uM). * ALGEBRAIC[152] is beta_eca_Gs_f_r in component beta_eca (uM). * ALGEBRAIC[112] is beta_eca_Gs_f_rr in component beta_eca (mol6_per_m18_times_1e_minus_18). * ALGEBRAIC[143] is beta_eca_Gs_f_x in component beta_eca (dimensionless). * ALGEBRAIC[120] is beta_eca_Gs_f_yi in component beta_eca (mM3_times_1e_minus_9). * ALGEBRAIC[126] is beta_eca_Gs_f_yr in component beta_eca (mM3_times_1e_minus_9). * CONSTANTS[225] is beta_eca_Rb2_pka_f_a in component beta_eca (uM). * ALGEBRAIC[37] is beta_eca_Rb2_pka_f_b in component beta_eca (mM2_times_1e_minus_6). * ALGEBRAIC[61] is beta_eca_Rb2_pka_f_c in component beta_eca (mM3_times_1e_minus_9). * CONSTANTS[63] is k_GsAct_b2 in component beta_eca (dimensionless). * STATES[29] is C in component pka_eca (uM). * CONSTANTS[302] is AF in component cell (m2_mol_per_s_per_A_times_1e_minus_4). * ALGEBRAIC[186] is Ca in component calcium (mM). * ALGEBRAIC[102] is Ca_CaL in component calcium (mM). * ALGEBRAIC[127] is Ca_jsr in component calcium (mM). * STATES[30] is Ca_nsr in component calcium (mM). * ALGEBRAIC[149] is Ca_sr in component calcium (mM). * ALGEBRAIC[305] is ICa_tot in component calcium (uA_per_cm2). * ALGEBRAIC[217] is ICab in component icab (uA_per_cm2). * ALGEBRAIC[297] is INaCa in component inaca (uA_per_cm2). * ALGEBRAIC[291] is INaCaSR in component inaca (uA_per_cm2). * ALGEBRAIC[201] is Idiff_Ca in component diff (mM_per_ms). * ALGEBRAIC[209] is Idiff_sr in component diff (mM_per_ms). * ALGEBRAIC[304] is IpCa in component ipca (uA_per_cm2). * ALGEBRAIC[319] is Irel in component irel (mM_per_ms). * ALGEBRAIC[211] is Itr in component diff (mM_per_ms). * ALGEBRAIC[328] is Iup in component iup (mM_per_ms). * CONSTANTS[64] is Ka_tni in component calcium (uM). * CONSTANTS[65] is Kp_tni in component calcium (uM). * CONSTANTS[66] is PP2A in component pp1 (uM). * CONSTANTS[228] is bar_sum in component calcium (mM). * CONSTANTS[67] is bsl_bar in component calcium (mM). * CONSTANTS[68] is bsl_km in component calcium (mM). * CONSTANTS[69] is bsr_bar in component calcium (mM). * CONSTANTS[70] is bsr_km in component calcium (mM). * ALGEBRAIC[62] is calcium_Ca_CaL_b in component calcium (mM). * ALGEBRAIC[74] is calcium_Ca_CaL_c in component calcium (mM2). * ALGEBRAIC[90] is calcium_Ca_CaL_d in component calcium (mM3). * ALGEBRAIC[178] is calcium_Ca_b in component calcium (mM). * ALGEBRAIC[182] is calcium_Ca_c in component calcium (mM2). * ALGEBRAIC[170] is calcium_Ca_d in component calcium (mM3). * ALGEBRAIC[113] is calcium_Ca_jsr_b in component calcium (mM). * ALGEBRAIC[121] is calcium_Ca_jsr_c in component calcium (mM2). * CONSTANTS[312] is calcium_Ca_nsr_r1 in component calcium (dimensionless). * ALGEBRAIC[133] is calcium_Ca_sr_b in component calcium (mM). * ALGEBRAIC[139] is calcium_Ca_sr_c in component calcium (mM2). * ALGEBRAIC[144] is calcium_Ca_sr_d in component calcium (mM3). * ALGEBRAIC[153] is calcium_fhat_val in component calcium (dimensionless). * CONSTANTS[305] is calcium_uCa_CaL_r1 in component calcium (mol_per_m_per_s_per_A_times_1e5). * CONSTANTS[315] is calcium_uCa_CaL_r2 in component calcium (dimensionless). * CONSTANTS[308] is calcium_uCa_r1 in component calcium (mol_per_m_per_s_per_A_times_1e5). * CONSTANTS[313] is calcium_uCa_r2 in component calcium (dimensionless). * CONSTANTS[316] is calcium_uCa_sr_r1 in component calcium (mol_per_m_per_s_per_A_times_1e5). * CONSTANTS[317] is calcium_uCa_sr_r2 in component calcium (dimensionless). * CONSTANTS[71] is cbar in component calcium (mM). * CONSTANTS[72] is csqn_bar in component calcium (mM). * CONSTANTS[73] is csqn_km in component calcium (mM). * STATES[31] is f_tni in component calcium (dimensionless). * ALGEBRAIC[158] is fhat in component calcium (dimensionless). * ALGEBRAIC[248] is ICaL in component ical (uA_per_cm2). * CONSTANTS[74] is ka_tni in component calcium (hertz). * CONSTANTS[75] is kc in component calcium (mM). * CONSTANTS[230] is km_pro in component calcium (mM2). * CONSTANTS[261] is km_sum in component calcium (mM). * CONSTANTS[76] is kp_tni in component calcium (hertz). * ALGEBRAIC[166] is kpro in component calcium (mM2). * ALGEBRAIC[174] is ksum in component calcium (mM). * ALGEBRAIC[162] is kt in component calcium (mM). * CONSTANTS[77] is ktn in component calcium (mM). * CONSTANTS[229] is ktp in component calcium (mM). * CONSTANTS[318] is r3 in component calcium (dimensionless). * CONSTANTS[262] is ss_pro in component calcium (mM2). * CONSTANTS[274] is ss_sum in component calcium (mM). * CONSTANTS[78] is tbar in component calcium (mM). * STATES[32] is uCa in component calcium (mM). * STATES[33] is uCa_CaL in component calcium (mM). * STATES[34] is uCa_jsr in component calcium (mM). * STATES[35] is uCa_sr in component calcium (mM). * CONSTANTS[304] is v_CaL in component cell (uL). * CONSTANTS[307] is v_cyt in component cell (uL). * CONSTANTS[310] is v_jsr in component cell (uL). * CONSTANTS[311] is v_nsr in component cell (uL). * CONSTANTS[314] is v_sr in component cell (uL). * CONSTANTS[79] is CaMK0 in component camk (dimensionless). * CONSTANTS[80] is K in component camk (dimensionless). * CONSTANTS[81] is Km in component camk (mM). * CONSTANTS[82] is PP1_eca in component pp1 (uM). * ALGEBRAIC[206] is PP1_tot in component camk (uM). * ALGEBRAIC[203] is PP1f_cyt in component pp1 (uM). * ALGEBRAIC[194] is active in component camk (dimensionless). * ALGEBRAIC[190] is bound in component camk (dimensionless). * ALGEBRAIC[199] is c in component camk (dimensionless). * ALGEBRAIC[200] is camk_f_ryr_d in component camk (dimensionless). * CONSTANTS[83] is camk_trap_alpha in component camk (mS_per_uF). * CONSTANTS[84] is camk_trap_beta in component camk (mS_per_uF). * STATES[36] is f_ical in component camk (dimensionless). * STATES[37] is f_ik1 in component camk (dimensionless). * STATES[38] is f_ina in component camk (dimensionless). * STATES[39] is f_ito in component camk (dimensionless). * STATES[40] is f_plb in component camk (dimensionless). * STATES[41] is f_ryr in component camk (dimensionless). * CONSTANTS[231] is tau_cal in component camk (ms). * CONSTANTS[232] is tau_ik1 in component camk (ms). * CONSTANTS[233] is tau_ina in component camk (ms). * CONSTANTS[234] is tau_ito in component camk (ms). * CONSTANTS[85] is tau_plb in component camk (ms). * CONSTANTS[86] is tau_ryr in component camk (ms). * STATES[42] is trap in component camk (dimensionless). * STATES[43] is cAMP_cav in component camp (uM). * STATES[44] is cAMP_cyt in component camp (uM). * STATES[45] is cAMP_eca in component camp (uM). * ALGEBRAIC[95] is camp_cAMP_cav_j1 in component camp (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[105] is camp_cAMP_cav_j2 in component camp (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[135] is camp_cAMP_cav_pde in component camp (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[115] is camp_cAMP_cyt_j1 in component camp (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[123] is camp_cAMP_cyt_j2 in component camp (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[146] is camp_cAMP_cyt_pde in component camp (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[83] is camp_cAMP_eca_j1 in component camp (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[96] is camp_cAMP_eca_j2 in component camp (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[124] is camp_cAMP_eca_pde in component camp (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[114] is dcAMP_PDE2_cav in component pde (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[129] is dcAMP_PDE2_cyt in component pde (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[107] is dcAMP_PDE2_eca in component pde (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[122] is dcAMP_PDE3_cav in component pde (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[136] is dcAMP_PDE3_cyt in component pde (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[128] is dcAMP_PDE4_cav in component pde (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[141] is dcAMP_PDE4_cyt in component pde (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[116] is dcAMP_PDE4_eca in component pde (mol_per_m3_per_s_times_1e_minus_3). * CONSTANTS[235] is j_cav_cyt in component camp (m3_per_s_times_1e_minus_9). * CONSTANTS[236] is j_cav_eca in component camp (m3_per_s_times_1e_minus_9). * CONSTANTS[237] is j_eca_cyt in component camp (m3_per_s_times_1e_minus_9). * ALGEBRAIC[145] is dcAMP in component pka_cav (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[154] is dcAMP in component pka_cyt (mol_per_m3_per_s_times_1e_minus_3). * ALGEBRAIC[134] is dcAMP in component pka_eca (mol_per_m3_per_s_times_1e_minus_3). * CONSTANTS[306] is v_cav in component cell (uL). * CONSTANTS[309] is v_eca in component cell (uL). * CONSTANTS[87] is F in component phys (C_per_mol). * CONSTANTS[301] is capArea in component cell (cm2). * CONSTANTS[300] is geoArea in component cell (cm2). * CONSTANTS[88] is length in component cell (cm). * CONSTANTS[89] is pi in component cell (dimensionless). * CONSTANTS[90] is radius in component cell (cm). * CONSTANTS[303] is volume in component cell (uL). * ALGEBRAIC[333] is CTKCl in component ctkcl (mM_per_ms). * ALGEBRAIC[354] is CTNaCl in component ctnacl (mM_per_ms). * STATES[46] is Cl in component chloride (mM). * STATES[47] is Cl_sr in component chloride (mM). * ALGEBRAIC[323] is IClCa in component iclca (uA_per_cm2). * ALGEBRAIC[330] is ICl_tot in component chloride (uA_per_cm2). * ALGEBRAIC[329] is IClb in component iclb (uA_per_cm2). * ALGEBRAIC[204] is Idiff_Cl in component diff (mM_per_ms). * CONSTANTS[332] is chloride_Cl_r1 in component chloride (mol_per_m_per_s_per_A_times_1e5). * CONSTANTS[337] is chloride_Cl_r2 in component chloride (dimensionless). * CONSTANTS[341] is chloride_Cl_sr_r1 in component chloride (mol_per_m_per_s_per_A_times_1e5). * ALGEBRAIC[327] is ECl in component nernst (mV). * ALGEBRAIC[331] is EK in component nernst (mV). * CONSTANTS[91] is KClBar in component ctkcl (mM_per_ms). * ALGEBRAIC[332] is ctkcl_CTKCl_z1 in component ctkcl (mV). * CONSTANTS[92] is ctkcl_CTKCl_z2 in component ctkcl (mV). * ALGEBRAIC[352] is ENa in component nernst (mV). * CONSTANTS[93] is NaClBar in component ctnacl (mM_per_ms). * ALGEBRAIC[353] is ctnacl_CTNaCl_z1 in component ctnacl (g4_m8_per_s12_per_A4). * CONSTANTS[346] is ctnacl_CTNaCl_z2 in component ctnacl (g4_m8_per_s12_per_A4). * ALGEBRAIC[207] is Idiff_Na in component diff (mM_per_ms). * STATES[48] is Na in component sodium (mM). * STATES[49] is Na_sr in component sodium (mM). * CONSTANTS[94] is tau in component diff (ms). * CONSTANTS[95] is tau_sr in component diff (ms). * CONSTANTS[96] is tau_tr in component diff (ms). * CONSTANTS[97] is Cao in component extra (mM). * CONSTANTS[98] is Clo in component extra (mM). * CONSTANTS[99] is Ko in component extra (mM). * CONSTANTS[100] is Nao in component extra (mM). * CONSTANTS[263] is FRT in component phys (per_mV). * STATES[50] is V in component membrane (mV). * ALGEBRAIC[215] is efrt in component icab (dimensionless). * CONSTANTS[101] is pCab in component icab (cm_per_s). * ALGEBRAIC[213] is vfrt in component icab (dimensionless). * ALGEBRAIC[223] is f_hat in component ical (dimensionless). * ALGEBRAIC[235] is ICaL in component ical_camk (uA_per_cm2). * CONSTANTS[397] is ical_f_hat_ratio in component ical (dimensionless). * ALGEBRAIC[220] is ical_f_hat_val in component ical (dimensionless). * ALGEBRAIC[246] is ICaL in component ical_np (uA_per_cm2). * STATES[51] is C in component ical_camk (dimensionless). * STATES[52] is CI in component ical_camk (dimensionless). * STATES[53] is CIs in component ical_camk (dimensionless). * STATES[54] is Cs in component ical_camk (dimensionless). * CONSTANTS[275] is FFRT in component phys (s4_A2_per_g_per_m2_per_mol). * ALGEBRAIC[232] is IBar in component ical_camk (uA_per_cm2). * STATES[55] is O in component ical_camk (dimensionless). * STATES[56] is OI in component ical_camk (dimensionless). * STATES[57] is OIs in component ical_camk (dimensionless). * STATES[58] is Os in component ical_camk (dimensionless). * ALGEBRAIC[226] is PCa in component ical_camk (cm_per_s). * ALGEBRAIC[155] is ac_inf in component ical_camk (dimensionless). * ALGEBRAIC[195] is ac_tau in component ical_np (ms). * ALGEBRAIC[202] is alpha in component ical_camk (mS_per_uF). * ALGEBRAIC[205] is beta in component ical_camk (mS_per_uF). * ALGEBRAIC[183] is delta in component ical_camk (mS_per_uF). * ALGEBRAIC[242] is delta1 in component ical_camk (mS_per_uF). * ALGEBRAIC[159] is delta_tau in component ical_camk (dimensionless). * ALGEBRAIC[229] is ical_camk_IBar_vv in component ical_camk (dimensionless). * ALGEBRAIC[230] is ical_camk_delta1_xs_cor in component ical_camk (mS_per_uF). * ALGEBRAIC[236] is ical_camk_delta1_y_cor in component ical_camk (mS_per_uF). * ALGEBRAIC[214] is in_a in component ical_np (dimensionless). * ALGEBRAIC[216] is in_b in component ical_np (dimensionless). * ALGEBRAIC[167] is in_hi_inf in component ical_camk (dimensionless). * ALGEBRAIC[218] is in_hi_tau in component ical_camk (ms). * ALGEBRAIC[163] is in_inf in component ical_camk (dimensionless). * ALGEBRAIC[171] is in_lo_inf in component ical_camk (dimensionless). * ALGEBRAIC[221] is in_lo_tau in component ical_camk (ms). * ALGEBRAIC[187] is inca in component ical_camk (dimensionless). * ALGEBRAIC[175] is ss_cal_10 in component ical_camk (dimensionless). * ALGEBRAIC[179] is ss_cal_4 in component ical_camk (dimensionless). * CONSTANTS[102] is theta in component ical_camk (mS_per_uF). * CONSTANTS[103] is theta1 in component ical_camk (mS_per_uF). * ALGEBRAIC[224] is x in component ical_camk (mS_per_uF). * ALGEBRAIC[227] is xs in component ical_camk (mS_per_uF). * ALGEBRAIC[233] is y in component ical_camk (mS_per_uF). * ALGEBRAIC[239] is ys in component ical_camk (mS_per_uF). * STATES[59] is C in component ical_np (dimensionless). * STATES[60] is CI in component ical_np (dimensionless). * STATES[61] is CIs in component ical_np (dimensionless). * STATES[62] is Cs in component ical_np (dimensionless). * ALGEBRAIC[244] is IBar in component ical_np (uA_per_cm2). * STATES[63] is O in component ical_np (dimensionless). * STATES[64] is OI in component ical_np (dimensionless). * STATES[65] is OIs in component ical_np (dimensionless). * STATES[66] is Os in component ical_np (dimensionless). * ALGEBRAIC[238] is PCa in component ical_np (cm_per_s). * ALGEBRAIC[191] is ac_inf in component ical_np (dimensionless). * ALGEBRAIC[208] is alpha in component ical_np (mS_per_uF). * ALGEBRAIC[210] is beta in component ical_np (mS_per_uF). * ALGEBRAIC[237] is delta in component ical_np (mS_per_uF). * ALGEBRAIC[260] is delta1 in component ical_np (mS_per_uF). * ALGEBRAIC[212] is delta_tau in component ical_np (dimensionless). * ALGEBRAIC[241] is ical_np_IBar_vv in component ical_np (dimensionless). * ALGEBRAIC[249] is ical_np_delta1_xs_cor in component ical_np (mS_per_uF). * ALGEBRAIC[254] is ical_np_delta1_y_cor in component ical_np (mS_per_uF). * ALGEBRAIC[222] is in_hi_inf in component ical_np (dimensionless). * ALGEBRAIC[243] is in_hi_tau in component ical_np (ms). * ALGEBRAIC[219] is in_inf in component ical_np (dimensionless). * ALGEBRAIC[225] is in_lo_inf in component ical_np (dimensionless). * ALGEBRAIC[228] is in_lo_tau in component ical_np (ms). * ALGEBRAIC[240] is inca in component ical_np (dimensionless). * ALGEBRAIC[231] is ss_cal_10 in component ical_np (dimensionless). * ALGEBRAIC[234] is ss_cal_4 in component ical_np (dimensionless). * CONSTANTS[104] is theta in component ical_np (mS_per_uF). * CONSTANTS[105] is theta1 in component ical_np (mS_per_uF). * ALGEBRAIC[245] is x in component ical_np (mS_per_uF). * ALGEBRAIC[247] is xs in component ical_np (mS_per_uF). * ALGEBRAIC[251] is y in component ical_np (mS_per_uF). * ALGEBRAIC[257] is ys in component ical_np (mS_per_uF). * CONSTANTS[106] is Gbar in component iclb (mS_per_cm2). * ALGEBRAIC[253] is IClCa_bar in component iclca (uA_per_cm2). * ALGEBRAIC[317] is Irel_pure in component irel (mM_per_ms). * ALGEBRAIC[320] is KClCa in component iclca (dimensionless). * CONSTANTS[107] is PCl in component iclca (cm_per_s). * STATES[67] is i2 in component iclca (dimensionless). * ALGEBRAIC[11] is iclca_i2_alpha in component iclca (dimensionless). * ALGEBRAIC[39] is iclca_i2_beta in component iclca (dimensionless). * CONSTANTS[108] is kCaCl in component iclca (mM_per_ms). * CONSTANTS[109] is tau in component iclca (ms). * ALGEBRAIC[250] is vexp in component iclca (dimensionless). * CONSTANTS[239] is Gbar in component ik1 (mS_per_cm2). * ALGEBRAIC[339] is IK1 in component ik1 (uA_per_cm2). * ALGEBRAIC[338] is IK1_camk in component ik1 (uA_per_cm2). * ALGEBRAIC[337] is IK1_np in component ik1 (uA_per_cm2). * ALGEBRAIC[335] is ik1_IK1_np_alpha in component ik1 (dimensionless). * ALGEBRAIC[336] is ik1_IK1_np_beta in component ik1 (dimensionless). * ALGEBRAIC[334] is ik1_IK1_np_vv in component ik1 (mV). * CONSTANTS[240] is GKr in component ikr (mS_per_cm2). * ALGEBRAIC[340] is IKr in component ikr (uA_per_cm2). * STATES[68] is ac in component ikr (dimensionless). * ALGEBRAIC[12] is ikr_ac_tau in component ikr (ms). * ALGEBRAIC[40] is inf in component ikr (dimensionless). * ALGEBRAIC[256] is inx in component ikr (dimensionless). * ALGEBRAIC[348] is EKs in component nernst (mV). * ALGEBRAIC[259] is G in component iks (mS_per_cm2). * ALGEBRAIC[351] is IKs in component iks (uA_per_cm2). * CONSTANTS[403] is IKs_arn in component iks_sig (uM). * ALGEBRAIC[349] is IKs_np in component iks (uA_per_cm2). * ALGEBRAIC[350] is IKs_pka in component iks (uA_per_cm2). * CONSTANTS[110] is IKs_tot in component iks_sig (uM). * ALGEBRAIC[266] is f_hat in component iks (dimensionless). * ALGEBRAIC[262] is fp_iks in component iks_sig (dimensionless). * CONSTANTS[404] is iks_f_hat_ratio in component iks (dimensionless). * ALGEBRAIC[264] is iks_f_hat_val in component iks (dimensionless). * STATES[69] is O1 in component iks_np (dimensionless). * STATES[70] is O2 in component iks_np (dimensionless). * STATES[71] is O1 in component iks_pka (dimensionless). * STATES[72] is O2 in component iks_pka (dimensionless). * STATES[73] is C1 in component iks_np (dimensionless). * STATES[74] is C10 in component iks_np (dimensionless). * STATES[75] is C11 in component iks_np (dimensionless). * STATES[76] is C12 in component iks_np (dimensionless). * STATES[77] is C13 in component iks_np (dimensionless). * STATES[78] is C14 in component iks_np (dimensionless). * STATES[79] is C15 in component iks_np (dimensionless). * STATES[80] is C2 in component iks_np (dimensionless). * STATES[81] is C3 in component iks_np (dimensionless). * STATES[82] is C4 in component iks_np (dimensionless). * STATES[83] is C5 in component iks_np (dimensionless). * STATES[84] is C6 in component iks_np (dimensionless). * STATES[85] is C7 in component iks_np (dimensionless). * STATES[86] is C8 in component iks_np (dimensionless). * STATES[87] is C9 in component iks_np (dimensionless). * ALGEBRAIC[13] is a in component iks_np (mS_per_uF). * ALGEBRAIC[41] is b in component iks_np (mS_per_uF). * ALGEBRAIC[63] is d in component iks_np (mS_per_uF). * ALGEBRAIC[75] is e in component iks_np (mS_per_uF). * ALGEBRAIC[91] is g in component iks_np (mS_per_uF). * ALGEBRAIC[92] is o in component iks_np (mS_per_uF). * ALGEBRAIC[103] is p in component iks_np (mS_per_uF). * CONSTANTS[111] is t in component iks_np (mS_per_uF). * STATES[88] is C1 in component iks_pka (dimensionless). * STATES[89] is C10 in component iks_pka (dimensionless). * STATES[90] is C11 in component iks_pka (dimensionless). * STATES[91] is C12 in component iks_pka (dimensionless). * STATES[92] is C13 in component iks_pka (dimensionless). * STATES[93] is C14 in component iks_pka (dimensionless). * STATES[94] is C15 in component iks_pka (dimensionless). * STATES[95] is C2 in component iks_pka (dimensionless). * STATES[96] is C3 in component iks_pka (dimensionless). * STATES[97] is C4 in component iks_pka (dimensionless). * STATES[98] is C5 in component iks_pka (dimensionless). * STATES[99] is C6 in component iks_pka (dimensionless). * STATES[100] is C7 in component iks_pka (dimensionless). * STATES[101] is C8 in component iks_pka (dimensionless). * STATES[102] is C9 in component iks_pka (dimensionless). * ALGEBRAIC[14] is a in component iks_pka (mS_per_uF). * ALGEBRAIC[42] is b in component iks_pka (mS_per_uF). * ALGEBRAIC[64] is d in component iks_pka (mS_per_uF). * ALGEBRAIC[76] is e in component iks_pka (mS_per_uF). * ALGEBRAIC[93] is g in component iks_pka (mS_per_uF). * ALGEBRAIC[94] is o in component iks_pka (mS_per_uF). * ALGEBRAIC[104] is p in component iks_pka (mS_per_uF). * CONSTANTS[112] is t in component iks_pka (mS_per_uF). * CONSTANTS[405] is IKs_arp in component iks_sig (uM). * CONSTANTS[356] is IKsf in component iks_sig (uM). * STATES[103] is IKsp in component iks_sig (uM). * CONSTANTS[113] is K in component iks_sig (uM). * CONSTANTS[114] is Ka_iks in component iks_sig (uM). * CONSTANTS[115] is Kp_iks in component iks_sig (uM). * CONSTANTS[116] is L in component iks_sig (uM). * CONSTANTS[117] is M in component iks_sig (uM). * CONSTANTS[399] is PKA_eca in component pka (uM). * CONSTANTS[401] is PKAf in component iks_sig (uM). * CONSTANTS[360] is PP1f_eca in component iks_sig (uM). * CONSTANTS[118] is Yotiao in component iks_sig (uM). * CONSTANTS[402] is Yotiaof in component iks_sig (uM). * CONSTANTS[353] is iks_sig_IKsf_sum in component iks_sig (dimensionless). * ALGEBRAIC[15] is iks_sig_IKsp_dif in component iks_sig (uM). * CONSTANTS[400] is iks_sig_PKAf_sum in component iks_sig (dimensionless). * CONSTANTS[358] is iks_sig_PP1f_eca_sum in component iks_sig (dimensionless). * CONSTANTS[119] is ka_iks in component iks_sig (hertz). * CONSTANTS[120] is kp_iks in component iks_sig (hertz). * ALGEBRAIC[343] is IKur in component ikur (uA_per_cm2). * ALGEBRAIC[341] is IKur_np in component ikur (uA_per_cm2). * ALGEBRAIC[342] is IKur_p in component ikur (uA_per_cm2). * CONSTANTS[121] is Ka_ikur in component ikur (uM). * CONSTANTS[122] is Kp_ikur in component ikur (uM). * STATES[104] is f_ikur in component ikur (dimensionless). * ALGEBRAIC[270] is fhat in component ikur (dimensionless). * CONSTANTS[123] is gbar_np in component ikur (mS_per_cm2). * ALGEBRAIC[268] is ikur_fhat_val in component ikur (dimensionless). * CONSTANTS[124] is ka_ikur in component ikur (hertz). * CONSTANTS[125] is kp_ikur in component ikur (hertz). * ALGEBRAIC[359] is INa in component ina (uA_per_cm2). * ALGEBRAIC[355] is INa_both in component ina (uA_per_cm2). * ALGEBRAIC[356] is INa_camk in component ina (uA_per_cm2). * ALGEBRAIC[357] is INa_np in component ina (uA_per_cm2). * ALGEBRAIC[358] is INa_pka in component ina (uA_per_cm2). * CONSTANTS[126] is Ka_ina in component ina (uM). * CONSTANTS[127] is Kp_ina in component ina (uM). * ALGEBRAIC[275] is f_both in component ina (dimensionless). * ALGEBRAIC[276] is f_camk_only in component ina (dimensionless). * STATES[105] is f_ina in component ina (dimensionless). * ALGEBRAIC[278] is f_np in component ina (dimensionless). * ALGEBRAIC[274] is f_pka in component ina (dimensionless). * ALGEBRAIC[277] is f_pka_only in component ina (dimensionless). * CONSTANTS[241] is gNaBar in component ina (mS_per_cm2). * STATES[106] is h in component ina_camk (dimensionless). * STATES[107] is j in component ina_camk (dimensionless). * STATES[108] is m in component ina_camk (dimensionless). * ALGEBRAIC[273] is ina_f_pka_val in component ina (dimensionless). * STATES[109] is h in component ina_np (dimensionless). * STATES[110] is j in component ina_np (dimensionless). * STATES[111] is m in component ina_np (dimensionless). * STATES[112] is h in component ina_pka (dimensionless). * STATES[113] is j in component ina_pka (dimensionless). * STATES[114] is m in component ina_pka (dimensionless). * CONSTANTS[128] is ka_ina in component ina (hertz). * CONSTANTS[129] is kp_ina in component ina (hertz). * CONSTANTS[130] is dVIn in component ina_camk (mV). * ALGEBRAIC[16] is ina_camk_h_alpha in component ina_camk (mS_per_uF). * ALGEBRAIC[43] is ina_camk_h_beta in component ina_camk (mS_per_uF). * ALGEBRAIC[17] is ina_camk_j_alpha in component ina_camk (mS_per_uF). * ALGEBRAIC[44] is ina_camk_j_beta in component ina_camk (mS_per_uF). * ALGEBRAIC[18] is ina_camk_m_alpha in component ina_camk (mS_per_uF). * ALGEBRAIC[45] is ina_camk_m_beta in component ina_camk (mS_per_uF). * ALGEBRAIC[19] is ina_np_h_alpha in component ina_np (mS_per_uF). * ALGEBRAIC[46] is ina_np_h_beta in component ina_np (mS_per_uF). * ALGEBRAIC[20] is ina_np_j_alpha in component ina_np (mS_per_uF). * ALGEBRAIC[47] is ina_np_j_beta in component ina_np (mS_per_uF). * ALGEBRAIC[21] is ina_np_m_alpha in component ina_np (mS_per_uF). * ALGEBRAIC[48] is ina_np_m_beta in component ina_np (mS_per_uF). * CONSTANTS[131] is dVAc in component ina_pka (mV). * CONSTANTS[132] is dVIn in component ina_pka (mV). * ALGEBRAIC[22] is ina_pka_h_alpha in component ina_pka (mS_per_uF). * ALGEBRAIC[49] is ina_pka_h_beta in component ina_pka (mS_per_uF). * ALGEBRAIC[23] is ina_pka_j_alpha in component ina_pka (mS_per_uF). * ALGEBRAIC[50] is ina_pka_j_beta in component ina_pka (mS_per_uF). * ALGEBRAIC[24] is ina_pka_m_alpha in component ina_pka (mS_per_uF). * ALGEBRAIC[51] is ina_pka_m_beta in component ina_pka (mS_per_uF). * ALGEBRAIC[281] is INab in component inab (uA_per_cm2). * CONSTANTS[133] is P in component inab (cm_per_s). * ALGEBRAIC[280] is ePhi in component inab (dimensionless). * ALGEBRAIC[279] is inab_INab_phi in component inab (dimensionless). * CONSTANTS[362] is KmNai3 in component inaca (mM3). * CONSTANTS[364] is KmNao3 in component inaca (mM3). * CONSTANTS[134] is Km_Ca in component inaca (mM). * CONSTANTS[135] is Km_Cai in component inaca (mM). * CONSTANTS[136] is Km_Cao in component inaca (mM). * CONSTANTS[137] is Km_Nai in component inaca (mM). * CONSTANTS[138] is Km_Nao in component inaca (mM). * ALGEBRAIC[282] is Na_i3 in component inaca (mM3). * CONSTANTS[366] is Na_o3 in component inaca (mM3). * ALGEBRAIC[283] is Na_ss3 in component inaca (mM3). * CONSTANTS[139] is eta in component inaca (dimensionless). * ALGEBRAIC[284] is exp1 in component inaca (dimensionless). * ALGEBRAIC[285] is exp2 in component inaca (dimensionless). * ALGEBRAIC[286] is inaca_INaCaSR_denom1 in component inaca (dimensionless). * ALGEBRAIC[287] is inaca_INaCaSR_denom2 in component inaca (dimensionless). * ALGEBRAIC[288] is inaca_INaCaSR_denom3 in component inaca (mol4_per_m12). * ALGEBRAIC[289] is inaca_INaCaSR_denom4 in component inaca (mol4_per_m12). * ALGEBRAIC[290] is inaca_INaCaSR_num in component inaca (A_mol4_per_m14_times_1e_minus_2). * ALGEBRAIC[292] is inaca_INaCa_denom1 in component inaca (dimensionless). * ALGEBRAIC[293] is inaca_INaCa_denom2 in component inaca (dimensionless). * ALGEBRAIC[294] is inaca_INaCa_denom3 in component inaca (mol4_per_m12). * ALGEBRAIC[295] is inaca_INaCa_denom4 in component inaca (mol4_per_m12). * ALGEBRAIC[296] is inaca_INaCa_num in component inaca (A_mol4_per_m14_times_1e_minus_2). * CONSTANTS[140] is kSat in component inaca (dimensionless). * CONSTANTS[141] is vMax in component inaca (uA_per_cm2). * ALGEBRAIC[303] is INaK in component inak (uA_per_cm2). * ALGEBRAIC[301] is INaK_np in component inak (uA_per_cm2). * ALGEBRAIC[302] is INaK_p in component inak (uA_per_cm2). * CONSTANTS[142] is Ka_inak in component inak (uM). * CONSTANTS[143] is Kp_inak in component inak (uM). * STATES[115] is f_inak in component inak (dimensionless). * ALGEBRAIC[299] is fhat in component inak (dimensionless). * CONSTANTS[144] is ibar in component inak (uA_per_cm2). * ALGEBRAIC[298] is inak_fhat_val in component inak (dimensionless). * CONSTANTS[145] is ka_inak in component inak (hertz). * CONSTANTS[146] is km_ko in component inak (mM). * CONSTANTS[147] is km_np in component inak (mM). * CONSTANTS[148] is km_p in component inak (mM). * CONSTANTS[149] is kp_inak in component inak (hertz). * ALGEBRAIC[300] is phi in component inak (uA_per_cm2). * CONSTANTS[242] is pk in component inak (dimensionless). * ALGEBRAIC[363] is INaL in component inal (uA_per_cm2). * ALGEBRAIC[361] is INaL_camk in component inal (uA_per_cm2). * ALGEBRAIC[362] is INaL_np in component inal (uA_per_cm2). * ALGEBRAIC[360] is conductance in component inal (mV). * STATES[116] is h in component inal (dimensionless). * ALGEBRAIC[25] is h_inf in component inal (dimensionless). * ALGEBRAIC[26] is inal_m_alpha in component inal (mS_per_uF). * ALGEBRAIC[52] is inal_m_beta in component inal (mS_per_uF). * STATES[117] is m in component inal (dimensionless). * CONSTANTS[150] is tau_h in component inal (ms). * CONSTANTS[151] is IpCa_bar in component ipca (uA_per_cm2). * CONSTANTS[152] is Km_pCa in component ipca (mM). * ALGEBRAIC[315] is Ileak_ryr in component irel (mM_per_ms). * ALGEBRAIC[307] is Ileak_ryr_np in component irel (mM_per_ms). * ALGEBRAIC[309] is Ileak_ryr_p in component irel (mM_per_ms). * STATES[118] is Irel_np in component irel (mM_per_ms). * STATES[119] is Irel_p in component irel (mM_per_ms). * CONSTANTS[153] is Km_ryr_leak_np in component irel (mM). * CONSTANTS[154] is Km_ryr_leak_p in component irel (mM). * ALGEBRAIC[255] is alpha_np in component irel (mM_per_ms). * ALGEBRAIC[261] is alpha_p in component irel (mM_per_ms). * CONSTANTS[243] is beta_0 in component irel (ms). * ALGEBRAIC[252] is beta_np in component irel (ms). * ALGEBRAIC[258] is beta_p in component irel (ms). * ALGEBRAIC[313] is fhat in component irel (dimensionless). * CONSTANTS[398] is irel_fhat_ratio in component irel (dimensionless). * ALGEBRAIC[311] is irel_fhat_val in component irel (dimensionless). * ALGEBRAIC[271] is irel_inf_np in component irel (mM_per_ms). * ALGEBRAIC[272] is irel_inf_p in component irel (mM_per_ms). * ALGEBRAIC[265] is irel_tau_np in component irel (ms). * ALGEBRAIC[267] is irel_tau_p in component irel (ms). * CONSTANTS[155] is k_ryr_leak_np in component irel (mS_per_uF). * CONSTANTS[156] is k_ryr_leak_p in component irel (mS_per_uF). * ALGEBRAIC[263] is x in component irel (dimensionless). * ALGEBRAIC[269] is y in component irel (dimensionless). * CONSTANTS[157] is Gbar in component ito (mS_per_cm2). * ALGEBRAIC[347] is ITo in component ito (uA_per_cm2). * ALGEBRAIC[345] is ITo_camk in component ito (uA_per_cm2). * ALGEBRAIC[346] is ITo_np in component ito (uA_per_cm2). * ALGEBRAIC[325] is R in component ito (dimensionless). * ALGEBRAIC[27] is a_inf in component ito (dimensionless). * STATES[120] is a_np in component ito (dimensionless). * ALGEBRAIC[77] is a_tau in component ito (ms). * ALGEBRAIC[28] is alph_if in component ito (dimensionless). * ALGEBRAIC[54] is alph_is in component ito (dimensionless). * ALGEBRAIC[66] is beta_i in component ito (mS_per_uF). * STATES[121] is if_camk in component ito (dimensionless). * STATES[122] is if_np in component ito (dimensionless). * STATES[123] is is_camk in component ito (dimensionless). * STATES[124] is is_np in component ito (dimensionless). * ALGEBRAIC[53] is ito_a_np_alpha in component ito (dimensionless). * ALGEBRAIC[65] is ito_a_np_beta in component ito (dimensionless). * ALGEBRAIC[78] is ito_if_camk_alpha in component ito (mS_per_uF). * ALGEBRAIC[79] is ito_if_np_alpha in component ito (mS_per_uF). * ALGEBRAIC[80] is ito_is_camk_alpha in component ito (mS_per_uF). * ALGEBRAIC[81] is ito_is_np_alpha in component ito (mS_per_uF). * ALGEBRAIC[344] is x in component ito (uA_per_cm2). * ALGEBRAIC[308] is Imax in component iup (mM_per_ms). * CONSTANTS[158] is Ka_plb in component iup (uM). * CONSTANTS[376] is Km_both in component iup (mM). * CONSTANTS[369] is Km_camk in component iup (mM). * CONSTANTS[159] is Km_np in component iup (mM). * CONSTANTS[374] is Km_pka in component iup (mM). * ALGEBRAIC[322] is Km_up in component iup (mM). * CONSTANTS[160] is Kp_plb in component iup (uM). * ALGEBRAIC[306] is f_SERCA2a in component iup (dimensionless). * ALGEBRAIC[314] is f_both in component iup (dimensionless). * ALGEBRAIC[316] is f_camk_only in component iup (dimensionless). * ALGEBRAIC[321] is f_np in component iup (dimensionless). * ALGEBRAIC[312] is f_pka in component iup (dimensionless). * ALGEBRAIC[318] is f_pka_only in component iup (dimensionless). * STATES[125] is f_plb in component iup (dimensionless). * ALGEBRAIC[310] is iup_f_pka_val in component iup (dimensionless). * CONSTANTS[161] is iupmax in component iup (mM_per_ms). * CONSTANTS[379] is iupmaxCAMK in component iup (mM_per_ms). * CONSTANTS[162] is ka_plb in component iup (hertz). * CONSTANTS[163] is kp_plb in component iup (hertz). * ALGEBRAIC[324] is leak in component iup (mM_per_ms). * CONSTANTS[164] is nsrmax in component iup (mM). * ALGEBRAIC[326] is uptake in component iup (mM_per_ms). * ALGEBRAIC[364] is IK_tot in component potassium (uA_per_cm2). * ALGEBRAIC[366] is INa_tot in component sodium (uA_per_cm2). * ALGEBRAIC[367] is i_ion in component membrane (uA_per_cm2). * ALGEBRAIC[368] is i_stim in component stimulus (uA_per_cm2). * CONSTANTS[165] is PNaK in component nernst (dimensionless). * CONSTANTS[238] is RTF in component phys (mV). * STATES[126] is K in component potassium (mM). * CONSTANTS[166] is KPDEp in component pde (uM). * CONSTANTS[167] is KmIbmxPde2 in component pde (dimensionless). * CONSTANTS[168] is KmIbmxPde3 in component pde (dimensionless). * CONSTANTS[169] is KmIbmxPde4 in component pde (dimensionless). * CONSTANTS[170] is KmPDE2 in component pde (uM). * CONSTANTS[171] is KmPDE3 in component pde (uM). * CONSTANTS[172] is KmPDE4 in component pde (uM). * CONSTANTS[347] is PDE2_cav in component pde (uM). * CONSTANTS[348] is PDE2_cyt in component pde (uM). * CONSTANTS[349] is PDE2_eca in component pde (uM). * CONSTANTS[173] is PDE2_tot in component pde (uM). * STATES[127] is PDE3_P_cav in component pde (uM). * STATES[128] is PDE3_P_cyt in component pde (uM). * CONSTANTS[377] is PDE3_cav in component pde (uM). * CONSTANTS[378] is PDE3_cyt in component pde (uM). * CONSTANTS[363] is PDE3_tot in component pde (uM). * STATES[129] is PDE4_P_cav in component pde (uM). * STATES[130] is PDE4_P_cyt in component pde (uM). * STATES[131] is PDE4_P_eca in component pde (uM). * CONSTANTS[370] is PDE4_cav in component pde (uM). * CONSTANTS[371] is PDE4_cyt in component pde (uM). * CONSTANTS[372] is PDE4_eca in component pde (uM). * CONSTANTS[365] is PDE4_tot in component pde (uM). * CONSTANTS[174] is delta_k_pde34 in component pde (dimensionless). * CONSTANTS[175] is f_pde2_cav in component pde (dimensionless). * CONSTANTS[333] is f_pde2_cyt in component pde (dimensionless). * CONSTANTS[176] is f_pde2_eca in component pde (dimensionless). * CONSTANTS[334] is f_pde2_part in component pde (dimensionless). * CONSTANTS[367] is f_pde3_cav in component pde (dimensionless). * CONSTANTS[373] is f_pde3_cyt in component pde (dimensionless). * CONSTANTS[177] is f_pde4_cav in component pde (dimensionless). * CONSTANTS[339] is f_pde4_cyt in component pde (dimensionless). * CONSTANTS[343] is f_pde4_eca in component pde (dimensionless). * CONSTANTS[178] is f_pde4_part in component pde (dimensionless). * CONSTANTS[179] is f_pde_part in component pde (dimensionless). * CONSTANTS[180] is ff_pde3_cyt in component pde (dimensionless). * CONSTANTS[181] is h_ibmx_pde2 in component pde (dimensionless). * CONSTANTS[182] is h_ibmx_pde3 in component pde (dimensionless). * CONSTANTS[183] is h_ibmx_pde4 in component pde (dimensionless). * CONSTANTS[184] is ibmx in component pde (uM). * CONSTANTS[342] is ibmx2 in component pde (uM). * CONSTANTS[375] is ibmx3 in component pde (uM). * CONSTANTS[368] is ibmx4 in component pde (uM). * CONSTANTS[338] is ibmx_h2 in component pde (dimensionless). * CONSTANTS[350] is ibmx_h3 in component pde (dimensionless). * CONSTANTS[354] is ibmx_h4 in component pde (dimensionless). * CONSTANTS[185] is kPDE2 in component pde (hertz). * CONSTANTS[186] is kPDE3 in component pde (hertz). * CONSTANTS[187] is kPDE4 in component pde (hertz). * CONSTANTS[244] is kbPDEp in component pde (hertz). * CONSTANTS[188] is kfPDEp in component pde (per_mM_per_ms). * CONSTANTS[359] is pde_PDE3_tot_alpha in component pde (dimensionless). * CONSTANTS[361] is pde_PDE3_tot_beta in component pde (dimensionless). * CONSTANTS[189] is r_pde34_frac in component pde (dimensionless). * CONSTANTS[357] is r_pde3_cyt in component pde (dimensionless). * CONSTANTS[190] is R in component phys (mJ_per_mol_per_K). * CONSTANTS[191] is T in component phys (kelvin). * CONSTANTS[245] is K_pki in component pka (uM). * CONSTANTS[335] is PKA_cyt in component pka (uM). * CONSTANTS[192] is PKA_tot in component pka (uM). * CONSTANTS[344] is PKI_cav in component pka (uM). * CONSTANTS[355] is PKI_cyt in component pka (uM). * CONSTANTS[351] is PKI_eca in component pka (uM). * CONSTANTS[336] is PKI_tot in component pka (uM). * CONSTANTS[264] is b_pki in component pka (hertz). * CONSTANTS[193] is f_cav in component pka (dimensionless). * CONSTANTS[327] is f_cyt in component pka (dimensionless). * CONSTANTS[194] is f_eca in component pka (dimensionless). * CONSTANTS[195] is f_pki in component pka (per_mM_per_ms). * CONSTANTS[340] is f_pki_cav in component pka (dimensionless). * CONSTANTS[352] is f_pki_cyt in component pka (dimensionless). * CONSTANTS[345] is f_pki_eca in component pka (dimensionless). * STATES[132] is A2R in component pka_cav (uM). * STATES[133] is A2RC in component pka_cav (uM). * STATES[134] is ARC in component pka_cav (uM). * CONSTANTS[196] is K1 in component pka_cav (uM). * CONSTANTS[197] is K2 in component pka_cav (uM). * CONSTANTS[198] is K3 in component pka_cav (m3_per_mol_times_1e3). * STATES[135] is PKIC in component pka_cav (uM). * ALGEBRAIC[140] is RCf in component pka_cav (uM). * CONSTANTS[246] is b1 in component pka_cav (hertz). * CONSTANTS[247] is b2 in component pka_cav (hertz). * CONSTANTS[248] is b3 in component pka_cav (per_mM_per_ms). * CONSTANTS[199] is f1 in component pka_cav (per_mM_per_ms). * CONSTANTS[200] is f2 in component pka_cav (per_mM_per_ms). * CONSTANTS[201] is f3 in component pka_cav (hertz). * STATES[136] is A2R in component pka_cyt (uM). * STATES[137] is A2RC in component pka_cyt (uM). * STATES[138] is ARC in component pka_cyt (uM). * CONSTANTS[202] is K1 in component pka_cyt (uM). * CONSTANTS[203] is K2 in component pka_cyt (uM). * CONSTANTS[204] is K3 in component pka_cyt (m3_per_mol_times_1e3). * STATES[139] is PKIC in component pka_cyt (uM). * ALGEBRAIC[150] is RCf in component pka_cyt (uM). * CONSTANTS[265] is b1 in component pka_cyt (hertz). * CONSTANTS[266] is b2 in component pka_cyt (hertz). * CONSTANTS[267] is b3 in component pka_cyt (per_mM_per_ms). * CONSTANTS[249] is f1 in component pka_cyt (per_mM_per_ms). * CONSTANTS[250] is f2 in component pka_cyt (per_mM_per_ms). * CONSTANTS[251] is f3 in component pka_cyt (hertz). * STATES[140] is A2R in component pka_eca (uM). * STATES[141] is A2RC in component pka_eca (uM). * STATES[142] is ARC in component pka_eca (uM). * CONSTANTS[252] is K1 in component pka_eca (uM). * CONSTANTS[253] is K2 in component pka_eca (uM). * CONSTANTS[254] is K3 in component pka_eca (m3_per_mol_times_1e3). * STATES[143] is PKIC in component pka_eca (uM). * ALGEBRAIC[130] is RCf in component pka_eca (uM). * CONSTANTS[276] is b1 in component pka_eca (hertz). * CONSTANTS[277] is b2 in component pka_eca (hertz). * CONSTANTS[278] is b3 in component pka_eca (per_mM_per_ms). * CONSTANTS[268] is f1 in component pka_eca (per_mM_per_ms). * CONSTANTS[269] is f2 in component pka_eca (per_mM_per_ms). * CONSTANTS[270] is f3 in component pka_eca (hertz). * CONSTANTS[406] is potassium_K_r1 in component potassium (mol_per_m_per_s_per_A_times_1e5). * CONSTANTS[205] is K in component pp1 (uM). * CONSTANTS[206] is Kdp in component pp1 (uM). * CONSTANTS[207] is Kp in component pp1 (uM). * CONSTANTS[208] is PP1_cyt in component pp1 (uM). * ALGEBRAIC[29] is di in component pp1 (uM). * CONSTANTS[209] is f in component pp1 (dimensionless). * STATES[144] is inhib1_p in component pp1 (uM). * CONSTANTS[255] is inhib1_tot in component pp1 (uM). * CONSTANTS[210] is kdp in component pp1 (hertz). * CONSTANTS[211] is kp in component pp1 (hertz). * ALGEBRAIC[198] is pp1_PP1f_cyt_sum in component pp1 (uM). * ALGEBRAIC[365] is INa_cyt in component sodium (uA_per_cm2). * CONSTANTS[407] is sodium_Na_r1 in component sodium (mol_per_m_per_s_per_A_times_1e5). * CONSTANTS[408] is sodium_Na_r2 in component sodium (dimensionless). * CONSTANTS[409] is sodium_Na_sr_r1 in component sodium (mol_per_m_per_s_per_A_times_1e5). * CONSTANTS[256] is amplitude in component stimulus (uA_per_cm2). * CONSTANTS[212] is duration in component stimulus (ms). * CONSTANTS[213] is offset in component stimulus (ms). * CONSTANTS[214] is period in component stimulus (ms). * RATES[4] is d/dt ICaLp in component akap_sig (uM). * RATES[5] is d/dt RyRp in component akap_sig (uM). * RATES[7] is d/dt Gi_aGDP in component beta_cav (uM). * RATES[8] is d/dt Gi_aGTP in component beta_cav (uM). * RATES[0] is d/dt Gi_bg in component beta_cav (uM). * RATES[9] is d/dt Gs_aGDP in component beta_cav (uM). * RATES[1] is d/dt Gs_aGTP in component beta_cav (uM). * RATES[10] is d/dt Gs_bg in component beta_cav (uM). * RATES[11] is d/dt Rb1_grk_tot in component beta_cav (uM). * RATES[12] is d/dt Rb1_pka_tot in component beta_cav (uM). * RATES[13] is d/dt Rb2_grk_tot in component beta_cav (uM). * RATES[14] is d/dt Rb2_pka_tot in component beta_cav (uM). * RATES[15] is d/dt Gs_aGDP in component beta_cyt (uM). * RATES[2] is d/dt Gs_aGTP in component beta_cyt (uM). * RATES[16] is d/dt Gs_bg in component beta_cyt (uM). * RATES[17] is d/dt Rb1_grk_tot in component beta_cyt (uM). * RATES[18] is d/dt Rb1_pka_tot in component beta_cyt (uM). * RATES[20] is d/dt Gi_aGDP in component beta_eca (uM). * RATES[21] is d/dt Gi_aGTP in component beta_eca (uM). * RATES[22] is d/dt Gi_bg in component beta_eca (uM). * RATES[23] is d/dt Gs_aGDP in component beta_eca (uM). * RATES[3] is d/dt Gs_aGTP in component beta_eca (uM). * RATES[24] is d/dt Gs_bg in component beta_eca (uM). * RATES[25] is d/dt Rb1_grk_tot in component beta_eca (uM). * RATES[26] is d/dt Rb1_pka_tot in component beta_eca (uM). * RATES[27] is d/dt Rb2_grk_tot in component beta_eca (uM). * RATES[28] is d/dt Rb2_pka_tot in component beta_eca (uM). * RATES[30] is d/dt Ca_nsr in component calcium (mM). * RATES[31] is d/dt f_tni in component calcium (dimensionless). * RATES[32] is d/dt uCa in component calcium (mM). * RATES[33] is d/dt uCa_CaL in component calcium (mM). * RATES[34] is d/dt uCa_jsr in component calcium (mM). * RATES[35] is d/dt uCa_sr in component calcium (mM). * RATES[36] is d/dt f_ical in component camk (dimensionless). * RATES[37] is d/dt f_ik1 in component camk (dimensionless). * RATES[38] is d/dt f_ina in component camk (dimensionless). * RATES[39] is d/dt f_ito in component camk (dimensionless). * RATES[40] is d/dt f_plb in component camk (dimensionless). * RATES[41] is d/dt f_ryr in component camk (dimensionless). * RATES[42] is d/dt trap in component camk (dimensionless). * RATES[43] is d/dt cAMP_cav in component camp (uM). * RATES[44] is d/dt cAMP_cyt in component camp (uM). * RATES[45] is d/dt cAMP_eca in component camp (uM). * RATES[46] is d/dt Cl in component chloride (mM). * RATES[47] is d/dt Cl_sr in component chloride (mM). * RATES[51] is d/dt C in component ical_camk (dimensionless). * RATES[52] is d/dt CI in component ical_camk (dimensionless). * RATES[53] is d/dt CIs in component ical_camk (dimensionless). * RATES[54] is d/dt Cs in component ical_camk (dimensionless). * RATES[55] is d/dt O in component ical_camk (dimensionless). * RATES[56] is d/dt OI in component ical_camk (dimensionless). * RATES[57] is d/dt OIs in component ical_camk (dimensionless). * RATES[58] is d/dt Os in component ical_camk (dimensionless). * RATES[59] is d/dt C in component ical_np (dimensionless). * RATES[60] is d/dt CI in component ical_np (dimensionless). * RATES[61] is d/dt CIs in component ical_np (dimensionless). * RATES[62] is d/dt Cs in component ical_np (dimensionless). * RATES[63] is d/dt O in component ical_np (dimensionless). * RATES[64] is d/dt OI in component ical_np (dimensionless). * RATES[65] is d/dt OIs in component ical_np (dimensionless). * RATES[66] is d/dt Os in component ical_np (dimensionless). * RATES[67] is d/dt i2 in component iclca (dimensionless). * RATES[68] is d/dt ac in component ikr (dimensionless). * RATES[73] is d/dt C1 in component iks_np (dimensionless). * RATES[74] is d/dt C10 in component iks_np (dimensionless). * RATES[75] is d/dt C11 in component iks_np (dimensionless). * RATES[76] is d/dt C12 in component iks_np (dimensionless). * RATES[77] is d/dt C13 in component iks_np (dimensionless). * RATES[78] is d/dt C14 in component iks_np (dimensionless). * RATES[79] is d/dt C15 in component iks_np (dimensionless). * RATES[80] is d/dt C2 in component iks_np (dimensionless). * RATES[81] is d/dt C3 in component iks_np (dimensionless). * RATES[82] is d/dt C4 in component iks_np (dimensionless). * RATES[83] is d/dt C5 in component iks_np (dimensionless). * RATES[84] is d/dt C6 in component iks_np (dimensionless). * RATES[85] is d/dt C7 in component iks_np (dimensionless). * RATES[86] is d/dt C8 in component iks_np (dimensionless). * RATES[87] is d/dt C9 in component iks_np (dimensionless). * RATES[69] is d/dt O1 in component iks_np (dimensionless). * RATES[70] is d/dt O2 in component iks_np (dimensionless). * RATES[88] is d/dt C1 in component iks_pka (dimensionless). * RATES[89] is d/dt C10 in component iks_pka (dimensionless). * RATES[90] is d/dt C11 in component iks_pka (dimensionless). * RATES[91] is d/dt C12 in component iks_pka (dimensionless). * RATES[92] is d/dt C13 in component iks_pka (dimensionless). * RATES[93] is d/dt C14 in component iks_pka (dimensionless). * RATES[94] is d/dt C15 in component iks_pka (dimensionless). * RATES[95] is d/dt C2 in component iks_pka (dimensionless). * RATES[96] is d/dt C3 in component iks_pka (dimensionless). * RATES[97] is d/dt C4 in component iks_pka (dimensionless). * RATES[98] is d/dt C5 in component iks_pka (dimensionless). * RATES[99] is d/dt C6 in component iks_pka (dimensionless). * RATES[100] is d/dt C7 in component iks_pka (dimensionless). * RATES[101] is d/dt C8 in component iks_pka (dimensionless). * RATES[102] is d/dt C9 in component iks_pka (dimensionless). * RATES[71] is d/dt O1 in component iks_pka (dimensionless). * RATES[72] is d/dt O2 in component iks_pka (dimensionless). * RATES[103] is d/dt IKsp in component iks_sig (uM). * RATES[104] is d/dt f_ikur in component ikur (dimensionless). * RATES[105] is d/dt f_ina in component ina (dimensionless). * RATES[106] is d/dt h in component ina_camk (dimensionless). * RATES[107] is d/dt j in component ina_camk (dimensionless). * RATES[108] is d/dt m in component ina_camk (dimensionless). * RATES[109] is d/dt h in component ina_np (dimensionless). * RATES[110] is d/dt j in component ina_np (dimensionless). * RATES[111] is d/dt m in component ina_np (dimensionless). * RATES[112] is d/dt h in component ina_pka (dimensionless). * RATES[113] is d/dt j in component ina_pka (dimensionless). * RATES[114] is d/dt m in component ina_pka (dimensionless). * RATES[115] is d/dt f_inak in component inak (dimensionless). * RATES[116] is d/dt h in component inal (dimensionless). * RATES[117] is d/dt m in component inal (dimensionless). * RATES[118] is d/dt Irel_np in component irel (mM_per_ms). * RATES[119] is d/dt Irel_p in component irel (mM_per_ms). * RATES[120] is d/dt a_np in component ito (dimensionless). * RATES[121] is d/dt if_camk in component ito (dimensionless). * RATES[122] is d/dt if_np in component ito (dimensionless). * RATES[123] is d/dt is_camk in component ito (dimensionless). * RATES[124] is d/dt is_np in component ito (dimensionless). * RATES[125] is d/dt f_plb in component iup (dimensionless). * RATES[50] is d/dt V in component membrane (mV). * RATES[127] is d/dt PDE3_P_cav in component pde (uM). * RATES[128] is d/dt PDE3_P_cyt in component pde (uM). * RATES[129] is d/dt PDE4_P_cav in component pde (uM). * RATES[130] is d/dt PDE4_P_cyt in component pde (uM). * RATES[131] is d/dt PDE4_P_eca in component pde (uM). * RATES[132] is d/dt A2R in component pka_cav (uM). * RATES[133] is d/dt A2RC in component pka_cav (uM). * RATES[134] is d/dt ARC in component pka_cav (uM). * RATES[6] is d/dt C in component pka_cav (uM). * RATES[135] is d/dt PKIC in component pka_cav (uM). * RATES[136] is d/dt A2R in component pka_cyt (uM). * RATES[137] is d/dt A2RC in component pka_cyt (uM). * RATES[138] is d/dt ARC in component pka_cyt (uM). * RATES[19] is d/dt C in component pka_cyt (uM). * RATES[139] is d/dt PKIC in component pka_cyt (uM). * RATES[140] is d/dt A2R in component pka_eca (uM). * RATES[141] is d/dt A2RC in component pka_eca (uM). * RATES[142] is d/dt ARC in component pka_eca (uM). * RATES[29] is d/dt C in component pka_eca (uM). * RATES[143] is d/dt PKIC in component pka_eca (uM). * RATES[126] is d/dt K in component potassium (mM). * RATES[144] is d/dt inhib1_p in component pp1 (uM). * RATES[48] is d/dt Na in component sodium (mM). * RATES[49] is d/dt Na_sr in component sodium (mM). */ void initConsts(double* CONSTANTS, double* RATES, double *STATES) { CONSTANTS[0] = 5000.0; CONSTANTS[1] = 315.0; CONSTANTS[2] = 0.0465; CONSTANTS[3] = 0.031544; CONSTANTS[4] = 0.0852; CONSTANTS[5] = 0.4824; CONSTANTS[6] = 3.3757; CONSTANTS[7] = 41.32; CONSTANTS[8] = 0.03135; CONSTANTS[9] = 0.037696; STATES[0] = 2.09911481235842013e-3; STATES[1] = 6.85041638458664965e-3; STATES[2] = 7.31420577213055985e-4; STATES[3] = 1.84627603007976003e-2; CONSTANTS[10] = 0.16479; CONSTANTS[11] = 0.087459; CONSTANTS[12] = 1.0043; CONSTANTS[13] = 1.3574; CONSTANTS[14] = 0.6623; CONSTANTS[15] = 0.8569; CONSTANTS[16] = 0.025; CONSTANTS[17] = 0.025; STATES[4] = 6.73713947839316954e-4; CONSTANTS[18] = 1.27019999999999993e-6; CONSTANTS[19] = 6.62979999999999944e-5; CONSTANTS[20] = 0.01; CONSTANTS[21] = 0.0063064; CONSTANTS[22] = 0.043003; CONSTANTS[23] = 0.01; CONSTANTS[24] = 0.0001; CONSTANTS[25] = 0.0001; CONSTANTS[26] = 0.01; CONSTANTS[27] = 0.01; CONSTANTS[28] = 0.25; CONSTANTS[29] = 0.125; CONSTANTS[30] = 0.125; STATES[5] = 4.10693810508170991e-3; CONSTANTS[31] = 5.10090000000000044e-4; CONSTANTS[32] = 0.0025548; CONSTANTS[33] = 0.0006903; CONSTANTS[34] = 0.0038257; STATES[6] = 3.26565916584702978e-02; CONSTANTS[35] = 0.5; CONSTANTS[36] = 0.85; CONSTANTS[37] = 0.0011071; CONSTANTS[38] = 0.5664; CONSTANTS[39] = 0.081161; CONSTANTS[40] = 0.48744; CONSTANTS[41] = 0.85; CONSTANTS[42] = 4.0; CONSTANTS[43] = 4.9054; CONSTANTS[44] = 0.05; CONSTANTS[45] = 0.25945; CONSTANTS[46] = 2.449; CONSTANTS[47] = 0.062; CONSTANTS[48] = 0.567; CONSTANTS[49] = 1.6655; CONSTANTS[50] = 1.8463; CONSTANTS[51] = 0.1; CONSTANTS[52] = 0.012; CONSTANTS[53] = 1.053; CONSTANTS[54] = 1.053; CONSTANTS[55] = 0.8; CONSTANTS[56] = 1210.0; CONSTANTS[57] = 0.35; CONSTANTS[58] = 1.0; STATES[7] = 5.02792845976641014e-4; STATES[8] = 1.59632196638178009e-3; STATES[9] = 6.07316088556675987e-4; STATES[10] = 7.45773247314215036e-3; STATES[11] = 2.49592854373432000e-10; STATES[12] = 1.49041813757830998e-2; STATES[13] = 8.91799633266019011e-10; STATES[14] = 2.75455839709412009e-2; CONSTANTS[59] = 0.0; CONSTANTS[60] = 1.0; CONSTANTS[61] = 1.0; STATES[15] = 4.19991861054322011e-4; STATES[16] = 1.15141243826746994e-3; STATES[17] = 7.07824478944670999e-11; STATES[18] = 9.44463350378085993e-3; STATES[19] = 3.62113356111495976e-01; CONSTANTS[62] = 1.0; STATES[20] = 3.41341142614041016e-4; STATES[21] = 3.64315164237569004e-4; STATES[22] = 7.05656306851923029e-4; STATES[23] = 6.39038440072506948e-4; STATES[24] = 1.91017987408719017e-2; STATES[25] = 1.18055788874765002e-9; STATES[26] = 2.03016833596287999e-1; STATES[27] = 1.13428924662652000e-10; STATES[28] = 1.10248953370551007e-2; CONSTANTS[63] = 1.0; STATES[29] = 5.67249910261072965e-01; STATES[30] = 1.191; CONSTANTS[64] = 2.71430000000000008e-5; CONSTANTS[65] = 0.26714; CONSTANTS[66] = 1.0; CONSTANTS[67] = 1.124; CONSTANTS[68] = 0.0087; CONSTANTS[69] = 0.047; CONSTANTS[70] = 0.00087; CONSTANTS[71] = 0.05; CONSTANTS[72] = 10.0; CONSTANTS[73] = 0.8; STATES[31] = 6.73518785672381992e-1; CONSTANTS[74] = 0.10408; CONSTANTS[75] = 0.00238; CONSTANTS[76] = 0.052633; CONSTANTS[77] = 0.0005; CONSTANTS[78] = 0.07; STATES[32] = 0.013394; STATES[33] = 0.023413; STATES[34] = 6.8659; STATES[35] = 0.023413; CONSTANTS[79] = 0.05; CONSTANTS[80] = 0.25; CONSTANTS[81] = 0.0015; CONSTANTS[82] = 0.1; CONSTANTS[83] = 0.05; CONSTANTS[84] = 0.00068; STATES[36] = 0.0; STATES[37] = 0.0; STATES[38] = 0.0; STATES[39] = 0.0; STATES[40] = 0.0; STATES[41] = 0.0; CONSTANTS[85] = 100000.0; CONSTANTS[86] = 10000.0; STATES[42] = 0.0017546; STATES[43] = 3.47102959606005013e-1; STATES[44] = 4.74081735738210996e-1; STATES[45] = 9.62359241535767040e+00; CONSTANTS[87] = 96487.0; CONSTANTS[88] = 0.01; CONSTANTS[89] = 3.14159265358979312e+00; CONSTANTS[90] = 0.0011; STATES[46] = 20.273; STATES[47] = 20.273; CONSTANTS[91] = 1.77e-5; CONSTANTS[92] = 87.8251; CONSTANTS[93] = 2.46108000000000016e-5; STATES[48] = 6.8909; STATES[49] = 6.8909; CONSTANTS[94] = 0.2; CONSTANTS[95] = 0.02; CONSTANTS[96] = 75.0; CONSTANTS[97] = 1.8; CONSTANTS[98] = 100.0; CONSTANTS[99] = 5.4; CONSTANTS[100] = 140.0; STATES[50] = -87.491; CONSTANTS[101] = 1.995e-07; STATES[51] = 1.0; STATES[52] = 0.0; STATES[53] = 0.0; STATES[54] = 0.0; STATES[55] = 0.0; STATES[56] = 0.0; STATES[57] = 0.0; STATES[58] = 0.0; CONSTANTS[102] = 1.0; CONSTANTS[103] = 1e-06; STATES[59] = 1.0; STATES[60] = 0.0; STATES[61] = 0.0; STATES[62] = 0.0; STATES[63] = 0.0; STATES[64] = 0.0; STATES[65] = 0.0; STATES[66] = 0.0; CONSTANTS[104] = 1.0; CONSTANTS[105] = 1e-06; CONSTANTS[106] = 0.000225; CONSTANTS[107] = 9e-07; STATES[67] = 0.99604; CONSTANTS[108] = 0.4; CONSTANTS[109] = 8.0; STATES[68] = 1.23059999999999995e-08; CONSTANTS[110] = 0.025; STATES[69] = 9.37220000000000071e-16; STATES[70] = 1.65950000000000014e-17; STATES[71] = 1.12010000000000000e-15; STATES[72] = 1.66129999999999997e-18; STATES[73] = 0.91141; STATES[74] = 5.36959999999999959e-07; STATES[75] = 2.48610000000000001e-08; STATES[76] = 2.87759999999999997e-10; STATES[77] = 1.12169999999999999e-10; STATES[78] = 2.59670000000000003e-12; STATES[79] = 8.78740000000000076e-15; STATES[80] = 0.084395; STATES[81] = 0.0029306; STATES[82] = 4.52285000000000024e-05; STATES[83] = 2.61750000000000024e-07; STATES[84] = 0.0011424; STATES[85] = 7.93370000000000029e-05; STATES[86] = 1.83659999999999992e-06; STATES[87] = 1.41719999999999995e-08; CONSTANTS[111] = 0.0027304; STATES[88] = 0.95624; STATES[89] = 3.19559999999999984e-07; STATES[90] = 7.039e-09; STATES[91] = 3.87629999999999971e-11; STATES[92] = 5.02769999999999999e-11; STATES[93] = 5.53740000000000021e-13; STATES[94] = 2.96639999999999984e-15; STATES[95] = 0.042127; STATES[96] = 6.95969999999999965e-04; STATES[97] = 5.11010000000000042e-06; STATES[98] = 1.407e-08; STATES[99] = 9.02690000000000046e-04; STATES[100] = 2.98259999999999987e-05; STATES[101] = 3.285e-07; STATES[102] = 1.206e-09; CONSTANTS[112] = 0.0046171; STATES[103] = 7.65988420110534033e-04; CONSTANTS[113] = 0.01; CONSTANTS[114] = 9.97940000000000003e-05; CONSTANTS[115] = 1.11470000000000002e-04; CONSTANTS[116] = 0.0001; CONSTANTS[117] = 0.01; CONSTANTS[118] = 0.025; CONSTANTS[119] = 0.16305; CONSTANTS[120] = 1.0542; CONSTANTS[121] = 0.27623; CONSTANTS[122] = 0.002331; STATES[104] = 5.89379755147717982e-02; CONSTANTS[123] = 0.00384; CONSTANTS[124] = 0.069537; CONSTANTS[125] = 0.317; CONSTANTS[126] = 0.10988; CONSTANTS[127] = 7.8605; STATES[105] = 2.39479458960527997e-01; STATES[106] = 0.83805; STATES[107] = 0.99281; STATES[108] = 6.81269999999999988e-04; STATES[109] = 0.0068172; STATES[110] = 0.99709; STATES[111] = 0.90163; STATES[112] = 0.001236; STATES[113] = 0.99123; STATES[114] = 0.79472; CONSTANTS[128] = 0.01368; CONSTANTS[129] = 0.052811; CONSTANTS[130] = 3.25; CONSTANTS[131] = 3.7; CONSTANTS[132] = 4.9; CONSTANTS[133] = 3.2e-09; CONSTANTS[134] = 0.000125; CONSTANTS[135] = 0.0036; CONSTANTS[136] = 1.3; CONSTANTS[137] = 12.3; CONSTANTS[138] = 87.5; CONSTANTS[139] = 0.27; CONSTANTS[140] = 0.32; CONSTANTS[141] = 4.5; CONSTANTS[142] = 0.0011001; CONSTANTS[143] = 5.7392; STATES[115] = 1.26345311579565994e-01; CONSTANTS[144] = 1.4; CONSTANTS[145] = 0.015265; CONSTANTS[146] = 1.5; CONSTANTS[147] = 2.6; CONSTANTS[148] = 1.846; CONSTANTS[149] = 0.092455; STATES[116] = 0.36003; STATES[117] = 0.0007053; CONSTANTS[150] = 600.0; CONSTANTS[151] = 0.0575; CONSTANTS[152] = 0.0005; STATES[118] = 3.66750000000000000e-09; STATES[119] = 7.30739999999999981e-09; CONSTANTS[153] = 20.0; CONSTANTS[154] = 1.1; CONSTANTS[155] = 0.000175; CONSTANTS[156] = 0.0005; CONSTANTS[157] = 0.4975; STATES[120] = 1.76869999999999985e-05; STATES[121] = 1.0; STATES[122] = 0.99798; STATES[123] = 1.0; STATES[124] = 0.98747; CONSTANTS[158] = 9.88539999999999992e-04; CONSTANTS[159] = 0.00092; CONSTANTS[160] = 0.80737; STATES[125] = 5.92167467082830967e-01; CONSTANTS[161] = 0.004375; CONSTANTS[162] = 0.11348; CONSTANTS[163] = 0.48302; CONSTANTS[164] = 15.0; CONSTANTS[165] = 0.01833; STATES[126] = 145.62; CONSTANTS[166] = 0.52218; CONSTANTS[167] = 21.58; CONSTANTS[168] = 2.642; CONSTANTS[169] = 11.89; CONSTANTS[170] = 50.0; CONSTANTS[171] = 0.8; CONSTANTS[172] = 1.4; CONSTANTS[173] = 0.029268; STATES[127] = 2.36821659448036986e-02; STATES[128] = 1.28402905095187994e-02; STATES[129] = 6.37363047239019025e-03; STATES[130] = 9.17039986149184062e-03; STATES[131] = 4.29171113639321980e-05; CONSTANTS[174] = 3.0; CONSTANTS[175] = 0.16957; CONSTANTS[176] = 2.12570000000000006e-04; CONSTANTS[177] = 0.12481; CONSTANTS[178] = 0.125; CONSTANTS[179] = 0.2; CONSTANTS[180] = 0.35; CONSTANTS[181] = 1.167; CONSTANTS[182] = 0.7629; CONSTANTS[183] = 0.9024; CONSTANTS[184] = 0.0; CONSTANTS[185] = 20.0; CONSTANTS[186] = 2.5; CONSTANTS[187] = 4.0; CONSTANTS[188] = 0.0196; CONSTANTS[189] = 3.71; CONSTANTS[190] = 8314.0; CONSTANTS[191] = 310.0; CONSTANTS[192] = 0.5; CONSTANTS[193] = 0.0388; CONSTANTS[194] = 0.1; CONSTANTS[195] = 50.0; STATES[132] = 2.25475702283052998e-01; STATES[133] = 2.76490711096605019e-03; STATES[134] = 9.04820284659604013e-02; CONSTANTS[196] = 2.4984; CONSTANTS[197] = 11.359; CONSTANTS[198] = 0.3755; STATES[135] = 1.92819110624504991e-01; CONSTANTS[199] = 100.0; CONSTANTS[200] = 100.0; CONSTANTS[201] = 100.0; STATES[136] = 4.89063888619455989e-01; STATES[137] = 6.64997605558790977e-02; STATES[138] = 6.46928309115710060e-02; CONSTANTS[202] = 0.1088; CONSTANTS[203] = 0.4612; CONSTANTS[204] = 0.3755; STATES[139] = 1.26950532507959013e-01; STATES[140] = 8.17161796756963987e-01; STATES[141] = 1.74057375932567010e-01; STATES[142] = 2.05444874210056000e-01; STATES[143] = 2.49911886495889995e-01; CONSTANTS[205] = 0.001; CONSTANTS[206] = 1.95259999999999991e-05; CONSTANTS[207] = 0.001469; CONSTANTS[208] = 0.2; CONSTANTS[209] = 0.3; STATES[144] = 2.82662056977524001e-02; CONSTANTS[210] = 0.0035731; CONSTANTS[211] = 0.010145; CONSTANTS[212] = 0.5; CONSTANTS[213] = 100.0; CONSTANTS[214] = 1000.0; CONSTANTS[215] = 1.00000 - CONSTANTS[36]; CONSTANTS[216] = (1.00000 - CONSTANTS[37]) - CONSTANTS[38]; CONSTANTS[217] = CONSTANTS[57]*0.000983300; CONSTANTS[218] = CONSTANTS[57]*0.00133000; CONSTANTS[219] = CONSTANTS[55]; CONSTANTS[220] = CONSTANTS[57]*0.00650000; CONSTANTS[221] = CONSTANTS[56]; CONSTANTS[222] = ( (CONSTANTS[51]+CONSTANTS[59])*(CONSTANTS[54]+CONSTANTS[59]))/CONSTANTS[54]; CONSTANTS[223] = ( ( CONSTANTS[48]*CONSTANTS[53])*(CONSTANTS[47]+CONSTANTS[59]))*(CONSTANTS[52]+CONSTANTS[59]); CONSTANTS[224] = ( (CONSTANTS[47]+CONSTANTS[59])*(CONSTANTS[48]+CONSTANTS[59]))/CONSTANTS[48]; CONSTANTS[225] = ( (CONSTANTS[51]+CONSTANTS[59])*(CONSTANTS[54]+CONSTANTS[59]))/CONSTANTS[54]; CONSTANTS[226] = ( ( CONSTANTS[48]*CONSTANTS[53])*(CONSTANTS[47]+CONSTANTS[59]))*(CONSTANTS[52]+CONSTANTS[59]); CONSTANTS[227] = CONSTANTS[0]/(CONSTANTS[1]+CONSTANTS[0]); CONSTANTS[228] = CONSTANTS[69]+CONSTANTS[67]; CONSTANTS[229] = 1.50000*CONSTANTS[77]; CONSTANTS[230] = CONSTANTS[70]*CONSTANTS[68]; CONSTANTS[231] = CONSTANTS[86]; CONSTANTS[232] = CONSTANTS[85]; CONSTANTS[233] = CONSTANTS[85]; CONSTANTS[234] = CONSTANTS[85]; CONSTANTS[235] = 7.50000e-14*1.00000e+06; CONSTANTS[236] = 5.00000e-15*1.00000e+06; CONSTANTS[237] = 9.00000e-15*1.00000e+06; CONSTANTS[238] = ( CONSTANTS[190]*CONSTANTS[191])/CONSTANTS[87]; CONSTANTS[239] = 0.500000* pow((CONSTANTS[99]/5.40000), 1.0 / 2); CONSTANTS[240] = 0.0138542* pow((CONSTANTS[99]/5.40000), 1.0 / 2); CONSTANTS[241] = ( 2.15000*8.25000)*1.10000; CONSTANTS[242] = CONSTANTS[99]/(CONSTANTS[99]+CONSTANTS[146]); CONSTANTS[243] = 0.666700*4.75000; CONSTANTS[244] = CONSTANTS[166]*CONSTANTS[188]; CONSTANTS[245] = 0.0100000/50.0000; CONSTANTS[246] = CONSTANTS[199]*CONSTANTS[196]; CONSTANTS[247] = CONSTANTS[200]*CONSTANTS[197]; CONSTANTS[248] = CONSTANTS[201]*CONSTANTS[198]; CONSTANTS[249] = CONSTANTS[199]; CONSTANTS[250] = CONSTANTS[200]; CONSTANTS[251] = CONSTANTS[201]; CONSTANTS[252] = CONSTANTS[196]; CONSTANTS[253] = CONSTANTS[197]; CONSTANTS[254] = CONSTANTS[198]; CONSTANTS[255] = (CONSTANTS[209]/(1.00000 - CONSTANTS[209]))*CONSTANTS[205]+ CONSTANTS[209]*CONSTANTS[208]; CONSTANTS[256] = - 80.0000; CONSTANTS[257] = 0.156290*CONSTANTS[220]; CONSTANTS[258] = ( ( ( CONSTANTS[46]*CONSTANTS[47])*CONSTANTS[53])*(CONSTANTS[52]+CONSTANTS[59]))*(CONSTANTS[48]+CONSTANTS[59]); CONSTANTS[259] = ( ( ( CONSTANTS[46]*CONSTANTS[47])*CONSTANTS[53])*(CONSTANTS[52]+CONSTANTS[59]))*(CONSTANTS[48]+CONSTANTS[59]); CONSTANTS[260] = 1.00000/(1.00000+0.350000); CONSTANTS[261] = CONSTANTS[70]+CONSTANTS[68]; CONSTANTS[262] = ( CONSTANTS[69]*CONSTANTS[68]+ CONSTANTS[67]*CONSTANTS[70])+CONSTANTS[230]; CONSTANTS[263] = 1.00000/CONSTANTS[238]; CONSTANTS[264] = CONSTANTS[195]*CONSTANTS[245]; CONSTANTS[265] = CONSTANTS[249]*CONSTANTS[202]; CONSTANTS[266] = CONSTANTS[250]*CONSTANTS[203]; CONSTANTS[267] = CONSTANTS[251]*CONSTANTS[204]; CONSTANTS[268] = CONSTANTS[199]; CONSTANTS[269] = CONSTANTS[200]; CONSTANTS[270] = CONSTANTS[201]; CONSTANTS[271] = ( ( ( CONSTANTS[50]*CONSTANTS[52])*CONSTANTS[48])*(CONSTANTS[47]+CONSTANTS[59]))*(CONSTANTS[53]+CONSTANTS[59]); CONSTANTS[272] = ( ( ( CONSTANTS[50]*CONSTANTS[52])*CONSTANTS[48])*(CONSTANTS[47]+CONSTANTS[59]))*(CONSTANTS[53]+CONSTANTS[59]); CONSTANTS[273] = 1.00000+(CONSTANTS[16] - CONSTANTS[17])/CONSTANTS[24]; CONSTANTS[274] = CONSTANTS[228]+CONSTANTS[261]; CONSTANTS[275] = CONSTANTS[87]*CONSTANTS[263]; CONSTANTS[276] = CONSTANTS[268]*CONSTANTS[252]; CONSTANTS[277] = CONSTANTS[269]*CONSTANTS[253]; CONSTANTS[278] = CONSTANTS[270]*CONSTANTS[254]; CONSTANTS[279] = ( ( ( ( CONSTANTS[46]*CONSTANTS[50])*CONSTANTS[47])*CONSTANTS[52])*(CONSTANTS[48]+CONSTANTS[59]))*(CONSTANTS[53]+CONSTANTS[59]); CONSTANTS[280] = ( ( ( ( CONSTANTS[46]*CONSTANTS[50])*CONSTANTS[47])*CONSTANTS[52])*(CONSTANTS[48]+CONSTANTS[59]))*(CONSTANTS[53]+CONSTANTS[59]); CONSTANTS[281] = (CONSTANTS[24]/2.00000)*( pow((pow(CONSTANTS[273], 2.00000)+( 4.00000*CONSTANTS[17])/CONSTANTS[24]), 1.0 / 2) - CONSTANTS[273]); CONSTANTS[282] = (((CONSTANTS[16]+CONSTANTS[29])+CONSTANTS[20])+CONSTANTS[23]) - CONSTANTS[28]; CONSTANTS[283] = (( CONSTANTS[16]*CONSTANTS[23]+ CONSTANTS[29]*CONSTANTS[20])+ CONSTANTS[20]*CONSTANTS[23]) - CONSTANTS[28]*(CONSTANTS[20]+CONSTANTS[23]); CONSTANTS[284] = ( CONSTANTS[28]*CONSTANTS[20])*CONSTANTS[23]; CONSTANTS[285] = ((( (- CONSTANTS[284]/27.0000)*pow(CONSTANTS[282], 3.00000) - ( ( ( CONSTANTS[282]*CONSTANTS[282])*CONSTANTS[283])*CONSTANTS[283])/108.000)+( ( CONSTANTS[282]*CONSTANTS[283])*CONSTANTS[284])/6.00000)+pow(CONSTANTS[283], 3.00000)/27.0000)+( CONSTANTS[284]*CONSTANTS[284])/4.00000; CONSTANTS[286] = (CONSTANTS[285]<0.00000 ? pow(- CONSTANTS[285], 1.0 / 2) : 0.00000); CONSTANTS[287] = (((CONSTANTS[285]>0.00000 ? pow(CONSTANTS[285], 1.0 / 2) : 0.00000)+CONSTANTS[284]/2.00000)+( CONSTANTS[282]*CONSTANTS[283])/6.00000) - pow(CONSTANTS[282], 3.00000)/27.0000; CONSTANTS[288] = atan(CONSTANTS[286]/CONSTANTS[287])/3.00000; CONSTANTS[289] = pow( CONSTANTS[287]*CONSTANTS[287]+ CONSTANTS[286]*CONSTANTS[286], 1.00000/6.00000); CONSTANTS[290] = (CONSTANTS[283]/3.00000 - ( CONSTANTS[282]*CONSTANTS[282])/9.00000)/( CONSTANTS[289]*CONSTANTS[289]); CONSTANTS[291] = ( CONSTANTS[289]*cos(CONSTANTS[288]))*(1.00000 - CONSTANTS[290]) - CONSTANTS[282]/3.00000; CONSTANTS[292] = 1.00000+(CONSTANTS[29] - CONSTANTS[30])/CONSTANTS[25]; CONSTANTS[293] = (CONSTANTS[25]/2.00000)*( pow((pow(CONSTANTS[292], 2.00000)+( 4.00000*CONSTANTS[30])/CONSTANTS[25]), 1.0 / 2) - CONSTANTS[292]); CONSTANTS[294] = 0.850000*0.0250000; CONSTANTS[295] = 224.000*CONSTANTS[294]; CONSTANTS[296] = 3.00000*CONSTANTS[294]; CONSTANTS[297] = 0.150000*0.0250000; CONSTANTS[298] = (1.00000 - CONSTANTS[39]) - CONSTANTS[40]; CONSTANTS[299] = 1.00000 - CONSTANTS[41]; CONSTANTS[300] = ( ( 2.00000*CONSTANTS[89])*CONSTANTS[90])*(CONSTANTS[90]+CONSTANTS[88]); CONSTANTS[301] = 2.00000*CONSTANTS[300]; CONSTANTS[302] = CONSTANTS[301]/CONSTANTS[87]; CONSTANTS[303] = ( ( ( 1000.00*CONSTANTS[89])*CONSTANTS[90])*CONSTANTS[90])*CONSTANTS[88]; CONSTANTS[304] = CONSTANTS[303]*0.00200000; CONSTANTS[305] = CONSTANTS[302]/( 2.00000*CONSTANTS[304]); CONSTANTS[306] = 0.0200000*CONSTANTS[303]; CONSTANTS[307] = CONSTANTS[303]*0.678000; CONSTANTS[308] = CONSTANTS[302]/( 2.00000*CONSTANTS[307]); CONSTANTS[309] = 0.0400000*CONSTANTS[303]; CONSTANTS[310] = CONSTANTS[303]*0.00480000; CONSTANTS[311] = CONSTANTS[303]*0.0552000; CONSTANTS[312] = CONSTANTS[310]/CONSTANTS[311]; CONSTANTS[313] = CONSTANTS[311]/CONSTANTS[307]; CONSTANTS[314] = CONSTANTS[303]*0.0200000; CONSTANTS[315] = CONSTANTS[314]/CONSTANTS[304]; CONSTANTS[316] = - CONSTANTS[302]/CONSTANTS[314]; CONSTANTS[317] = - CONSTANTS[310]/CONSTANTS[314]; CONSTANTS[318] = CONSTANTS[314]/CONSTANTS[307]; CONSTANTS[319] = CONSTANTS[303]/CONSTANTS[306]; CONSTANTS[320] = ( ( CONSTANTS[11]*CONSTANTS[260])*CONSTANTS[296])*CONSTANTS[319]; CONSTANTS[321] = CONSTANTS[303]/CONSTANTS[307]; CONSTANTS[322] = ( CONSTANTS[39]*CONSTANTS[294])*CONSTANTS[319]; CONSTANTS[323] = ( CONSTANTS[41]*CONSTANTS[297])*CONSTANTS[319]; CONSTANTS[324] = ( ( (1.00000 - CONSTANTS[10])*(1.00000 - CONSTANTS[260]))*CONSTANTS[296])*CONSTANTS[321]; CONSTANTS[325] = ( CONSTANTS[298]*CONSTANTS[294])*CONSTANTS[321]; CONSTANTS[326] = CONSTANTS[303]/CONSTANTS[309]; CONSTANTS[327] = (1.00000 - CONSTANTS[193]) - CONSTANTS[194]; CONSTANTS[328] = ( ( (1.00000 - CONSTANTS[11])*CONSTANTS[260])*CONSTANTS[296])*CONSTANTS[321]; CONSTANTS[329] = ( ( CONSTANTS[10]*(1.00000 - CONSTANTS[260]))*CONSTANTS[296])*CONSTANTS[326]; CONSTANTS[330] = ( CONSTANTS[40]*CONSTANTS[294])*CONSTANTS[326]; CONSTANTS[331] = ( CONSTANTS[299]*CONSTANTS[297])*CONSTANTS[326]; CONSTANTS[332] = CONSTANTS[302]/CONSTANTS[307]; CONSTANTS[333] = (1.00000 - CONSTANTS[175]) - CONSTANTS[176]; CONSTANTS[334] = CONSTANTS[175]+CONSTANTS[176]; CONSTANTS[335] = ( CONSTANTS[327]*CONSTANTS[192])*CONSTANTS[321]; CONSTANTS[336] = 0.200000*CONSTANTS[192]; CONSTANTS[337] = CONSTANTS[314]/CONSTANTS[307]; CONSTANTS[338] = pow( CONSTANTS[184]*1.00000, CONSTANTS[181]); CONSTANTS[339] = 1.00000 - CONSTANTS[178]; CONSTANTS[340] = CONSTANTS[193]; CONSTANTS[341] = CONSTANTS[302]/CONSTANTS[314]; CONSTANTS[342] = (1.00000 - CONSTANTS[338]/(CONSTANTS[167]+CONSTANTS[338]))*CONSTANTS[173]; CONSTANTS[343] = CONSTANTS[178] - CONSTANTS[177]; CONSTANTS[344] = ( CONSTANTS[340]*CONSTANTS[336])*CONSTANTS[319]; CONSTANTS[345] = CONSTANTS[194]; CONSTANTS[346] = pow(87.8251, 4.00000); CONSTANTS[347] = ( CONSTANTS[342]*CONSTANTS[175])*CONSTANTS[319]; CONSTANTS[348] = ( CONSTANTS[342]*CONSTANTS[333])*CONSTANTS[321]; CONSTANTS[349] = ( CONSTANTS[342]*CONSTANTS[176])*CONSTANTS[326]; CONSTANTS[350] = pow( CONSTANTS[184]*1.00000, CONSTANTS[182]); CONSTANTS[351] = ( CONSTANTS[345]*CONSTANTS[336])*CONSTANTS[326]; CONSTANTS[352] = (1.00000 - CONSTANTS[340]) - CONSTANTS[345]; CONSTANTS[353] = 1.00000+(CONSTANTS[118] - CONSTANTS[110])/CONSTANTS[116]; CONSTANTS[354] = pow( CONSTANTS[184]*1.00000, CONSTANTS[183]); CONSTANTS[355] = ( CONSTANTS[352]*CONSTANTS[336])*CONSTANTS[321]; CONSTANTS[356] = (CONSTANTS[116]/2.00000)*( pow((pow(CONSTANTS[353], 2.00000)+( 4.00000*CONSTANTS[110])/CONSTANTS[116]), 1.0 / 2) - CONSTANTS[353]); CONSTANTS[357] = CONSTANTS[180]/(1.00000 - CONSTANTS[180]); CONSTANTS[358] = 1.00000+(CONSTANTS[118] - CONSTANTS[82])/CONSTANTS[113]; CONSTANTS[359] = CONSTANTS[357]*( CONSTANTS[178]*(((1.00000+CONSTANTS[189]) - CONSTANTS[189]*CONSTANTS[334]) - CONSTANTS[179])+ CONSTANTS[334]*(CONSTANTS[179] - 1.00000))+ ( CONSTANTS[189]*CONSTANTS[178])*(CONSTANTS[179] - CONSTANTS[334]); CONSTANTS[360] = (CONSTANTS[113]/2.00000)*( pow((pow(CONSTANTS[358], 2.00000)+( 4.00000*CONSTANTS[82])/CONSTANTS[113]), 1.0 / 2) - CONSTANTS[358]); CONSTANTS[361] = CONSTANTS[178]*((1.00000+CONSTANTS[189])+ CONSTANTS[179]*(CONSTANTS[357] - CONSTANTS[189])) - CONSTANTS[179]*(1.00000+CONSTANTS[357]); CONSTANTS[362] = pow(CONSTANTS[137], 3.00000); CONSTANTS[363] = (CONSTANTS[359]/CONSTANTS[361])*CONSTANTS[173]; CONSTANTS[364] = pow(CONSTANTS[138], 3.00000); CONSTANTS[365] = ( (CONSTANTS[179] - CONSTANTS[334])*CONSTANTS[173]+ CONSTANTS[179]*CONSTANTS[363])/( (1.00000+CONSTANTS[189])*CONSTANTS[178] - CONSTANTS[179]); CONSTANTS[366] = pow(CONSTANTS[100], 3.00000); CONSTANTS[367] = ( ( CONSTANTS[189]*CONSTANTS[178])*CONSTANTS[365])/CONSTANTS[363]; CONSTANTS[368] = (1.00000 - CONSTANTS[354]/(CONSTANTS[169]+CONSTANTS[354]))*CONSTANTS[365]; CONSTANTS[369] = CONSTANTS[159] - 0.000170000; CONSTANTS[370] = ( CONSTANTS[368]*CONSTANTS[177])*CONSTANTS[319]; CONSTANTS[371] = ( CONSTANTS[368]*CONSTANTS[339])*CONSTANTS[321]; CONSTANTS[372] = ( CONSTANTS[368]*CONSTANTS[343])*CONSTANTS[326]; CONSTANTS[373] = 1.00000 - CONSTANTS[367]; CONSTANTS[374] = CONSTANTS[159]*(1.00000 - 0.460000); CONSTANTS[375] = (1.00000 - CONSTANTS[350]/(CONSTANTS[168]+CONSTANTS[350]))*CONSTANTS[363]; CONSTANTS[376] = CONSTANTS[374]; CONSTANTS[377] = ( CONSTANTS[375]*CONSTANTS[367])*CONSTANTS[319]; CONSTANTS[378] = ( CONSTANTS[375]*CONSTANTS[373])*CONSTANTS[321]; CONSTANTS[379] = 3.25000*CONSTANTS[161]; CONSTANTS[380] = ( CONSTANTS[193]*CONSTANTS[192])*CONSTANTS[319]; CONSTANTS[381] = (((CONSTANTS[16]+CONSTANTS[29])+CONSTANTS[26])+CONSTANTS[27]) - CONSTANTS[380]; CONSTANTS[382] = (( CONSTANTS[16]*CONSTANTS[27]+ CONSTANTS[29]*CONSTANTS[26])+ CONSTANTS[26]*CONSTANTS[27]) - CONSTANTS[380]*(CONSTANTS[26]+CONSTANTS[27]); CONSTANTS[383] = ( CONSTANTS[380]*CONSTANTS[26])*CONSTANTS[27]; CONSTANTS[384] = ((( (- CONSTANTS[383]/27.0000)*pow(CONSTANTS[381], 3.00000) - ( ( ( CONSTANTS[381]*CONSTANTS[381])*CONSTANTS[382])*CONSTANTS[382])/108.000)+( ( CONSTANTS[381]*CONSTANTS[382])*CONSTANTS[383])/6.00000)+pow(CONSTANTS[382], 3.00000)/27.0000)+( CONSTANTS[383]*CONSTANTS[383])/4.00000; CONSTANTS[385] = (CONSTANTS[384]<0.00000 ? pow(- CONSTANTS[384], 1.0 / 2) : 0.00000); CONSTANTS[386] = (((CONSTANTS[384]>0.00000 ? pow(CONSTANTS[384], 1.0 / 2) : 0.00000)+CONSTANTS[383]/2.00000)+( CONSTANTS[381]*CONSTANTS[382])/6.00000) - pow(CONSTANTS[381], 3.00000)/27.0000; CONSTANTS[387] = atan(CONSTANTS[385]/CONSTANTS[386])/3.00000; CONSTANTS[388] = pow( CONSTANTS[386]*CONSTANTS[386]+ CONSTANTS[385]*CONSTANTS[385], 1.00000/6.00000); CONSTANTS[389] = (CONSTANTS[382]/3.00000 - ( CONSTANTS[381]*CONSTANTS[381])/9.00000)/( CONSTANTS[388]*CONSTANTS[388]); CONSTANTS[390] = ( CONSTANTS[388]*cos(CONSTANTS[387]))*(1.00000 - CONSTANTS[389]) - CONSTANTS[381]/3.00000; CONSTANTS[391] = ((CONSTANTS[16] - CONSTANTS[17])+CONSTANTS[281])/( (CONSTANTS[291]/CONSTANTS[20]+1.00000)*(CONSTANTS[390]/CONSTANTS[26]+1.00000)); CONSTANTS[392] = ( ( CONSTANTS[281]*CONSTANTS[391])*CONSTANTS[390])/( CONSTANTS[24]*CONSTANTS[26]); CONSTANTS[393] = ( CONSTANTS[392]*CONSTANTS[291])/CONSTANTS[20]; CONSTANTS[394] = ((CONSTANTS[29] - CONSTANTS[30])+CONSTANTS[293])/( (CONSTANTS[291]/CONSTANTS[23]+1.00000)*(CONSTANTS[390]/CONSTANTS[27]+1.00000)); CONSTANTS[395] = ( ( CONSTANTS[293]*CONSTANTS[394])*CONSTANTS[390])/( CONSTANTS[25]*CONSTANTS[27]); CONSTANTS[396] = ( CONSTANTS[395]*CONSTANTS[291])/CONSTANTS[23]; CONSTANTS[397] = 0.0269000+CONSTANTS[392]/CONSTANTS[17]; CONSTANTS[398] = 0.0329000+CONSTANTS[395]/CONSTANTS[30]; CONSTANTS[399] = ( CONSTANTS[194]*CONSTANTS[192])*CONSTANTS[326]; CONSTANTS[400] = 1.00000+(CONSTANTS[118] - CONSTANTS[399])/CONSTANTS[117]; CONSTANTS[401] = (CONSTANTS[117]/2.00000)*( pow((pow(CONSTANTS[400], 2.00000)+( 4.00000*CONSTANTS[399])/CONSTANTS[117]), 1.0 / 2) - CONSTANTS[400]); CONSTANTS[402] = ((CONSTANTS[118] - CONSTANTS[110])+CONSTANTS[356])/( (1.00000+CONSTANTS[360]/CONSTANTS[113])*(1.00000+CONSTANTS[401]/CONSTANTS[117])); CONSTANTS[403] = ( ( CONSTANTS[356]*CONSTANTS[402])*CONSTANTS[401])/( CONSTANTS[116]*CONSTANTS[117]); CONSTANTS[404] = 0.0306000+CONSTANTS[403]/CONSTANTS[110]; CONSTANTS[405] = ( CONSTANTS[403]*CONSTANTS[360])/CONSTANTS[113]; CONSTANTS[406] = - CONSTANTS[302]/CONSTANTS[307]; CONSTANTS[407] = - CONSTANTS[302]/CONSTANTS[307]; CONSTANTS[408] = CONSTANTS[314]/CONSTANTS[307]; CONSTANTS[409] = ( 3.00000*CONSTANTS[302])/CONSTANTS[314]; } void computeRates(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { RATES[7] = 0.00100000*( CONSTANTS[219]*STATES[8] - ( CONSTANTS[221]*STATES[0])*STATES[7]); RATES[9] = 0.00100000*( CONSTANTS[55]*STATES[1] - ( CONSTANTS[56]*STATES[10])*STATES[9]); RATES[15] = 0.00100000*( CONSTANTS[55]*STATES[2] - ( CONSTANTS[56]*STATES[16])*STATES[15]); RATES[20] = 0.00100000*( CONSTANTS[219]*STATES[21] - ( CONSTANTS[221]*STATES[22])*STATES[20]); RATES[23] = 0.00100000*( CONSTANTS[55]*STATES[3] - ( CONSTANTS[56]*STATES[24])*STATES[23]); RATES[31] = 0.00100000*(( ( CONSTANTS[74]*STATES[19])*(1.00000 - STATES[31]))/(CONSTANTS[64]+ (1.00000 - STATES[31])*1.00000) - ( ( CONSTANTS[76]*CONSTANTS[66])*STATES[31])/(CONSTANTS[65]+ STATES[31]*1.00000)); RATES[104] = 0.00100000*(( ( CONSTANTS[124]*STATES[29])*(1.00000 - STATES[104]))/(CONSTANTS[121]+ (1.00000 - STATES[104])*1.00000) - ( ( CONSTANTS[125]*CONSTANTS[82])*STATES[104])/(CONSTANTS[122]+ STATES[104]*1.00000)); RATES[105] = 0.00100000*(( ( CONSTANTS[128]*STATES[6])*(1.00000 - STATES[105]))/(CONSTANTS[126]+ (1.00000 - STATES[105])*1.00000) - ( ( CONSTANTS[129]*CONSTANTS[28])*STATES[105])/(CONSTANTS[127]+ STATES[105]*1.00000)); RATES[115] = 0.00100000*(( ( CONSTANTS[145]*STATES[6])*(1.00000 - STATES[115]))/(CONSTANTS[142]+ (1.00000 - STATES[115])*1.00000) - ( ( CONSTANTS[149]*CONSTANTS[28])*STATES[115])/(CONSTANTS[143]+ STATES[115]*1.00000)); RATES[127] = 0.00100000*( ( CONSTANTS[188]*STATES[6])*(CONSTANTS[377] - STATES[127]) - CONSTANTS[244]*STATES[127]); RATES[128] = 0.00100000*( ( CONSTANTS[188]*STATES[19])*(CONSTANTS[378] - STATES[128]) - CONSTANTS[244]*STATES[128]); RATES[129] = 0.00100000*( ( CONSTANTS[188]*STATES[6])*(CONSTANTS[370] - STATES[129]) - CONSTANTS[244]*STATES[129]); RATES[130] = 0.00100000*( ( CONSTANTS[188]*STATES[19])*(CONSTANTS[371] - STATES[130]) - CONSTANTS[244]*STATES[130]); RATES[131] = 0.00100000*( ( CONSTANTS[188]*STATES[29])*(CONSTANTS[372] - STATES[131]) - CONSTANTS[244]*STATES[131]); RATES[132] = 0.00100000*( CONSTANTS[201]*STATES[133] - ( CONSTANTS[248]*STATES[132])*STATES[6]); RATES[133] = 0.00100000*(( ( CONSTANTS[200]*STATES[134])*STATES[43] - (CONSTANTS[247]+CONSTANTS[201])*STATES[133])+ ( CONSTANTS[248]*STATES[132])*STATES[6]); RATES[6] = 0.00100000*((( CONSTANTS[201]*STATES[133] - ( CONSTANTS[248]*STATES[132])*STATES[6])+ CONSTANTS[264]*STATES[135]) - ( CONSTANTS[195]*(CONSTANTS[344] - STATES[135]))*STATES[6]); RATES[135] = 0.00100000*( ( CONSTANTS[195]*(CONSTANTS[344] - STATES[135]))*STATES[6] - CONSTANTS[264]*STATES[135]); RATES[136] = 0.00100000*( CONSTANTS[251]*STATES[137] - ( CONSTANTS[267]*STATES[136])*STATES[19]); RATES[137] = 0.00100000*(( ( CONSTANTS[250]*STATES[138])*STATES[44] - (CONSTANTS[266]+CONSTANTS[251])*STATES[137])+ ( CONSTANTS[267]*STATES[136])*STATES[19]); RATES[19] = 0.00100000*((( CONSTANTS[251]*STATES[137] - ( CONSTANTS[267]*STATES[136])*STATES[19])+ CONSTANTS[264]*STATES[139]) - ( CONSTANTS[195]*(CONSTANTS[355] - STATES[139]))*STATES[19]); RATES[139] = 0.00100000*( ( CONSTANTS[195]*(CONSTANTS[355] - STATES[139]))*STATES[19] - CONSTANTS[264]*STATES[139]); RATES[140] = 0.00100000*( CONSTANTS[270]*STATES[141] - ( CONSTANTS[278]*STATES[140])*STATES[29]); RATES[141] = 0.00100000*(( ( CONSTANTS[269]*STATES[142])*STATES[45] - (CONSTANTS[277]+CONSTANTS[270])*STATES[141])+ ( CONSTANTS[278]*STATES[140])*STATES[29]); RATES[29] = 0.00100000*((( CONSTANTS[270]*STATES[141] - ( CONSTANTS[278]*STATES[140])*STATES[29])+ CONSTANTS[264]*STATES[143]) - ( CONSTANTS[195]*(CONSTANTS[351] - STATES[143]))*STATES[29]); RATES[143] = 0.00100000*( ( CONSTANTS[195]*(CONSTANTS[351] - STATES[143]))*STATES[29] - CONSTANTS[264]*STATES[143]); ALGEBRAIC[3] = CONSTANTS[393] - STATES[4]; RATES[4] = 0.00100000*(( ( CONSTANTS[31]*STATES[6])*ALGEBRAIC[3])/(CONSTANTS[18]+ALGEBRAIC[3]) - ( ( CONSTANTS[33]*CONSTANTS[28])*STATES[4])/(CONSTANTS[21]+STATES[4])); ALGEBRAIC[4] = CONSTANTS[396] - STATES[5]; RATES[5] = 0.00100000*(( ( CONSTANTS[32]*STATES[6])*ALGEBRAIC[4])/(CONSTANTS[19]+ALGEBRAIC[4]) - ( ( CONSTANTS[34]*CONSTANTS[28])*STATES[5])/(CONSTANTS[22]+STATES[5])); ALGEBRAIC[15] = CONSTANTS[405] - STATES[103]; RATES[103] = 0.00100000*(( ( CONSTANTS[119]*STATES[29])*ALGEBRAIC[15])/(CONSTANTS[114]+ALGEBRAIC[15]) - ( ( CONSTANTS[120]*CONSTANTS[82])*STATES[103])/(CONSTANTS[115]+STATES[103])); ALGEBRAIC[25] = 1.00000/(1.00000+exp((STATES[50]+91.0000)/6.10000)); RATES[116] = (ALGEBRAIC[25] - STATES[116])/CONSTANTS[150]; ALGEBRAIC[29] = CONSTANTS[255] - STATES[144]; RATES[144] = 0.00100000*(( ( CONSTANTS[211]*STATES[19])*ALGEBRAIC[29])/(CONSTANTS[207]+ALGEBRAIC[29]) - ( ( CONSTANTS[210]*CONSTANTS[66])*STATES[144])/(CONSTANTS[206]+STATES[144])); ALGEBRAIC[33] = (CONSTANTS[322] - STATES[12]) - STATES[11]; RATES[12] = 0.00100000*( ( CONSTANTS[220]*STATES[6])*ALGEBRAIC[33] - CONSTANTS[257]*STATES[12]); ALGEBRAIC[35] = (CONSTANTS[325] - STATES[18]) - STATES[17]; RATES[18] = 0.00100000*( ( CONSTANTS[220]*STATES[19])*ALGEBRAIC[35] - CONSTANTS[257]*STATES[18]); ALGEBRAIC[36] = (CONSTANTS[330] - STATES[26]) - STATES[25]; RATES[26] = 0.00100000*( ( CONSTANTS[220]*STATES[29])*ALGEBRAIC[36] - CONSTANTS[257]*STATES[26]); ALGEBRAIC[11] = 0.0250000/(1.00000+exp((STATES[50]+58.0000)/5.00000)); ALGEBRAIC[39] = 0.200000/(1.00000+exp((STATES[50]+19.0000)/- 9.00000)); RATES[67] = (ALGEBRAIC[11]/(ALGEBRAIC[11]+ALGEBRAIC[39]) - STATES[67])/CONSTANTS[109]; ALGEBRAIC[12] = 1.00000/(( 0.000600000*(STATES[50] - 1.73840))/(1.00000 - exp( - 0.136000*(STATES[50] - 1.73840))) - ( 0.000300000*(STATES[50]+38.3608))/(1.00000 - exp( 0.152200*(STATES[50]+38.3608)))); ALGEBRAIC[40] = 1.00000/(1.00000+exp((STATES[50]+10.0850)/- 4.25000)); RATES[68] = (ALGEBRAIC[40] - STATES[68])/ALGEBRAIC[12]; ALGEBRAIC[13] = 0.00739900/(1.00000+exp(( CONSTANTS[263]*(STATES[50] - 0.0311960))/- 0.800190)); ALGEBRAIC[41] = 0.00569920/(1.00000+exp(( CONSTANTS[263]*(STATES[50] - 0.0415200))/1.34890)); RATES[73] = ALGEBRAIC[41]*STATES[80] - STATES[73]*( 4.00000*ALGEBRAIC[13]); ALGEBRAIC[14] = 0.00994150/(1.00000+exp(( CONSTANTS[263]*(STATES[50] - 0.0448090))/- 0.581720)); ALGEBRAIC[42] = 0.00332010/(1.00000+exp(( CONSTANTS[263]*(STATES[50] - 0.0942170))/0.953640)); RATES[88] = ALGEBRAIC[42]*STATES[95] - STATES[88]*( 4.00000*ALGEBRAIC[14]); ALGEBRAIC[16] = (STATES[50]+CONSTANTS[130]>=- 40.0000 ? 0.00000 : 0.135000*exp(((87.0000+STATES[50])+CONSTANTS[130])/- 6.80000)); ALGEBRAIC[43] = (STATES[50]+CONSTANTS[130]>=- 40.0000 ? 1.00000/( 0.130000*(1.00000+exp(((STATES[50]+CONSTANTS[130])+27.4034)/- 11.1000))) : 3.56000*exp( 0.0790000*((STATES[50]+CONSTANTS[130])+7.00000))+ 310000.*exp( 0.350000*((STATES[50]+CONSTANTS[130])+7.00000))); RATES[106] = ALGEBRAIC[16]*(1.00000 - STATES[106]) - ALGEBRAIC[43]*STATES[106]; ALGEBRAIC[17] = (STATES[50]+CONSTANTS[130]>=- 40.0000 ? 0.00000 : ( ( - 127140.*exp( 0.244400*(STATES[50]+CONSTANTS[130]))+ - 6.94800e-05*exp( - 0.0439100*(STATES[50]+CONSTANTS[130])))*((STATES[50]+CONSTANTS[130])+37.7800))/(1.00000+exp( 0.311000*((STATES[50]+CONSTANTS[130])+79.2300)))); ALGEBRAIC[44] = (STATES[50]+CONSTANTS[130]>=- 40.0000 ? ( 0.300000*exp( - 2.53500e-07*(STATES[50]+CONSTANTS[130])))/(1.00000+exp( - 0.100000*((STATES[50]+CONSTANTS[130])+32.0000))) : ( 0.121200*exp( - 0.0105200*(STATES[50]+CONSTANTS[130])))/(1.00000+exp( - 0.137800*((STATES[50]+CONSTANTS[130])+40.1400)))); RATES[107] = ALGEBRAIC[17]*(1.00000 - STATES[107]) - ALGEBRAIC[44]*STATES[107]; ALGEBRAIC[18] = ( 0.320000*(STATES[50]+58.4729))/(1.00000 - exp( - 0.100000*(STATES[50]+58.4729))); ALGEBRAIC[45] = 0.0800000*exp((13.7299 - STATES[50])/11.0000); RATES[108] = ALGEBRAIC[18]*(1.00000 - STATES[108]) - ALGEBRAIC[45]*STATES[108]; ALGEBRAIC[19] = (STATES[50]>=- 40.0000 ? 0.00000 : 0.135000*exp((87.0000+STATES[50])/- 6.80000)); ALGEBRAIC[46] = (STATES[50]>=- 40.0000 ? 1.00000/( 0.130000*(1.00000+exp((STATES[50]+27.4034)/- 11.1000))) : 3.56000*exp( 0.0790000*(STATES[50]+7.00000))+ 310000.*exp( 0.350000*(STATES[50]+7.00000))); RATES[109] = ALGEBRAIC[19]*(1.00000 - STATES[109]) - ALGEBRAIC[46]*STATES[109]; ALGEBRAIC[20] = (STATES[50]>=- 40.0000 ? 0.00000 : ( ( - 127140.*exp( 0.244400*STATES[50]) - 6.94800e-05*exp( - 0.0439100*STATES[50]))*(STATES[50]+37.7800))/(1.00000+exp( 0.311000*(STATES[50]+79.2300)))); ALGEBRAIC[47] = (STATES[50]>=- 40.0000 ? ( 0.300000*exp( - 2.53500e-07*STATES[50]))/(1.00000+exp( - 0.100000*(STATES[50]+32.0000))) : ( 0.121200*exp( - 0.0105200*STATES[50]))/(1.00000+exp( - 0.137800*(STATES[50]+40.1400)))); RATES[110] = ALGEBRAIC[20]*(1.00000 - STATES[110]) - ALGEBRAIC[47]*STATES[110]; ALGEBRAIC[21] = ( 0.320000*(STATES[50]+58.4729))/(1.00000 - exp( - 0.100000*(STATES[50]+58.4729))); ALGEBRAIC[48] = 0.0800000*exp((13.7299 - STATES[50])/11.0000); RATES[111] = ALGEBRAIC[21]*(1.00000 - STATES[111]) - ALGEBRAIC[48]*STATES[111]; ALGEBRAIC[22] = (STATES[50]>=- 40.0000 ? 0.00000 : 0.135000*exp(((87.0000+STATES[50])+CONSTANTS[132])/- 6.80000)); ALGEBRAIC[49] = (STATES[50]>=- 40.0000 ? (1.00000/0.130000)/(1.00000+exp(((STATES[50]+CONSTANTS[132])+27.4034)/- 11.1000)) : 3.56000*exp( 0.0790000*((STATES[50]+CONSTANTS[132])+7.00000))+ 310000.*exp( 0.350000*((STATES[50]+CONSTANTS[132])+7.00000))); RATES[112] = ALGEBRAIC[22]*(1.00000 - STATES[112]) - ALGEBRAIC[49]*STATES[112]; ALGEBRAIC[23] = (STATES[50]>=- 40.0000 ? 0.00000 : ( ( - 127140.*exp( 0.244400*(STATES[50]+CONSTANTS[132])) - 6.94800e-05*exp( - 0.0439100*(STATES[50]+CONSTANTS[132])))*((STATES[50]+CONSTANTS[132])+37.7800))/(1.00000+exp( 0.311000*((STATES[50]+CONSTANTS[132])+79.2300)))); ALGEBRAIC[50] = (STATES[50]>=- 40.0000 ? ( 0.300000*exp( - 2.53500e-07*(STATES[50]+CONSTANTS[132])))/(1.00000+exp( - 0.100000*((STATES[50]+CONSTANTS[132])+32.0000))) : ( 0.121200*exp( - 0.0105200*(STATES[50]+CONSTANTS[132])))/(1.00000+exp( - 0.137800*((STATES[50]+CONSTANTS[132])+40.1400)))); RATES[113] = ALGEBRAIC[23]*(1.00000 - STATES[113]) - ALGEBRAIC[50]*STATES[113]; ALGEBRAIC[24] = ( 0.320000*((STATES[50]+CONSTANTS[131])+58.4729))/(1.00000 - exp( - 0.100000*((STATES[50]+CONSTANTS[131])+58.4729))); ALGEBRAIC[51] = 0.0800000*exp(((STATES[50]+CONSTANTS[131]) - 13.7299)/- 11.0000); RATES[114] = ALGEBRAIC[24]*(1.00000 - STATES[114]) - ALGEBRAIC[51]*STATES[114]; ALGEBRAIC[26] = ( 0.320000*(STATES[50]+47.1300))/(1.00000 - exp( - 0.100000*(STATES[50]+47.1300))); ALGEBRAIC[52] = 0.0800000*exp(STATES[50]/- 11.0000); RATES[117] = ALGEBRAIC[26]*(1.00000 - STATES[117]) - ALGEBRAIC[52]*STATES[117]; ALGEBRAIC[57] = (CONSTANTS[323] - STATES[14]) - STATES[13]; RATES[14] = 0.00100000*( ( CONSTANTS[220]*STATES[6])*ALGEBRAIC[57] - CONSTANTS[257]*STATES[14]); ALGEBRAIC[60] = (CONSTANTS[331] - STATES[28]) - STATES[27]; RATES[28] = 0.00100000*( ( CONSTANTS[220]*STATES[29])*ALGEBRAIC[60] - CONSTANTS[257]*STATES[28]); ALGEBRAIC[27] = 1.00000/(1.00000+exp((STATES[50]+9.43700)/- 7.13300)); ALGEBRAIC[53] = 1.00000/(1.00000+exp((STATES[50] - 18.4099)/- 29.3814)); ALGEBRAIC[65] = 1.00000/(1.00000+exp((STATES[50]+100.000)/29.3814)); ALGEBRAIC[77] = 1.00000/(ALGEBRAIC[53]/1.20890+ 3.50000*ALGEBRAIC[65]); RATES[120] = (ALGEBRAIC[27] - STATES[120])/ALGEBRAIC[77]; ALGEBRAIC[66] = ((1.00000/(1.00000+exp((STATES[50]+19.0000)/- 9.00000)))/0.500000)/9.79530; ALGEBRAIC[28] = 1.00000/(1.00000+exp((STATES[50]+58.0000)/5.00000)); ALGEBRAIC[78] = 0.0479600*ALGEBRAIC[28]; RATES[121] = ALGEBRAIC[78]*(1.00000 - STATES[121]) - ALGEBRAIC[66]*STATES[121]; ALGEBRAIC[79] = 0.0214400*ALGEBRAIC[28]; RATES[122] = ALGEBRAIC[79]*(1.00000 - STATES[122]) - ALGEBRAIC[66]*STATES[122]; ALGEBRAIC[54] = (1.00000/(1.00000+exp((STATES[50]+60.0000)/5.00000)))/250.000; ALGEBRAIC[80] = 2.46000*ALGEBRAIC[54]; RATES[123] = ALGEBRAIC[80]*(1.00000 - STATES[123]) - ALGEBRAIC[66]*STATES[123]; ALGEBRAIC[81] = 0.560340*ALGEBRAIC[54]; RATES[124] = ALGEBRAIC[81]*(1.00000 - STATES[124]) - ALGEBRAIC[66]*STATES[124]; ALGEBRAIC[63] = 0.0906540*exp( ( - 0.111570*STATES[50])*CONSTANTS[263]); ALGEBRAIC[91] = 0.388390/(1.00000+exp(( CONSTANTS[263]*(STATES[50]+0.150190))/- 0.606930)); RATES[74] = ( ALGEBRAIC[41]*STATES[75]+ ALGEBRAIC[91]*STATES[85]) - STATES[74]*( 2.00000*ALGEBRAIC[13]+ 2.00000*ALGEBRAIC[63]); RATES[75] = ((( ( 2.00000*ALGEBRAIC[13])*STATES[74]+ ( 2.00000*ALGEBRAIC[41])*STATES[76])+ ( 2.00000*ALGEBRAIC[91])*STATES[86])+ ( 3.00000*ALGEBRAIC[63])*STATES[77]) - STATES[75]*(((ALGEBRAIC[13]+ALGEBRAIC[41])+ALGEBRAIC[91])+ 2.00000*ALGEBRAIC[63]); RATES[76] = (( ALGEBRAIC[13]*STATES[75]+ ( 3.00000*ALGEBRAIC[91])*STATES[87])+ ( 3.00000*ALGEBRAIC[63])*STATES[78]) - STATES[76]*(( 2.00000*ALGEBRAIC[41]+ 2.00000*ALGEBRAIC[91])+ 2.00000*ALGEBRAIC[63]); RATES[77] = ( ALGEBRAIC[41]*STATES[78]+ ALGEBRAIC[91]*STATES[75]) - STATES[77]*(ALGEBRAIC[13]+ 3.00000*ALGEBRAIC[63]); RATES[78] = (( ALGEBRAIC[13]*STATES[77]+ ( 2.00000*ALGEBRAIC[91])*STATES[76])+ ( 4.00000*ALGEBRAIC[63])*STATES[79]) - STATES[78]*((ALGEBRAIC[41]+ALGEBRAIC[91])+ 3.00000*ALGEBRAIC[63]); ALGEBRAIC[75] = 0.00311240+(0.0283300 - 0.00311240)/(1.00000+exp(( CONSTANTS[263]*(STATES[50]+0.0516600))/1.55220)); RATES[79] = ( ALGEBRAIC[91]*STATES[78] - STATES[79]*( 4.00000*ALGEBRAIC[63]+CONSTANTS[111]))+ ALGEBRAIC[75]*STATES[69]; RATES[80] = (( ( 4.00000*ALGEBRAIC[13])*STATES[73]+ ( 2.00000*ALGEBRAIC[41])*STATES[81])+ ALGEBRAIC[63]*STATES[84]) - STATES[80]*(( 3.00000*ALGEBRAIC[13]+ALGEBRAIC[41])+ALGEBRAIC[91]); RATES[81] = (( ( 3.00000*ALGEBRAIC[13])*STATES[80]+ ( 3.00000*ALGEBRAIC[41])*STATES[82])+ ALGEBRAIC[63]*STATES[85]) - STATES[81]*(( 2.00000*ALGEBRAIC[13]+ 2.00000*ALGEBRAIC[41])+ 2.00000*ALGEBRAIC[91]); RATES[82] = (( ( 2.00000*ALGEBRAIC[13])*STATES[81]+ ( 4.00000*ALGEBRAIC[41])*STATES[83])+ ALGEBRAIC[63]*STATES[86]) - STATES[82]*((ALGEBRAIC[13]+ 3.00000*ALGEBRAIC[41])+ 3.00000*ALGEBRAIC[91]); RATES[83] = ( ALGEBRAIC[13]*STATES[82]+ ALGEBRAIC[63]*STATES[87]) - STATES[83]*( 4.00000*ALGEBRAIC[41]+ 4.00000*ALGEBRAIC[91]); RATES[84] = ( ALGEBRAIC[41]*STATES[85]+ ALGEBRAIC[91]*STATES[80]) - STATES[84]*( 3.00000*ALGEBRAIC[13]+ALGEBRAIC[63]); RATES[85] = ((( ( 3.00000*ALGEBRAIC[13])*STATES[84]+ ( 2.00000*ALGEBRAIC[41])*STATES[86])+ ( 2.00000*ALGEBRAIC[91])*STATES[81])+ ( 2.00000*ALGEBRAIC[63])*STATES[74]) - STATES[85]*((( 2.00000*ALGEBRAIC[13]+ALGEBRAIC[41])+ALGEBRAIC[91])+ALGEBRAIC[63]); RATES[86] = ((( ( 2.00000*ALGEBRAIC[13])*STATES[85]+ ( 3.00000*ALGEBRAIC[41])*STATES[87])+ ( 3.00000*ALGEBRAIC[91])*STATES[82])+ ( 2.00000*ALGEBRAIC[63])*STATES[75]) - STATES[86]*(((ALGEBRAIC[13]+ 2.00000*ALGEBRAIC[41])+ 2.00000*ALGEBRAIC[91])+ALGEBRAIC[63]); RATES[87] = (( ALGEBRAIC[13]*STATES[86]+ ( 4.00000*ALGEBRAIC[91])*STATES[83])+ ( 2.00000*ALGEBRAIC[63])*STATES[76]) - STATES[87]*(( 3.00000*ALGEBRAIC[41]+ 3.00000*ALGEBRAIC[91])+ALGEBRAIC[63]); ALGEBRAIC[64] = 0.0657000*exp( ( - 0.118990*STATES[50])*CONSTANTS[263]); ALGEBRAIC[93] = 0.563560/(1.00000+exp(( CONSTANTS[263]*(STATES[50]+0.179860))/- 0.583810)); RATES[89] = ( ALGEBRAIC[42]*STATES[90]+ ALGEBRAIC[93]*STATES[100]) - STATES[89]*( 2.00000*ALGEBRAIC[14]+ 2.00000*ALGEBRAIC[64]); RATES[90] = ((( ( 2.00000*ALGEBRAIC[14])*STATES[89]+ ( 2.00000*ALGEBRAIC[42])*STATES[91])+ ( 2.00000*ALGEBRAIC[93])*STATES[101])+ ( 3.00000*ALGEBRAIC[64])*STATES[92]) - STATES[90]*(((ALGEBRAIC[14]+ALGEBRAIC[42])+ALGEBRAIC[93])+ 2.00000*ALGEBRAIC[64]); RATES[91] = (( ALGEBRAIC[14]*STATES[90]+ ( 3.00000*ALGEBRAIC[93])*STATES[102])+ ( 3.00000*ALGEBRAIC[64])*STATES[93]) - STATES[91]*(( 2.00000*ALGEBRAIC[42]+ 2.00000*ALGEBRAIC[93])+ 2.00000*ALGEBRAIC[64]); RATES[92] = ( ALGEBRAIC[42]*STATES[93]+ ALGEBRAIC[93]*STATES[90]) - STATES[92]*(ALGEBRAIC[14]+ 3.00000*ALGEBRAIC[64]); RATES[93] = (( ALGEBRAIC[14]*STATES[92]+ ( 2.00000*ALGEBRAIC[93])*STATES[91])+ ( 4.00000*ALGEBRAIC[64])*STATES[94]) - STATES[93]*((ALGEBRAIC[42]+ALGEBRAIC[93])+ 3.00000*ALGEBRAIC[64]); ALGEBRAIC[76] = 0.000385250+(0.0124060 - 0.000385250)/(1.00000+exp(( CONSTANTS[263]*(STATES[50]+0.0641180))/0.779920)); RATES[94] = ( ALGEBRAIC[93]*STATES[93] - STATES[94]*( 4.00000*ALGEBRAIC[64]+CONSTANTS[112]))+ ALGEBRAIC[76]*STATES[71]; RATES[95] = (( ( 4.00000*ALGEBRAIC[14])*STATES[88]+ ( 2.00000*ALGEBRAIC[42])*STATES[96])+ ALGEBRAIC[64]*STATES[99]) - STATES[95]*(( 3.00000*ALGEBRAIC[14]+ALGEBRAIC[42])+ALGEBRAIC[93]); RATES[96] = (( ( 3.00000*ALGEBRAIC[14])*STATES[95]+ ( 3.00000*ALGEBRAIC[42])*STATES[97])+ ALGEBRAIC[64]*STATES[100]) - STATES[96]*(( 2.00000*ALGEBRAIC[14]+ 2.00000*ALGEBRAIC[42])+ 2.00000*ALGEBRAIC[93]); RATES[97] = (( ( 2.00000*ALGEBRAIC[14])*STATES[96]+ ( 4.00000*ALGEBRAIC[42])*STATES[98])+ ALGEBRAIC[64]*STATES[101]) - STATES[97]*((ALGEBRAIC[14]+ 3.00000*ALGEBRAIC[42])+ 3.00000*ALGEBRAIC[93]); RATES[98] = ( ALGEBRAIC[14]*STATES[97]+ ALGEBRAIC[64]*STATES[102]) - STATES[98]*( 4.00000*ALGEBRAIC[42]+ 4.00000*ALGEBRAIC[93]); RATES[99] = ( ALGEBRAIC[42]*STATES[100]+ ALGEBRAIC[93]*STATES[95]) - STATES[99]*( 3.00000*ALGEBRAIC[14]+ALGEBRAIC[64]); RATES[100] = ((( ( 3.00000*ALGEBRAIC[14])*STATES[99]+ ( 2.00000*ALGEBRAIC[42])*STATES[101])+ ( 2.00000*ALGEBRAIC[93])*STATES[96])+ ( 2.00000*ALGEBRAIC[64])*STATES[89]) - STATES[100]*((( 2.00000*ALGEBRAIC[14]+ALGEBRAIC[42])+ALGEBRAIC[93])+ALGEBRAIC[64]); RATES[101] = ((( ( 2.00000*ALGEBRAIC[14])*STATES[100]+ ( 3.00000*ALGEBRAIC[42])*STATES[102])+ ( 3.00000*ALGEBRAIC[93])*STATES[97])+ ( 2.00000*ALGEBRAIC[64])*STATES[90]) - STATES[101]*(((ALGEBRAIC[14]+ 2.00000*ALGEBRAIC[42])+ 2.00000*ALGEBRAIC[93])+ALGEBRAIC[64]); RATES[102] = (( ALGEBRAIC[14]*STATES[101]+ ( 4.00000*ALGEBRAIC[93])*STATES[98])+ ( 2.00000*ALGEBRAIC[64])*STATES[91]) - STATES[102]*(( 3.00000*ALGEBRAIC[42]+ 3.00000*ALGEBRAIC[93])+ALGEBRAIC[64]); ALGEBRAIC[92] = 0.000441980*exp( ( - 1.20220*STATES[50])*CONSTANTS[263]); ALGEBRAIC[103] = 0.000401730*exp( ( 0.000208730*STATES[50])*CONSTANTS[263]); RATES[69] = ( - (ALGEBRAIC[75]+ALGEBRAIC[103])*STATES[69]+ ALGEBRAIC[92]*STATES[70])+ CONSTANTS[111]*STATES[79]; RATES[70] = ALGEBRAIC[103]*STATES[69] - ALGEBRAIC[92]*STATES[70]; ALGEBRAIC[94] = 0.000237300*exp( ( - 1.97420*STATES[50])*CONSTANTS[263]); ALGEBRAIC[104] = 0.000226520*exp( ( 0.000246900*STATES[50])*CONSTANTS[263]); RATES[71] = ( - (ALGEBRAIC[76]+ALGEBRAIC[104])*STATES[71]+ ALGEBRAIC[94]*STATES[72])+ CONSTANTS[112]*STATES[94]; RATES[72] = ALGEBRAIC[104]*STATES[71] - ALGEBRAIC[94]*STATES[72]; ALGEBRAIC[5] = ( ( CONSTANTS[36]*CONSTANTS[35])*CONSTANTS[319] - STATES[8]) - STATES[7]; ALGEBRAIC[34] = ( ALGEBRAIC[5]*(CONSTANTS[59]+CONSTANTS[51]) - STATES[14]*(CONSTANTS[51]+CONSTANTS[59]))+ ( CONSTANTS[49]*CONSTANTS[51])*(1.00000+CONSTANTS[59]/CONSTANTS[54]); ALGEBRAIC[58] = ( - STATES[14]*CONSTANTS[49])*CONSTANTS[51]; ALGEBRAIC[70] = (- ALGEBRAIC[34]+ pow(( ALGEBRAIC[34]*ALGEBRAIC[34] - ( 4.00000*CONSTANTS[222])*ALGEBRAIC[58]), 1.0 / 2))/( 2.00000*CONSTANTS[222]); ALGEBRAIC[86] = ALGEBRAIC[5]/(1.00000+ (ALGEBRAIC[70]/CONSTANTS[49])*(1.00000+CONSTANTS[59]/CONSTANTS[51])); ALGEBRAIC[98] = ( ALGEBRAIC[70]*ALGEBRAIC[86])/CONSTANTS[49]; ALGEBRAIC[108] = ( ALGEBRAIC[98]*CONSTANTS[59])/CONSTANTS[51]; RATES[8] = 0.00100000*(( CONSTANTS[44]*ALGEBRAIC[98]+ CONSTANTS[42]*ALGEBRAIC[108]) - CONSTANTS[219]*STATES[8]); RATES[0] = 0.00100000*(( CONSTANTS[44]*ALGEBRAIC[98]+ CONSTANTS[42]*ALGEBRAIC[108]) - ( CONSTANTS[221]*STATES[0])*STATES[7]); ALGEBRAIC[8] = ( ( CONSTANTS[215]*CONSTANTS[35])*CONSTANTS[326] - STATES[21]) - STATES[20]; ALGEBRAIC[37] = ( ALGEBRAIC[8]*(CONSTANTS[59]+CONSTANTS[51]) - STATES[28]*(CONSTANTS[51]+CONSTANTS[59]))+ ( CONSTANTS[49]*CONSTANTS[51])*(1.00000+CONSTANTS[59]/CONSTANTS[54]); ALGEBRAIC[61] = ( - STATES[28]*CONSTANTS[49])*CONSTANTS[51]; ALGEBRAIC[73] = (- ALGEBRAIC[37]+ pow(( ALGEBRAIC[37]*ALGEBRAIC[37] - ( 4.00000*CONSTANTS[225])*ALGEBRAIC[61]), 1.0 / 2))/( 2.00000*CONSTANTS[225]); ALGEBRAIC[89] = ALGEBRAIC[8]/(1.00000+ (ALGEBRAIC[73]/CONSTANTS[49])*(1.00000+CONSTANTS[59]/CONSTANTS[51])); ALGEBRAIC[101] = ( ALGEBRAIC[73]*ALGEBRAIC[89])/CONSTANTS[49]; ALGEBRAIC[111] = (CONSTANTS[59]/CONSTANTS[51])*ALGEBRAIC[101]; RATES[21] = 0.00100000*(( CONSTANTS[44]*ALGEBRAIC[101]+ CONSTANTS[42]*ALGEBRAIC[111]) - CONSTANTS[219]*STATES[21]); RATES[22] = 0.00100000*(( CONSTANTS[44]*ALGEBRAIC[101]+ CONSTANTS[42]*ALGEBRAIC[111]) - ( CONSTANTS[221]*STATES[22])*STATES[20]); ALGEBRAIC[7] = ( ( CONSTANTS[216]*CONSTANTS[295])*CONSTANTS[321] - STATES[2]) - STATES[15]; ALGEBRAIC[59] = ( ALGEBRAIC[7]*(CONSTANTS[47]+CONSTANTS[59]) - ALGEBRAIC[35]*(CONSTANTS[47]+CONSTANTS[59]))+ ( CONSTANTS[46]*CONSTANTS[47])*(1.00000+CONSTANTS[59]/CONSTANTS[48]); ALGEBRAIC[71] = ( - ALGEBRAIC[35]*CONSTANTS[47])*CONSTANTS[46]; ALGEBRAIC[87] = (- ALGEBRAIC[59]+ pow(( ALGEBRAIC[59]*ALGEBRAIC[59] - ( 4.00000*CONSTANTS[224])*ALGEBRAIC[71]), 1.0 / 2))/( 2.00000*CONSTANTS[224]); ALGEBRAIC[99] = ALGEBRAIC[7]/(1.00000+ (ALGEBRAIC[87]/CONSTANTS[46])*(1.00000+CONSTANTS[59]/CONSTANTS[47])); ALGEBRAIC[110] = ( ( CONSTANTS[59]*ALGEBRAIC[87])*ALGEBRAIC[99])/( CONSTANTS[46]*CONSTANTS[47]); ALGEBRAIC[119] = ( ALGEBRAIC[99]*ALGEBRAIC[87])/CONSTANTS[46]; RATES[2] = 0.00100000*(( CONSTANTS[45]*ALGEBRAIC[119]+ CONSTANTS[43]*ALGEBRAIC[110]) - CONSTANTS[55]*STATES[2]); RATES[16] = 0.00100000*(( CONSTANTS[45]*ALGEBRAIC[119]+ CONSTANTS[43]*ALGEBRAIC[110]) - ( CONSTANTS[56]*STATES[16])*STATES[15]); ALGEBRAIC[118] = ( CONSTANTS[59]*ALGEBRAIC[87])/CONSTANTS[48]; RATES[17] = 0.00100000*( ( CONSTANTS[218]*CONSTANTS[61])*(ALGEBRAIC[118]+ALGEBRAIC[110]) - CONSTANTS[217]*STATES[17]); ALGEBRAIC[130] = ((CONSTANTS[399] - STATES[142]) - STATES[141]) - STATES[140]; RATES[142] = 0.00100000*((( ( CONSTANTS[268]*ALGEBRAIC[130])*STATES[45] - CONSTANTS[276]*STATES[142]) - ( CONSTANTS[269]*STATES[142])*STATES[45])+ CONSTANTS[277]*STATES[141]); ALGEBRAIC[1] = pow( STATES[3]*1.00000, CONSTANTS[12]); ALGEBRAIC[31] = CONSTANTS[6]*(CONSTANTS[8]+ALGEBRAIC[1]/(CONSTANTS[3]+ALGEBRAIC[1])); ALGEBRAIC[67] = ( ALGEBRAIC[31]*CONSTANTS[329])*CONSTANTS[227]; ALGEBRAIC[83] = ( CONSTANTS[236]*(STATES[43] - STATES[45]))/CONSTANTS[309]; ALGEBRAIC[96] = ( CONSTANTS[237]*(STATES[45] - STATES[44]))/CONSTANTS[309]; ALGEBRAIC[107] = ( CONSTANTS[349]*CONSTANTS[185])/(1.00000+CONSTANTS[170]/STATES[45]); ALGEBRAIC[116] = ( (CONSTANTS[372]+ (CONSTANTS[174] - 1.00000)*STATES[131])*CONSTANTS[187])/(1.00000+CONSTANTS[172]/STATES[45]); ALGEBRAIC[124] = ALGEBRAIC[107]+ALGEBRAIC[116]; ALGEBRAIC[134] = (( ( - CONSTANTS[268]*ALGEBRAIC[130])*STATES[45]+ CONSTANTS[276]*STATES[142]) - ( CONSTANTS[269]*STATES[142])*STATES[45])+ CONSTANTS[277]*STATES[141]; RATES[45] = 0.00100000*((((ALGEBRAIC[134]+ALGEBRAIC[67]) - ALGEBRAIC[124])+ALGEBRAIC[83]) - ALGEBRAIC[96]); ALGEBRAIC[140] = ((CONSTANTS[380] - STATES[134]) - STATES[133]) - STATES[132]; RATES[134] = 0.00100000*((( ( CONSTANTS[199]*ALGEBRAIC[140])*STATES[43] - CONSTANTS[246]*STATES[134]) - ( CONSTANTS[200]*STATES[134])*STATES[43])+ CONSTANTS[247]*STATES[133]); ALGEBRAIC[2] = pow( STATES[1]*1.00000, CONSTANTS[13]); ALGEBRAIC[32] = pow( STATES[1]*1.00000, CONSTANTS[14]); ALGEBRAIC[56] = ( CONSTANTS[7]*(CONSTANTS[9]+ALGEBRAIC[2]/(CONSTANTS[4]+ALGEBRAIC[2])))*(1.00000 - ( (1.00000 - ( CONSTANTS[15]*ALGEBRAIC[32])/(CONSTANTS[5]+ALGEBRAIC[32]))*STATES[0])/(CONSTANTS[2]+STATES[0])); ALGEBRAIC[82] = ( ALGEBRAIC[56]*CONSTANTS[320])*CONSTANTS[227]; ALGEBRAIC[95] = ( CONSTANTS[236]*(STATES[43] - STATES[45]))/CONSTANTS[306]; ALGEBRAIC[105] = ( CONSTANTS[235]*(STATES[43] - STATES[44]))/CONSTANTS[306]; ALGEBRAIC[114] = ( CONSTANTS[347]*CONSTANTS[185])/(1.00000+CONSTANTS[170]/STATES[43]); ALGEBRAIC[122] = ( (CONSTANTS[377]+ (CONSTANTS[174] - 1.00000)*STATES[127])*CONSTANTS[186])/(1.00000+CONSTANTS[171]/STATES[43]); ALGEBRAIC[128] = ( (CONSTANTS[370]+ (CONSTANTS[174] - 1.00000)*STATES[129])*CONSTANTS[187])/(1.00000+CONSTANTS[172]/STATES[43]); ALGEBRAIC[135] = (ALGEBRAIC[114]+ALGEBRAIC[122])+ALGEBRAIC[128]; ALGEBRAIC[145] = (( ( - CONSTANTS[199]*ALGEBRAIC[140])*STATES[43]+ CONSTANTS[246]*STATES[134]) - ( CONSTANTS[200]*STATES[134])*STATES[43])+ CONSTANTS[247]*STATES[133]; RATES[43] = 0.00100000*((((ALGEBRAIC[145]+ALGEBRAIC[82]) - ALGEBRAIC[135]) - ALGEBRAIC[95]) - ALGEBRAIC[105]); ALGEBRAIC[150] = ((CONSTANTS[335] - STATES[138]) - STATES[137]) - STATES[136]; RATES[138] = 0.00100000*((( ( CONSTANTS[249]*ALGEBRAIC[150])*STATES[44] - CONSTANTS[265]*STATES[138]) - ( CONSTANTS[250]*STATES[138])*STATES[44])+ CONSTANTS[266]*STATES[137]); ALGEBRAIC[0] = pow( STATES[2]*1.00000, CONSTANTS[12]); ALGEBRAIC[55] = CONSTANTS[6]*(CONSTANTS[8]+ALGEBRAIC[0]/(CONSTANTS[3]+ALGEBRAIC[0])); ALGEBRAIC[68] = ( ALGEBRAIC[55]*CONSTANTS[324])*CONSTANTS[227]; ALGEBRAIC[30] = pow( STATES[2]*1.00000, CONSTANTS[13]); ALGEBRAIC[84] = CONSTANTS[7]*(CONSTANTS[9]+ALGEBRAIC[30]/(CONSTANTS[4]+ALGEBRAIC[30])); ALGEBRAIC[106] = ( ALGEBRAIC[84]*CONSTANTS[328])*CONSTANTS[227]; ALGEBRAIC[115] = ( CONSTANTS[235]*(STATES[43] - STATES[44]))/CONSTANTS[307]; ALGEBRAIC[123] = ( CONSTANTS[237]*(STATES[45] - STATES[44]))/CONSTANTS[307]; ALGEBRAIC[129] = ( CONSTANTS[348]*CONSTANTS[185])/(1.00000+CONSTANTS[170]/STATES[44]); ALGEBRAIC[136] = ( (CONSTANTS[378]+ (CONSTANTS[174] - 1.00000)*STATES[128])*CONSTANTS[186])/(1.00000+CONSTANTS[171]/STATES[44]); ALGEBRAIC[141] = ( (CONSTANTS[371]+ (CONSTANTS[174] - 1.00000)*STATES[130])*CONSTANTS[187])/(1.00000+CONSTANTS[172]/STATES[44]); ALGEBRAIC[146] = (ALGEBRAIC[129]+ALGEBRAIC[136])+ALGEBRAIC[141]; ALGEBRAIC[154] = (( ( - CONSTANTS[249]*ALGEBRAIC[150])*STATES[44]+ CONSTANTS[265]*STATES[138]) - ( CONSTANTS[250]*STATES[138])*STATES[44])+ CONSTANTS[266]*STATES[137]; RATES[44] = 0.00100000*(((((ALGEBRAIC[154]+ALGEBRAIC[68])+ALGEBRAIC[106]) - ALGEBRAIC[146])+ALGEBRAIC[115])+ALGEBRAIC[123]); ALGEBRAIC[6] = ( ( CONSTANTS[37]*CONSTANTS[295])*CONSTANTS[319] - STATES[1]) - STATES[9]; ALGEBRAIC[69] = (((CONSTANTS[258]+CONSTANTS[271])/CONSTANTS[223]+ALGEBRAIC[33])+ALGEBRAIC[57]) - ALGEBRAIC[6]; ALGEBRAIC[85] = (( CONSTANTS[271]*(ALGEBRAIC[33] - ALGEBRAIC[6])+ CONSTANTS[258]*(ALGEBRAIC[57] - ALGEBRAIC[6]))+CONSTANTS[279])/CONSTANTS[223]; ALGEBRAIC[97] = ( ALGEBRAIC[6]*CONSTANTS[279])/CONSTANTS[223]; ALGEBRAIC[109] = ((( (- ALGEBRAIC[97]/27.0000)*pow(ALGEBRAIC[69], 3.00000) - ( ( ( ALGEBRAIC[69]*ALGEBRAIC[69])*ALGEBRAIC[85])*ALGEBRAIC[85])/108.000)+( ( ALGEBRAIC[69]*ALGEBRAIC[85])*ALGEBRAIC[97])/6.00000)+pow(ALGEBRAIC[85], 3.00000)/27.0000)+( ALGEBRAIC[97]*ALGEBRAIC[97])/4.00000; ALGEBRAIC[117] = (ALGEBRAIC[109]<0.00000 ? pow(- ALGEBRAIC[109], 1.0 / 2) : 0.00000); ALGEBRAIC[125] = (((ALGEBRAIC[109]>0.00000 ? pow(ALGEBRAIC[109], 1.0 / 2) : 0.00000)+ALGEBRAIC[97]/2.00000)+( ALGEBRAIC[69]*ALGEBRAIC[85])/6.00000) - pow(ALGEBRAIC[69], 3.00000)/27.0000; ALGEBRAIC[131] = atan(ALGEBRAIC[117]/ALGEBRAIC[125])/3.00000; ALGEBRAIC[137] = pow( ALGEBRAIC[125]*ALGEBRAIC[125]+ ALGEBRAIC[117]*ALGEBRAIC[117], 1.00000/6.00000); ALGEBRAIC[142] = (ALGEBRAIC[85]/3.00000 - ( ALGEBRAIC[69]*ALGEBRAIC[69])/9.00000)/( ALGEBRAIC[137]*ALGEBRAIC[137]); ALGEBRAIC[147] = ( ALGEBRAIC[137]* sin(ALGEBRAIC[131]))*(1.00000+ALGEBRAIC[142]); ALGEBRAIC[151] = ( ALGEBRAIC[137]*cos(ALGEBRAIC[131]))*(1.00000 - ALGEBRAIC[142]) - ALGEBRAIC[69]/3.00000; ALGEBRAIC[156] = pow(( ALGEBRAIC[151]*ALGEBRAIC[151]+ ALGEBRAIC[147]*ALGEBRAIC[147]), 1.0 / 2); ALGEBRAIC[160] = ALGEBRAIC[33]/((1.00000+CONSTANTS[59]/CONSTANTS[48])+( ALGEBRAIC[156]*(CONSTANTS[47]+CONSTANTS[59]))/( CONSTANTS[46]*CONSTANTS[47])); ALGEBRAIC[164] = ( CONSTANTS[59]*ALGEBRAIC[160])/CONSTANTS[48]; ALGEBRAIC[168] = ( ( CONSTANTS[59]*ALGEBRAIC[160])*ALGEBRAIC[156])/( CONSTANTS[46]*CONSTANTS[47]); RATES[11] = 0.00100000*( ( CONSTANTS[218]*CONSTANTS[58])*(ALGEBRAIC[164]+ALGEBRAIC[168]) - CONSTANTS[217]*STATES[11]); ALGEBRAIC[9] = ( ( CONSTANTS[38]*CONSTANTS[295])*CONSTANTS[326] - STATES[3]) - STATES[23]; ALGEBRAIC[72] = (((CONSTANTS[259]+CONSTANTS[272])/CONSTANTS[226]+ALGEBRAIC[36])+ALGEBRAIC[60]) - ALGEBRAIC[9]; ALGEBRAIC[88] = (( CONSTANTS[272]*(ALGEBRAIC[36] - ALGEBRAIC[9])+ CONSTANTS[259]*(ALGEBRAIC[60] - ALGEBRAIC[9]))+CONSTANTS[280])/CONSTANTS[226]; ALGEBRAIC[100] = ( ALGEBRAIC[9]*CONSTANTS[280])/CONSTANTS[226]; ALGEBRAIC[112] = ((( (- ALGEBRAIC[100]/27.0000)*pow(ALGEBRAIC[72], 3.00000) - ( ( ( ALGEBRAIC[72]*ALGEBRAIC[72])*ALGEBRAIC[88])*ALGEBRAIC[88])/108.000)+( ( ALGEBRAIC[72]*ALGEBRAIC[88])*ALGEBRAIC[100])/6.00000)+pow(ALGEBRAIC[88], 3.00000)/27.0000)+( ALGEBRAIC[100]*ALGEBRAIC[100])/4.00000; ALGEBRAIC[120] = (ALGEBRAIC[112]<0.00000 ? pow(- ALGEBRAIC[112], 1.0 / 2) : 0.00000); ALGEBRAIC[126] = (((ALGEBRAIC[112]>0.00000 ? pow(ALGEBRAIC[112], 1.0 / 2) : 0.00000)+ALGEBRAIC[100]/2.00000)+( ALGEBRAIC[72]*ALGEBRAIC[88])/6.00000) - pow(ALGEBRAIC[72], 3.00000)/27.0000; ALGEBRAIC[132] = atan(ALGEBRAIC[120]/ALGEBRAIC[126])/3.00000; ALGEBRAIC[138] = pow( ALGEBRAIC[126]*ALGEBRAIC[126]+ ALGEBRAIC[120]*ALGEBRAIC[120], 1.00000/6.00000); ALGEBRAIC[143] = (ALGEBRAIC[88]/3.00000 - ( ALGEBRAIC[72]*ALGEBRAIC[72])/9.00000)/( ALGEBRAIC[138]*ALGEBRAIC[138]); ALGEBRAIC[148] = ( ALGEBRAIC[138]* sin(ALGEBRAIC[132]))*(1.00000+ALGEBRAIC[143]); ALGEBRAIC[152] = ( ALGEBRAIC[138]*cos(ALGEBRAIC[132]))*(1.00000 - ALGEBRAIC[143]) - ALGEBRAIC[72]/3.00000; ALGEBRAIC[157] = pow(( ALGEBRAIC[152]*ALGEBRAIC[152]+ ALGEBRAIC[148]*ALGEBRAIC[148]), 1.0 / 2); ALGEBRAIC[161] = ALGEBRAIC[36]/((1.00000+CONSTANTS[59]/CONSTANTS[48])+( ALGEBRAIC[157]*(CONSTANTS[47]+CONSTANTS[59]))/( CONSTANTS[46]*CONSTANTS[47])); ALGEBRAIC[165] = ( CONSTANTS[59]*ALGEBRAIC[161])/CONSTANTS[48]; ALGEBRAIC[169] = ( ( CONSTANTS[59]*ALGEBRAIC[161])*ALGEBRAIC[157])/( CONSTANTS[46]*CONSTANTS[47]); RATES[25] = 0.00100000*( ( CONSTANTS[218]*CONSTANTS[62])*(ALGEBRAIC[165]+ALGEBRAIC[169]) - CONSTANTS[217]*STATES[25]); ALGEBRAIC[176] = ALGEBRAIC[57]/((1.00000+CONSTANTS[59]/CONSTANTS[53])+( ALGEBRAIC[156]*(CONSTANTS[52]+CONSTANTS[59]))/( CONSTANTS[50]*CONSTANTS[52])); ALGEBRAIC[180] = ( CONSTANTS[59]*ALGEBRAIC[176])/CONSTANTS[53]; ALGEBRAIC[184] = ( ( CONSTANTS[59]*ALGEBRAIC[176])*ALGEBRAIC[156])/( CONSTANTS[50]*CONSTANTS[52]); RATES[13] = 0.00100000*( ( CONSTANTS[218]*CONSTANTS[58])*(ALGEBRAIC[180]+ALGEBRAIC[184]) - CONSTANTS[217]*STATES[13]); ALGEBRAIC[177] = ALGEBRAIC[60]/((1.00000+CONSTANTS[59]/CONSTANTS[53])+( ALGEBRAIC[157]*(CONSTANTS[52]+CONSTANTS[59]))/( CONSTANTS[50]*CONSTANTS[52])); ALGEBRAIC[181] = ( CONSTANTS[59]*ALGEBRAIC[177])/CONSTANTS[53]; ALGEBRAIC[185] = ( ( CONSTANTS[59]*ALGEBRAIC[177])*ALGEBRAIC[157])/( CONSTANTS[50]*CONSTANTS[52]); RATES[27] = 0.00100000*( ( CONSTANTS[218]*CONSTANTS[62])*(ALGEBRAIC[181]+ALGEBRAIC[185]) - CONSTANTS[217]*STATES[27]); ALGEBRAIC[188] = ALGEBRAIC[168]+ CONSTANTS[60]*ALGEBRAIC[184]; ALGEBRAIC[172] = ( ALGEBRAIC[160]*ALGEBRAIC[156])/CONSTANTS[46]; ALGEBRAIC[192] = ( ALGEBRAIC[176]*ALGEBRAIC[156])/CONSTANTS[50]; ALGEBRAIC[196] = ALGEBRAIC[172]+ CONSTANTS[60]*ALGEBRAIC[192]; RATES[1] = 0.00100000*(( CONSTANTS[45]*ALGEBRAIC[196]+ CONSTANTS[43]*ALGEBRAIC[188]) - CONSTANTS[55]*STATES[1]); RATES[10] = 0.00100000*(( CONSTANTS[45]*ALGEBRAIC[196]+ CONSTANTS[43]*ALGEBRAIC[188]) - ( CONSTANTS[56]*STATES[10])*STATES[9]); ALGEBRAIC[189] = ALGEBRAIC[169]+ CONSTANTS[63]*ALGEBRAIC[185]; ALGEBRAIC[173] = ( ALGEBRAIC[161]*ALGEBRAIC[157])/CONSTANTS[46]; ALGEBRAIC[193] = ( ALGEBRAIC[177]*ALGEBRAIC[157])/CONSTANTS[50]; ALGEBRAIC[197] = ALGEBRAIC[173]+ CONSTANTS[63]*ALGEBRAIC[193]; RATES[3] = 0.00100000*(( CONSTANTS[45]*ALGEBRAIC[197]+ CONSTANTS[43]*ALGEBRAIC[189]) - CONSTANTS[55]*STATES[3]); RATES[24] = 0.00100000*(( CONSTANTS[45]*ALGEBRAIC[197]+ CONSTANTS[43]*ALGEBRAIC[189]) - ( CONSTANTS[56]*STATES[24])*STATES[23]); ALGEBRAIC[133] = CONSTANTS[274] - STATES[35]; ALGEBRAIC[139] = CONSTANTS[262] - STATES[35]*CONSTANTS[261]; ALGEBRAIC[144] = - CONSTANTS[230]*STATES[35]; ALGEBRAIC[149] = - ALGEBRAIC[133]/3.00000+ ( (2.00000/3.00000)* pow(( ALGEBRAIC[133]*ALGEBRAIC[133] - 3.00000*ALGEBRAIC[139]), 1.0 / 2))*cos(acos((( ( 9.00000*ALGEBRAIC[133])*ALGEBRAIC[139] - ( ( 2.00000*ALGEBRAIC[133])*ALGEBRAIC[133])*ALGEBRAIC[133]) - 27.0000*ALGEBRAIC[144])/( 2.00000*pow( ALGEBRAIC[133]*ALGEBRAIC[133] - 3.00000*ALGEBRAIC[139], 1.50000)))/3.00000); ALGEBRAIC[190] = ( CONSTANTS[79]*(1.00000 - STATES[42]))/(1.00000+CONSTANTS[81]/ALGEBRAIC[149]); ALGEBRAIC[194] = ALGEBRAIC[190]+STATES[42]; ALGEBRAIC[199] = ALGEBRAIC[194]/(ALGEBRAIC[194]+CONSTANTS[80]); RATES[36] = (ALGEBRAIC[199] - STATES[36])/CONSTANTS[231]; RATES[37] = (ALGEBRAIC[199] - STATES[37])/CONSTANTS[232]; RATES[38] = (ALGEBRAIC[199] - STATES[38])/CONSTANTS[233]; RATES[39] = (ALGEBRAIC[199] - STATES[39])/CONSTANTS[234]; RATES[40] = (ALGEBRAIC[199] - STATES[40])/CONSTANTS[85]; ALGEBRAIC[200] = 1.00000/(1.00000+pow(CONSTANTS[80]/ALGEBRAIC[194], 2.00000)); RATES[41] = (ALGEBRAIC[200] - STATES[41])/CONSTANTS[86]; ALGEBRAIC[198] = (CONSTANTS[205] - CONSTANTS[208])+STATES[144]; ALGEBRAIC[203] = 0.500000*( pow((pow(ALGEBRAIC[198], 2.00000)+ ( 4.00000*CONSTANTS[205])*CONSTANTS[208]), 1.0 / 2) - ALGEBRAIC[198]); RATES[125] = 0.00100000*(( ( CONSTANTS[162]*STATES[19])*(1.00000 - STATES[125]))/(CONSTANTS[158]+ (1.00000 - STATES[125])*1.00000) - ( ( CONSTANTS[163]*ALGEBRAIC[203])*STATES[125])/(CONSTANTS[160]+ STATES[125]*1.00000)); ALGEBRAIC[206] = (CONSTANTS[28]/CONSTANTS[319]+CONSTANTS[82]/CONSTANTS[326])+ALGEBRAIC[203]/CONSTANTS[321]; RATES[42] = ( CONSTANTS[83]*ALGEBRAIC[190])*ALGEBRAIC[194] - ( CONSTANTS[84]*STATES[42])*(0.100000+( 0.900000*ALGEBRAIC[206])/0.137100); ALGEBRAIC[155] = 1.00000/( (1.00000+exp((4.79800+STATES[50])/- 7.56990))*(1.00000+exp((25.0000+STATES[50])/- 5.00000))); ALGEBRAIC[195] = 0.590000+( 0.800000*exp( 0.0520000*(STATES[50]+13.0000)))/(1.00000+exp( 0.132000*(STATES[50]+13.0000))); ALGEBRAIC[202] = ALGEBRAIC[155]/ALGEBRAIC[195]; ALGEBRAIC[205] = (1.00000 - ALGEBRAIC[155])/ALGEBRAIC[195]; ALGEBRAIC[179] = 1.00000+pow(0.00200000/ALGEBRAIC[149], 4.00000); ALGEBRAIC[183] = 6.00000/ALGEBRAIC[179]; ALGEBRAIC[163] = 1.00000/(1.00000+exp((29.9790+STATES[50])/3.17750)); ALGEBRAIC[171] = (0.100000+ALGEBRAIC[163])/1.10000; ALGEBRAIC[214] = 1.00000/( ( 70.0000*(1.00000 - 0.500000*STATES[36]))*(1.00000+exp((STATES[50]+49.1000)/10.3490))); ALGEBRAIC[216] = 1.00000/(1.00000+exp((STATES[50]+0.213000)/- 10.8070)); ALGEBRAIC[221] = 1.00000/(ALGEBRAIC[214]+ALGEBRAIC[216]/38.4940); ALGEBRAIC[224] = ALGEBRAIC[171]/ALGEBRAIC[221]; ALGEBRAIC[233] = (1.00000 - ALGEBRAIC[171])/ALGEBRAIC[221]; RATES[51] = (( - ((ALGEBRAIC[202]+ALGEBRAIC[183])+ALGEBRAIC[233])*STATES[51]+ ALGEBRAIC[205]*STATES[55])+ CONSTANTS[102]*STATES[54])+ ALGEBRAIC[224]*STATES[52]; RATES[55] = (( - ((ALGEBRAIC[205]+ALGEBRAIC[183])+ALGEBRAIC[233])*STATES[55]+ ALGEBRAIC[202]*STATES[51])+ CONSTANTS[102]*STATES[58])+ ALGEBRAIC[224]*STATES[56]; ALGEBRAIC[167] = (0.000100000+ALGEBRAIC[163])/1.00010; ALGEBRAIC[159] = 0.100000*STATES[36]; ALGEBRAIC[175] = 1.00000+pow(0.0100000/ALGEBRAIC[149], 10.0000); ALGEBRAIC[187] = (32.5000 - (18.0000 - ALGEBRAIC[159])/ALGEBRAIC[179]) - 10.0000/ALGEBRAIC[175]; ALGEBRAIC[218] = 1.00000/(ALGEBRAIC[214]+ALGEBRAIC[216]/ALGEBRAIC[187]); ALGEBRAIC[227] = ALGEBRAIC[167]/ALGEBRAIC[218]; ALGEBRAIC[239] = (1.00000 - ALGEBRAIC[167])/ALGEBRAIC[218]; RATES[54] = (( - ((ALGEBRAIC[202]+CONSTANTS[102])+ALGEBRAIC[239])*STATES[54]+ ALGEBRAIC[183]*STATES[51])+ ALGEBRAIC[205]*STATES[58])+ ALGEBRAIC[227]*STATES[53]; RATES[58] = (( - ((ALGEBRAIC[205]+CONSTANTS[102])+ALGEBRAIC[239])*STATES[58]+ ALGEBRAIC[183]*STATES[55])+ ALGEBRAIC[202]*STATES[54])+ ALGEBRAIC[227]*STATES[57]; ALGEBRAIC[230] = (fabs(ALGEBRAIC[227])<1.00000e-12 ? 1.00000e-12 : ALGEBRAIC[227]); ALGEBRAIC[236] = (fabs(ALGEBRAIC[233])<1.00000e-12 ? 1.00000e-12 : ALGEBRAIC[233]); ALGEBRAIC[242] = ( CONSTANTS[103]*( ( ALGEBRAIC[224]*ALGEBRAIC[239])*ALGEBRAIC[183]))/( ( ALGEBRAIC[236]*ALGEBRAIC[230])*CONSTANTS[102]); RATES[52] = (( - ((ALGEBRAIC[202]+ALGEBRAIC[242])+ALGEBRAIC[224])*STATES[52]+ ALGEBRAIC[233]*STATES[51])+ CONSTANTS[103]*STATES[53])+ ALGEBRAIC[205]*STATES[56]; RATES[53] = (( - ((ALGEBRAIC[202]+CONSTANTS[103])+ALGEBRAIC[227])*STATES[53]+ ALGEBRAIC[239]*STATES[54])+ ALGEBRAIC[242]*STATES[52])+ ALGEBRAIC[205]*STATES[57]; RATES[56] = (( - ((ALGEBRAIC[205]+ALGEBRAIC[242])+ALGEBRAIC[224])*STATES[56]+ ALGEBRAIC[233]*STATES[55])+ CONSTANTS[103]*STATES[57])+ ALGEBRAIC[202]*STATES[52]; RATES[57] = (( - ((ALGEBRAIC[205]+CONSTANTS[103])+ALGEBRAIC[227])*STATES[57]+ ALGEBRAIC[239]*STATES[58])+ ALGEBRAIC[242]*STATES[56])+ ALGEBRAIC[202]*STATES[53]; ALGEBRAIC[62] = CONSTANTS[274] - STATES[33]; ALGEBRAIC[74] = CONSTANTS[262] - STATES[33]*CONSTANTS[261]; ALGEBRAIC[90] = - CONSTANTS[230]*STATES[33]; ALGEBRAIC[102] = - ALGEBRAIC[62]/3.00000+ ( (2.00000/3.00000)* pow(( ALGEBRAIC[62]*ALGEBRAIC[62] - 3.00000*ALGEBRAIC[74]), 1.0 / 2))*cos(acos((( ( 9.00000*ALGEBRAIC[62])*ALGEBRAIC[74] - ( ( 2.00000*ALGEBRAIC[62])*ALGEBRAIC[62])*ALGEBRAIC[62]) - 27.0000*ALGEBRAIC[90])/( 2.00000*pow( ALGEBRAIC[62]*ALGEBRAIC[62] - 3.00000*ALGEBRAIC[74], 1.50000)))/3.00000); ALGEBRAIC[209] = (ALGEBRAIC[149] - ALGEBRAIC[102])/CONSTANTS[95]; ALGEBRAIC[10] = (STATES[4]+CONSTANTS[392])/CONSTANTS[17]; ALGEBRAIC[220] = (ALGEBRAIC[10] - CONSTANTS[397])/(0.927300 - CONSTANTS[397]); ALGEBRAIC[223] = (ALGEBRAIC[220]<0.00000 ? 0.00000 : ALGEBRAIC[220]); ALGEBRAIC[226] = 0.000257900*(1.00000+ 0.100000*STATES[36]); ALGEBRAIC[229] = exp( ( 2.00000*STATES[50])*CONSTANTS[263]); ALGEBRAIC[232] = ( ( ( ( ALGEBRAIC[226]*4.00000)*STATES[50])*CONSTANTS[275])*( ALGEBRAIC[149]*ALGEBRAIC[229] - 0.341000*CONSTANTS[97]))/(ALGEBRAIC[229] - 1.00000); ALGEBRAIC[235] = ALGEBRAIC[232]*(STATES[55]+STATES[58]); ALGEBRAIC[238] = 0.000155200*(1.00000+ 0.400000*STATES[36]); ALGEBRAIC[241] = exp( ( 2.00000*STATES[50])*CONSTANTS[263]); ALGEBRAIC[244] = ( ( ( ( ALGEBRAIC[238]*4.00000)*STATES[50])*CONSTANTS[275])*( ALGEBRAIC[149]*ALGEBRAIC[241] - 0.341000*CONSTANTS[97]))/(ALGEBRAIC[241] - 1.00000); ALGEBRAIC[246] = ALGEBRAIC[244]*(STATES[63]+STATES[66]); ALGEBRAIC[248] = (1.00000 - ALGEBRAIC[223])*ALGEBRAIC[246]+ ALGEBRAIC[223]*ALGEBRAIC[235]; RATES[33] = - CONSTANTS[305]*ALGEBRAIC[248]+ CONSTANTS[315]*ALGEBRAIC[209]; ALGEBRAIC[191] = 1.00000/( (1.00000+exp((13.5600 - STATES[50])/9.45000))*(1.00000+exp((25.0000+STATES[50])/- 5.00000))); ALGEBRAIC[208] = ALGEBRAIC[191]/ALGEBRAIC[195]; ALGEBRAIC[210] = (1.00000 - ALGEBRAIC[191])/ALGEBRAIC[195]; ALGEBRAIC[234] = 1.00000+pow(0.00110000/ALGEBRAIC[149], 4.00000); ALGEBRAIC[237] = 14.9186/ALGEBRAIC[234]; ALGEBRAIC[219] = 1.00000/(1.00000+exp((17.5000+STATES[50])/3.00000)); ALGEBRAIC[225] = (0.247400+ALGEBRAIC[219])/1.24740; ALGEBRAIC[228] = 1.00000/(ALGEBRAIC[214]+ALGEBRAIC[216]/26.5530); ALGEBRAIC[245] = ALGEBRAIC[225]/ALGEBRAIC[228]; ALGEBRAIC[251] = (1.00000 - ALGEBRAIC[225])/ALGEBRAIC[228]; RATES[59] = (( - ((ALGEBRAIC[208]+ALGEBRAIC[237])+ALGEBRAIC[251])*STATES[59]+ ALGEBRAIC[210]*STATES[63])+ CONSTANTS[104]*STATES[62])+ ALGEBRAIC[245]*STATES[60]; RATES[63] = (( - ((ALGEBRAIC[210]+ALGEBRAIC[237])+ALGEBRAIC[251])*STATES[63]+ ALGEBRAIC[208]*STATES[59])+ CONSTANTS[104]*STATES[66])+ ALGEBRAIC[245]*STATES[64]; ALGEBRAIC[222] = (0.00100000+ALGEBRAIC[219])/1.00100; ALGEBRAIC[212] = 5.00000*STATES[36]; ALGEBRAIC[231] = 1.00000+pow(0.0120000/ALGEBRAIC[149], 10.0000); ALGEBRAIC[240] = (13.8250 - (6.38360 - ALGEBRAIC[212])/ALGEBRAIC[234]) - 3.36960/ALGEBRAIC[231]; ALGEBRAIC[243] = 1.00000/(ALGEBRAIC[214]+ALGEBRAIC[216]/ALGEBRAIC[240]); ALGEBRAIC[247] = ALGEBRAIC[222]/ALGEBRAIC[243]; ALGEBRAIC[257] = (1.00000 - ALGEBRAIC[222])/ALGEBRAIC[243]; RATES[62] = (( - ((ALGEBRAIC[208]+CONSTANTS[104])+ALGEBRAIC[257])*STATES[62]+ ALGEBRAIC[237]*STATES[59])+ ALGEBRAIC[210]*STATES[66])+ ALGEBRAIC[247]*STATES[61]; RATES[66] = (( - ((ALGEBRAIC[210]+CONSTANTS[104])+ALGEBRAIC[257])*STATES[66]+ ALGEBRAIC[237]*STATES[63])+ ALGEBRAIC[208]*STATES[62])+ ALGEBRAIC[247]*STATES[65]; ALGEBRAIC[249] = (fabs(ALGEBRAIC[247])<1.00000e-12 ? 1.00000e-12 : ALGEBRAIC[247]); ALGEBRAIC[254] = (fabs(ALGEBRAIC[251])<1.00000e-12 ? 1.00000e-12 : ALGEBRAIC[251]); ALGEBRAIC[260] = ( CONSTANTS[105]*( ( ALGEBRAIC[245]*ALGEBRAIC[257])*ALGEBRAIC[237]))/( ( ALGEBRAIC[254]*ALGEBRAIC[249])*CONSTANTS[104]); RATES[60] = (( - ((ALGEBRAIC[208]+ALGEBRAIC[260])+ALGEBRAIC[245])*STATES[60]+ ALGEBRAIC[251]*STATES[59])+ CONSTANTS[105]*STATES[61])+ ALGEBRAIC[210]*STATES[64]; RATES[61] = (( - ((ALGEBRAIC[208]+CONSTANTS[105])+ALGEBRAIC[247])*STATES[61]+ ALGEBRAIC[257]*STATES[62])+ ALGEBRAIC[260]*STATES[60])+ ALGEBRAIC[210]*STATES[65]; RATES[64] = (( - ((ALGEBRAIC[210]+ALGEBRAIC[260])+ALGEBRAIC[245])*STATES[64]+ ALGEBRAIC[251]*STATES[63])+ CONSTANTS[105]*STATES[65])+ ALGEBRAIC[208]*STATES[60]; RATES[65] = (( - ((ALGEBRAIC[210]+CONSTANTS[105])+ALGEBRAIC[247])*STATES[65]+ ALGEBRAIC[257]*STATES[66])+ ALGEBRAIC[260]*STATES[64])+ ALGEBRAIC[208]*STATES[61]; ALGEBRAIC[252] = CONSTANTS[243]*(1.00000+ 2.00000*STATES[41]); ALGEBRAIC[255] = 0.112500*ALGEBRAIC[252]; ALGEBRAIC[113] = (CONSTANTS[72]+CONSTANTS[73]) - STATES[34]; ALGEBRAIC[121] = STATES[34]*CONSTANTS[73]; ALGEBRAIC[127] = ( pow(( ALGEBRAIC[113]*ALGEBRAIC[113]+ 4.00000*ALGEBRAIC[121]), 1.0 / 2) - ALGEBRAIC[113])/2.00000; ALGEBRAIC[269] = ( ALGEBRAIC[248]*1.00000)/(1.00000+pow(1.00000/ALGEBRAIC[127], 8.00000)); ALGEBRAIC[271] = ALGEBRAIC[255]*ALGEBRAIC[269]; ALGEBRAIC[263] = 1.00000+0.0123000/ALGEBRAIC[127]; ALGEBRAIC[265] = ALGEBRAIC[252]/ALGEBRAIC[263]; RATES[118] = - (ALGEBRAIC[271]+STATES[118])/ALGEBRAIC[265]; ALGEBRAIC[258] = CONSTANTS[243]*(1.00000+ 0.00000*STATES[41]); ALGEBRAIC[261] = 0.112500*ALGEBRAIC[258]; ALGEBRAIC[272] = ( 1.99250*ALGEBRAIC[261])*ALGEBRAIC[269]; ALGEBRAIC[267] = ( 0.535700*ALGEBRAIC[258])/ALGEBRAIC[263]; RATES[119] = - (ALGEBRAIC[272]+STATES[119])/ALGEBRAIC[267]; ALGEBRAIC[286] = 1.00000+pow(CONSTANTS[134]/ALGEBRAIC[149], 2.00000); ALGEBRAIC[285] = exp( ( (CONSTANTS[139] - 1.00000)*STATES[50])*CONSTANTS[263]); ALGEBRAIC[287] = 1.00000+ CONSTANTS[140]*ALGEBRAIC[285]; ALGEBRAIC[283] = pow(STATES[49], 3.00000); ALGEBRAIC[288] = ( CONSTANTS[136]*ALGEBRAIC[283]+ CONSTANTS[364]*ALGEBRAIC[149])+ ( CONSTANTS[362]*CONSTANTS[97])*(1.00000+ALGEBRAIC[149]/CONSTANTS[135]); ALGEBRAIC[289] = ( ( CONSTANTS[135]*CONSTANTS[366])*(1.00000+ALGEBRAIC[283]/CONSTANTS[362])+ ALGEBRAIC[283]*CONSTANTS[97])+ CONSTANTS[366]*ALGEBRAIC[149]; ALGEBRAIC[284] = exp( ( CONSTANTS[139]*STATES[50])*CONSTANTS[263]); ALGEBRAIC[290] = ( 0.200000*CONSTANTS[141])*( ( ALGEBRAIC[283]*CONSTANTS[97])*ALGEBRAIC[284] - ( CONSTANTS[366]*ALGEBRAIC[149])*ALGEBRAIC[285]); ALGEBRAIC[291] = ALGEBRAIC[290]/( ( ALGEBRAIC[286]*ALGEBRAIC[287])*(ALGEBRAIC[288]+ALGEBRAIC[289])); ALGEBRAIC[207] = (STATES[49] - STATES[48])/CONSTANTS[94]; RATES[49] = - ( CONSTANTS[409]*ALGEBRAIC[291]+ALGEBRAIC[207]); ALGEBRAIC[38] = (STATES[5]+CONSTANTS[395])/CONSTANTS[30]; ALGEBRAIC[311] = (ALGEBRAIC[38] - CONSTANTS[398])/(0.958600 - CONSTANTS[398]); ALGEBRAIC[313] = (ALGEBRAIC[311]<0.00000 ? 0.00000 : ALGEBRAIC[311]); ALGEBRAIC[317] = (1.00000 - ALGEBRAIC[313])*STATES[118]+ ALGEBRAIC[313]*STATES[119]; ALGEBRAIC[307] = ( CONSTANTS[155]*exp(ALGEBRAIC[127]/CONSTANTS[153]))*(ALGEBRAIC[127] - ALGEBRAIC[149]); ALGEBRAIC[309] = ( CONSTANTS[156]*exp(ALGEBRAIC[127]/CONSTANTS[154]))*(ALGEBRAIC[127] - ALGEBRAIC[149]); ALGEBRAIC[315] = (1.00000 - ALGEBRAIC[313])*ALGEBRAIC[307]+ ALGEBRAIC[313]*ALGEBRAIC[309]; ALGEBRAIC[319] = ALGEBRAIC[315]+ALGEBRAIC[317]; ALGEBRAIC[211] = (STATES[30] - ALGEBRAIC[127])/CONSTANTS[96]; RATES[34] = ALGEBRAIC[211] - ALGEBRAIC[319]; ALGEBRAIC[153] = (STATES[31] - 0.673519)/(0.999180 - 0.673519); ALGEBRAIC[158] = (ALGEBRAIC[153]<0.00000 ? 0.00000 : ALGEBRAIC[153]); ALGEBRAIC[162] = (1.00000 - ALGEBRAIC[158])*CONSTANTS[77]+ ALGEBRAIC[158]*CONSTANTS[229]; ALGEBRAIC[174] = ALGEBRAIC[162]+CONSTANTS[75]; ALGEBRAIC[178] = ((ALGEBRAIC[174] - STATES[32])+CONSTANTS[71])+CONSTANTS[78]; ALGEBRAIC[166] = ALGEBRAIC[162]*CONSTANTS[75]; ALGEBRAIC[182] = ((ALGEBRAIC[166] - STATES[32]*ALGEBRAIC[174])+ CONSTANTS[78]*CONSTANTS[75])+ CONSTANTS[71]*ALGEBRAIC[162]; ALGEBRAIC[170] = - ALGEBRAIC[166]*STATES[32]; ALGEBRAIC[186] = - ALGEBRAIC[178]/3.00000+ ( (2.00000/3.00000)* pow(( ALGEBRAIC[178]*ALGEBRAIC[178] - 3.00000*ALGEBRAIC[182]), 1.0 / 2))*cos(acos((( ( 9.00000*ALGEBRAIC[178])*ALGEBRAIC[182] - ( ( 2.00000*ALGEBRAIC[178])*ALGEBRAIC[178])*ALGEBRAIC[178]) - 27.0000*ALGEBRAIC[170])/( 2.00000*pow( ALGEBRAIC[178]*ALGEBRAIC[178] - 3.00000*ALGEBRAIC[182], 1.50000)))/3.00000); ALGEBRAIC[201] = (ALGEBRAIC[149] - ALGEBRAIC[186])/CONSTANTS[94]; RATES[35] = - ((( CONSTANTS[316]*ALGEBRAIC[291]+ CONSTANTS[317]*ALGEBRAIC[319])+ALGEBRAIC[201])+ALGEBRAIC[209]); ALGEBRAIC[250] = exp( STATES[50]*CONSTANTS[263]); ALGEBRAIC[253] = ( ( ( CONSTANTS[107]*STATES[50])*CONSTANTS[275])*(STATES[46] - CONSTANTS[98]*ALGEBRAIC[250]))/(1.00000 - ALGEBRAIC[250]); ALGEBRAIC[320] = 1.00000 - 1.00000/(1.00000+pow(ALGEBRAIC[317]/CONSTANTS[108], 2.00000)); ALGEBRAIC[323] = ( ALGEBRAIC[253]*ALGEBRAIC[320])*STATES[67]; ALGEBRAIC[204] = (STATES[47] - STATES[46])/CONSTANTS[94]; RATES[47] = CONSTANTS[341]*ALGEBRAIC[323] - ALGEBRAIC[204]; ALGEBRAIC[306] = 1.00000/(1.00000+pow(0.0300000/ALGEBRAIC[194], 2.00000)); ALGEBRAIC[308] = (1.00000 - ALGEBRAIC[306])*CONSTANTS[161]+ ALGEBRAIC[306]*CONSTANTS[379]; ALGEBRAIC[324] = ( ALGEBRAIC[308]*STATES[30])/CONSTANTS[164]; ALGEBRAIC[310] = (STATES[125] - 0.659100)/(0.994500 - 0.659100); ALGEBRAIC[312] = (ALGEBRAIC[310]<0.00000 ? 0.00000 : ALGEBRAIC[310]); ALGEBRAIC[314] = ALGEBRAIC[312]*STATES[40]; ALGEBRAIC[316] = STATES[40] - ALGEBRAIC[314]; ALGEBRAIC[318] = ALGEBRAIC[312] - ALGEBRAIC[314]; ALGEBRAIC[321] = ((1.00000 - ALGEBRAIC[318]) - ALGEBRAIC[316]) - ALGEBRAIC[314]; ALGEBRAIC[322] = (( ALGEBRAIC[321]*CONSTANTS[159]+ ALGEBRAIC[318]*CONSTANTS[374])+ ALGEBRAIC[316]*CONSTANTS[369])+ ALGEBRAIC[314]*CONSTANTS[376]; ALGEBRAIC[326] = ( ALGEBRAIC[308]*ALGEBRAIC[186])/(ALGEBRAIC[186]+ALGEBRAIC[322]); ALGEBRAIC[328] = ALGEBRAIC[326] - ALGEBRAIC[324]; RATES[30] = ALGEBRAIC[328] - CONSTANTS[312]*ALGEBRAIC[211]; ALGEBRAIC[213] = ( 2.00000*STATES[50])*CONSTANTS[263]; ALGEBRAIC[215] = exp(ALGEBRAIC[213]); ALGEBRAIC[217] = ( ( ( ( CONSTANTS[101]*2.00000)*CONSTANTS[87])*ALGEBRAIC[213])*( ALGEBRAIC[186]*ALGEBRAIC[215] - 0.341000*CONSTANTS[97]))/(ALGEBRAIC[215] - 1.00000); ALGEBRAIC[292] = 1.00000+pow(CONSTANTS[134]/ALGEBRAIC[186], 2.00000); ALGEBRAIC[293] = 1.00000+ CONSTANTS[140]*ALGEBRAIC[285]; ALGEBRAIC[282] = pow(STATES[48], 3.00000); ALGEBRAIC[294] = ( CONSTANTS[136]*ALGEBRAIC[282]+ CONSTANTS[364]*ALGEBRAIC[186])+ ( CONSTANTS[362]*CONSTANTS[97])*(1.00000+ALGEBRAIC[186]/CONSTANTS[135]); ALGEBRAIC[295] = ( ( CONSTANTS[135]*CONSTANTS[366])*(1.00000+ALGEBRAIC[282]/CONSTANTS[362])+ ALGEBRAIC[282]*CONSTANTS[97])+ CONSTANTS[366]*ALGEBRAIC[186]; ALGEBRAIC[296] = ( 0.800000*CONSTANTS[141])*( ( ALGEBRAIC[282]*CONSTANTS[97])*ALGEBRAIC[284] - ( CONSTANTS[366]*ALGEBRAIC[186])*ALGEBRAIC[285]); ALGEBRAIC[297] = ALGEBRAIC[296]/( ( ALGEBRAIC[292]*ALGEBRAIC[293])*(ALGEBRAIC[294]+ALGEBRAIC[295])); ALGEBRAIC[304] = ( CONSTANTS[151]*ALGEBRAIC[186])/(CONSTANTS[152]+ALGEBRAIC[186]); RATES[32] = ( - CONSTANTS[308]*((ALGEBRAIC[217]+ALGEBRAIC[304]) - 2.00000*ALGEBRAIC[297]) - CONSTANTS[313]*ALGEBRAIC[328])+ CONSTANTS[318]*ALGEBRAIC[201]; ALGEBRAIC[327] = - CONSTANTS[238]*log(CONSTANTS[98]/STATES[46]); ALGEBRAIC[331] = CONSTANTS[238]*log(CONSTANTS[99]/STATES[126]); ALGEBRAIC[332] = ALGEBRAIC[331] - ALGEBRAIC[327]; ALGEBRAIC[333] = ( CONSTANTS[91]*ALGEBRAIC[332])/(ALGEBRAIC[332]+CONSTANTS[92]); ALGEBRAIC[352] = CONSTANTS[238]*log(CONSTANTS[100]/STATES[48]); ALGEBRAIC[353] = pow(ALGEBRAIC[352] - ALGEBRAIC[327], 4.00000); ALGEBRAIC[354] = ( CONSTANTS[93]*ALGEBRAIC[353])/(ALGEBRAIC[353]+CONSTANTS[346]); ALGEBRAIC[329] = CONSTANTS[106]*(STATES[50] - ALGEBRAIC[327]); RATES[46] = (( CONSTANTS[332]*ALGEBRAIC[329]+ALGEBRAIC[354])+ALGEBRAIC[333])+ CONSTANTS[337]*ALGEBRAIC[204]; ALGEBRAIC[355] = ( ( ( CONSTANTS[241]*pow(STATES[114], 3.00000))*STATES[106])*STATES[107])*(STATES[50] - ALGEBRAIC[352]); ALGEBRAIC[356] = ( ( ( CONSTANTS[241]*pow(STATES[108], 3.00000))*STATES[106])*STATES[107])*(STATES[50] - ALGEBRAIC[352]); ALGEBRAIC[357] = ( ( ( CONSTANTS[241]*pow(STATES[111], 3.00000))*STATES[109])*STATES[110])*(STATES[50] - ALGEBRAIC[352]); ALGEBRAIC[358] = ( ( ( ( CONSTANTS[241]*pow(STATES[114], 3.00000))*STATES[112])*STATES[113])*(STATES[50] - ALGEBRAIC[352]))*1.25000; ALGEBRAIC[273] = (STATES[105] - 0.239480)/(0.950143 - 0.239480); ALGEBRAIC[274] = (ALGEBRAIC[273]<0.00000 ? 0.00000 : ALGEBRAIC[273]); ALGEBRAIC[275] = ALGEBRAIC[274]*STATES[38]; ALGEBRAIC[276] = STATES[38] - ALGEBRAIC[275]; ALGEBRAIC[277] = ALGEBRAIC[274] - ALGEBRAIC[275]; ALGEBRAIC[278] = ((1.00000 - ALGEBRAIC[277]) - ALGEBRAIC[276]) - ALGEBRAIC[275]; ALGEBRAIC[359] = (( ALGEBRAIC[278]*ALGEBRAIC[357]+ ALGEBRAIC[277]*ALGEBRAIC[358])+ ALGEBRAIC[276]*ALGEBRAIC[356])+ ALGEBRAIC[275]*ALGEBRAIC[355]; ALGEBRAIC[279] = STATES[50]*CONSTANTS[263]; ALGEBRAIC[280] = exp(ALGEBRAIC[279]); ALGEBRAIC[281] = ( ( ( CONSTANTS[133]*CONSTANTS[87])*ALGEBRAIC[279])*( STATES[48]*ALGEBRAIC[280] - CONSTANTS[100]))/(ALGEBRAIC[280] - 1.00000); ALGEBRAIC[300] = ( CONSTANTS[144]*CONSTANTS[242])/(1.00000+exp( - (STATES[50]+92.0000)*CONSTANTS[263])); ALGEBRAIC[301] = ALGEBRAIC[300]*pow(STATES[48]/(STATES[48]+CONSTANTS[147]), 3.00000); ALGEBRAIC[302] = ALGEBRAIC[300]*pow(STATES[48]/(STATES[48]+CONSTANTS[148]), 3.00000); ALGEBRAIC[298] = (STATES[115] - 0.126345)/(0.998014 - 0.126345); ALGEBRAIC[299] = (ALGEBRAIC[298]<0.00000 ? 0.00000 : ALGEBRAIC[298]); ALGEBRAIC[303] = (1.00000 - ALGEBRAIC[299])*ALGEBRAIC[301]+ ALGEBRAIC[299]*ALGEBRAIC[302]; ALGEBRAIC[360] = ( pow(STATES[117], 3.00000)*STATES[116])*(STATES[50] - ALGEBRAIC[352]); ALGEBRAIC[361] = 0.0160000*ALGEBRAIC[360]; ALGEBRAIC[362] = 0.00650000*ALGEBRAIC[360]; ALGEBRAIC[363] = (1.00000 - STATES[38])*ALGEBRAIC[362]+ STATES[38]*ALGEBRAIC[361]; ALGEBRAIC[365] = (((ALGEBRAIC[359]+ALGEBRAIC[281])+ALGEBRAIC[363])+ ALGEBRAIC[303]*3.00000)+ ALGEBRAIC[297]*3.00000; RATES[48] = ( CONSTANTS[407]*ALGEBRAIC[365]+ CONSTANTS[408]*ALGEBRAIC[207])+ALGEBRAIC[354]; ALGEBRAIC[305] = (((ALGEBRAIC[248]+ALGEBRAIC[217])+ALGEBRAIC[304]) - ALGEBRAIC[297]*2.00000) - ALGEBRAIC[291]*2.00000; ALGEBRAIC[330] = ALGEBRAIC[329]+ALGEBRAIC[323]; ALGEBRAIC[334] = STATES[50] - ALGEBRAIC[331]; ALGEBRAIC[335] = 1.02000/(1.00000+exp( 0.238500*(ALGEBRAIC[334] - 59.2150))); ALGEBRAIC[336] = ( 0.491240*exp( 0.0803200*(ALGEBRAIC[334]+5.47600))+exp( 0.0617500*(ALGEBRAIC[334] - 594.310)))/(1.00000+exp( - 0.514300*(ALGEBRAIC[334]+4.75300))); ALGEBRAIC[337] = ( CONSTANTS[239]*(ALGEBRAIC[335]/(ALGEBRAIC[335]+ALGEBRAIC[336])))*ALGEBRAIC[334]; ALGEBRAIC[338] = ALGEBRAIC[337]*1.20000; ALGEBRAIC[339] = (1.00000 - STATES[37])*ALGEBRAIC[337]+ STATES[37]*ALGEBRAIC[338]; ALGEBRAIC[256] = 1.00000/(1.00000+exp((STATES[50]+10.0000)/15.4000)); ALGEBRAIC[340] = ( ( CONSTANTS[240]*STATES[68])*ALGEBRAIC[256])*(STATES[50] - ALGEBRAIC[331]); ALGEBRAIC[348] = CONSTANTS[238]*log((CONSTANTS[99]+ CONSTANTS[165]*CONSTANTS[100])/(STATES[126]+ CONSTANTS[165]*STATES[48])); ALGEBRAIC[259] = 0.195610*(1.00000+0.600000/(1.00000+pow(3.80000e-05/ALGEBRAIC[186], 1.40000))); ALGEBRAIC[349] = ( ALGEBRAIC[259]*(STATES[69]+STATES[70]))*(STATES[50] - ALGEBRAIC[348]); ALGEBRAIC[350] = ( ALGEBRAIC[259]*(STATES[71]+STATES[72]))*(STATES[50] - ALGEBRAIC[348]); ALGEBRAIC[262] = (STATES[103]+CONSTANTS[403])/CONSTANTS[110]; ALGEBRAIC[264] = (ALGEBRAIC[262] - CONSTANTS[404])/(0.785000 - CONSTANTS[404]); ALGEBRAIC[266] = (ALGEBRAIC[264]<0.00000 ? 0.00000 : ALGEBRAIC[264]); ALGEBRAIC[351] = ALGEBRAIC[266]*ALGEBRAIC[350]+ (1.00000 - ALGEBRAIC[266])*ALGEBRAIC[349]; ALGEBRAIC[341] = ( CONSTANTS[123]*(STATES[50] - ALGEBRAIC[331]))/(1.00000+exp((15.0000 - STATES[50])/17.0000)); ALGEBRAIC[342] = (( CONSTANTS[123]*(STATES[50] - ALGEBRAIC[331]))/(1.00000+exp((36.0000 - STATES[50])/17.0000)))*3.62000; ALGEBRAIC[268] = (STATES[104] - 0.0589380)/(0.393747 - 0.0589380); ALGEBRAIC[270] = (ALGEBRAIC[268]<0.00000 ? 0.00000 : ALGEBRAIC[268]); ALGEBRAIC[343] = (1.00000 - ALGEBRAIC[270])*ALGEBRAIC[341]+ ALGEBRAIC[270]*ALGEBRAIC[342]; ALGEBRAIC[325] = exp(STATES[50]/550.000); ALGEBRAIC[344] = ( ( CONSTANTS[157]*pow(STATES[120], 3.00000))*ALGEBRAIC[325])*(STATES[50] - ALGEBRAIC[331]); ALGEBRAIC[345] = ALGEBRAIC[344]*( 0.735600*STATES[121]+ 0.264400*STATES[123]); ALGEBRAIC[346] = ALGEBRAIC[344]*( 0.735600*STATES[122]+ 0.264400*STATES[124]); ALGEBRAIC[347] = (1.00000 - STATES[39])*ALGEBRAIC[346]+ STATES[39]*ALGEBRAIC[345]; ALGEBRAIC[364] = ((((ALGEBRAIC[339]+ALGEBRAIC[340])+ALGEBRAIC[351])+ALGEBRAIC[343])+ALGEBRAIC[347]) - 2.00000*ALGEBRAIC[303]; ALGEBRAIC[366] = ALGEBRAIC[365]+ ALGEBRAIC[291]*3.00000; ALGEBRAIC[367] = ((ALGEBRAIC[366]+ALGEBRAIC[364])+ALGEBRAIC[305])+ALGEBRAIC[330]; ALGEBRAIC[368] = ((VOI - CONSTANTS[213]) - CONSTANTS[214]*floor((VOI - CONSTANTS[213])/CONSTANTS[214])<CONSTANTS[212] ? 1.00000 : 0.00000)*CONSTANTS[256]; RATES[50] = - (ALGEBRAIC[367]+ALGEBRAIC[368])/1.00000; RATES[126] = CONSTANTS[406]*(ALGEBRAIC[364]+ALGEBRAIC[368])+ALGEBRAIC[333]; } void computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[3] = CONSTANTS[393] - STATES[4]; ALGEBRAIC[4] = CONSTANTS[396] - STATES[5]; ALGEBRAIC[15] = CONSTANTS[405] - STATES[103]; ALGEBRAIC[25] = 1.00000/(1.00000+exp((STATES[50]+91.0000)/6.10000)); ALGEBRAIC[29] = CONSTANTS[255] - STATES[144]; ALGEBRAIC[33] = (CONSTANTS[322] - STATES[12]) - STATES[11]; ALGEBRAIC[35] = (CONSTANTS[325] - STATES[18]) - STATES[17]; ALGEBRAIC[36] = (CONSTANTS[330] - STATES[26]) - STATES[25]; ALGEBRAIC[11] = 0.0250000/(1.00000+exp((STATES[50]+58.0000)/5.00000)); ALGEBRAIC[39] = 0.200000/(1.00000+exp((STATES[50]+19.0000)/- 9.00000)); ALGEBRAIC[12] = 1.00000/(( 0.000600000*(STATES[50] - 1.73840))/(1.00000 - exp( - 0.136000*(STATES[50] - 1.73840))) - ( 0.000300000*(STATES[50]+38.3608))/(1.00000 - exp( 0.152200*(STATES[50]+38.3608)))); ALGEBRAIC[40] = 1.00000/(1.00000+exp((STATES[50]+10.0850)/- 4.25000)); ALGEBRAIC[13] = 0.00739900/(1.00000+exp(( CONSTANTS[263]*(STATES[50] - 0.0311960))/- 0.800190)); ALGEBRAIC[41] = 0.00569920/(1.00000+exp(( CONSTANTS[263]*(STATES[50] - 0.0415200))/1.34890)); ALGEBRAIC[14] = 0.00994150/(1.00000+exp(( CONSTANTS[263]*(STATES[50] - 0.0448090))/- 0.581720)); ALGEBRAIC[42] = 0.00332010/(1.00000+exp(( CONSTANTS[263]*(STATES[50] - 0.0942170))/0.953640)); ALGEBRAIC[16] = (STATES[50]+CONSTANTS[130]>=- 40.0000 ? 0.00000 : 0.135000*exp(((87.0000+STATES[50])+CONSTANTS[130])/- 6.80000)); ALGEBRAIC[43] = (STATES[50]+CONSTANTS[130]>=- 40.0000 ? 1.00000/( 0.130000*(1.00000+exp(((STATES[50]+CONSTANTS[130])+27.4034)/- 11.1000))) : 3.56000*exp( 0.0790000*((STATES[50]+CONSTANTS[130])+7.00000))+ 310000.*exp( 0.350000*((STATES[50]+CONSTANTS[130])+7.00000))); ALGEBRAIC[17] = (STATES[50]+CONSTANTS[130]>=- 40.0000 ? 0.00000 : ( ( - 127140.*exp( 0.244400*(STATES[50]+CONSTANTS[130]))+ - 6.94800e-05*exp( - 0.0439100*(STATES[50]+CONSTANTS[130])))*((STATES[50]+CONSTANTS[130])+37.7800))/(1.00000+exp( 0.311000*((STATES[50]+CONSTANTS[130])+79.2300)))); ALGEBRAIC[44] = (STATES[50]+CONSTANTS[130]>=- 40.0000 ? ( 0.300000*exp( - 2.53500e-07*(STATES[50]+CONSTANTS[130])))/(1.00000+exp( - 0.100000*((STATES[50]+CONSTANTS[130])+32.0000))) : ( 0.121200*exp( - 0.0105200*(STATES[50]+CONSTANTS[130])))/(1.00000+exp( - 0.137800*((STATES[50]+CONSTANTS[130])+40.1400)))); ALGEBRAIC[18] = ( 0.320000*(STATES[50]+58.4729))/(1.00000 - exp( - 0.100000*(STATES[50]+58.4729))); ALGEBRAIC[45] = 0.0800000*exp((13.7299 - STATES[50])/11.0000); ALGEBRAIC[19] = (STATES[50]>=- 40.0000 ? 0.00000 : 0.135000*exp((87.0000+STATES[50])/- 6.80000)); ALGEBRAIC[46] = (STATES[50]>=- 40.0000 ? 1.00000/( 0.130000*(1.00000+exp((STATES[50]+27.4034)/- 11.1000))) : 3.56000*exp( 0.0790000*(STATES[50]+7.00000))+ 310000.*exp( 0.350000*(STATES[50]+7.00000))); ALGEBRAIC[20] = (STATES[50]>=- 40.0000 ? 0.00000 : ( ( - 127140.*exp( 0.244400*STATES[50]) - 6.94800e-05*exp( - 0.0439100*STATES[50]))*(STATES[50]+37.7800))/(1.00000+exp( 0.311000*(STATES[50]+79.2300)))); ALGEBRAIC[47] = (STATES[50]>=- 40.0000 ? ( 0.300000*exp( - 2.53500e-07*STATES[50]))/(1.00000+exp( - 0.100000*(STATES[50]+32.0000))) : ( 0.121200*exp( - 0.0105200*STATES[50]))/(1.00000+exp( - 0.137800*(STATES[50]+40.1400)))); ALGEBRAIC[21] = ( 0.320000*(STATES[50]+58.4729))/(1.00000 - exp( - 0.100000*(STATES[50]+58.4729))); ALGEBRAIC[48] = 0.0800000*exp((13.7299 - STATES[50])/11.0000); ALGEBRAIC[22] = (STATES[50]>=- 40.0000 ? 0.00000 : 0.135000*exp(((87.0000+STATES[50])+CONSTANTS[132])/- 6.80000)); ALGEBRAIC[49] = (STATES[50]>=- 40.0000 ? (1.00000/0.130000)/(1.00000+exp(((STATES[50]+CONSTANTS[132])+27.4034)/- 11.1000)) : 3.56000*exp( 0.0790000*((STATES[50]+CONSTANTS[132])+7.00000))+ 310000.*exp( 0.350000*((STATES[50]+CONSTANTS[132])+7.00000))); ALGEBRAIC[23] = (STATES[50]>=- 40.0000 ? 0.00000 : ( ( - 127140.*exp( 0.244400*(STATES[50]+CONSTANTS[132])) - 6.94800e-05*exp( - 0.0439100*(STATES[50]+CONSTANTS[132])))*((STATES[50]+CONSTANTS[132])+37.7800))/(1.00000+exp( 0.311000*((STATES[50]+CONSTANTS[132])+79.2300)))); ALGEBRAIC[50] = (STATES[50]>=- 40.0000 ? ( 0.300000*exp( - 2.53500e-07*(STATES[50]+CONSTANTS[132])))/(1.00000+exp( - 0.100000*((STATES[50]+CONSTANTS[132])+32.0000))) : ( 0.121200*exp( - 0.0105200*(STATES[50]+CONSTANTS[132])))/(1.00000+exp( - 0.137800*((STATES[50]+CONSTANTS[132])+40.1400)))); ALGEBRAIC[24] = ( 0.320000*((STATES[50]+CONSTANTS[131])+58.4729))/(1.00000 - exp( - 0.100000*((STATES[50]+CONSTANTS[131])+58.4729))); ALGEBRAIC[51] = 0.0800000*exp(((STATES[50]+CONSTANTS[131]) - 13.7299)/- 11.0000); ALGEBRAIC[26] = ( 0.320000*(STATES[50]+47.1300))/(1.00000 - exp( - 0.100000*(STATES[50]+47.1300))); ALGEBRAIC[52] = 0.0800000*exp(STATES[50]/- 11.0000); ALGEBRAIC[57] = (CONSTANTS[323] - STATES[14]) - STATES[13]; ALGEBRAIC[60] = (CONSTANTS[331] - STATES[28]) - STATES[27]; ALGEBRAIC[27] = 1.00000/(1.00000+exp((STATES[50]+9.43700)/- 7.13300)); ALGEBRAIC[53] = 1.00000/(1.00000+exp((STATES[50] - 18.4099)/- 29.3814)); ALGEBRAIC[65] = 1.00000/(1.00000+exp((STATES[50]+100.000)/29.3814)); ALGEBRAIC[77] = 1.00000/(ALGEBRAIC[53]/1.20890+ 3.50000*ALGEBRAIC[65]); ALGEBRAIC[66] = ((1.00000/(1.00000+exp((STATES[50]+19.0000)/- 9.00000)))/0.500000)/9.79530; ALGEBRAIC[28] = 1.00000/(1.00000+exp((STATES[50]+58.0000)/5.00000)); ALGEBRAIC[78] = 0.0479600*ALGEBRAIC[28]; ALGEBRAIC[79] = 0.0214400*ALGEBRAIC[28]; ALGEBRAIC[54] = (1.00000/(1.00000+exp((STATES[50]+60.0000)/5.00000)))/250.000; ALGEBRAIC[80] = 2.46000*ALGEBRAIC[54]; ALGEBRAIC[81] = 0.560340*ALGEBRAIC[54]; ALGEBRAIC[63] = 0.0906540*exp( ( - 0.111570*STATES[50])*CONSTANTS[263]); ALGEBRAIC[91] = 0.388390/(1.00000+exp(( CONSTANTS[263]*(STATES[50]+0.150190))/- 0.606930)); ALGEBRAIC[75] = 0.00311240+(0.0283300 - 0.00311240)/(1.00000+exp(( CONSTANTS[263]*(STATES[50]+0.0516600))/1.55220)); ALGEBRAIC[64] = 0.0657000*exp( ( - 0.118990*STATES[50])*CONSTANTS[263]); ALGEBRAIC[93] = 0.563560/(1.00000+exp(( CONSTANTS[263]*(STATES[50]+0.179860))/- 0.583810)); ALGEBRAIC[76] = 0.000385250+(0.0124060 - 0.000385250)/(1.00000+exp(( CONSTANTS[263]*(STATES[50]+0.0641180))/0.779920)); ALGEBRAIC[92] = 0.000441980*exp( ( - 1.20220*STATES[50])*CONSTANTS[263]); ALGEBRAIC[103] = 0.000401730*exp( ( 0.000208730*STATES[50])*CONSTANTS[263]); ALGEBRAIC[94] = 0.000237300*exp( ( - 1.97420*STATES[50])*CONSTANTS[263]); ALGEBRAIC[104] = 0.000226520*exp( ( 0.000246900*STATES[50])*CONSTANTS[263]); ALGEBRAIC[5] = ( ( CONSTANTS[36]*CONSTANTS[35])*CONSTANTS[319] - STATES[8]) - STATES[7]; ALGEBRAIC[34] = ( ALGEBRAIC[5]*(CONSTANTS[59]+CONSTANTS[51]) - STATES[14]*(CONSTANTS[51]+CONSTANTS[59]))+ ( CONSTANTS[49]*CONSTANTS[51])*(1.00000+CONSTANTS[59]/CONSTANTS[54]); ALGEBRAIC[58] = ( - STATES[14]*CONSTANTS[49])*CONSTANTS[51]; ALGEBRAIC[70] = (- ALGEBRAIC[34]+ pow(( ALGEBRAIC[34]*ALGEBRAIC[34] - ( 4.00000*CONSTANTS[222])*ALGEBRAIC[58]), 1.0 / 2))/( 2.00000*CONSTANTS[222]); ALGEBRAIC[86] = ALGEBRAIC[5]/(1.00000+ (ALGEBRAIC[70]/CONSTANTS[49])*(1.00000+CONSTANTS[59]/CONSTANTS[51])); ALGEBRAIC[98] = ( ALGEBRAIC[70]*ALGEBRAIC[86])/CONSTANTS[49]; ALGEBRAIC[108] = ( ALGEBRAIC[98]*CONSTANTS[59])/CONSTANTS[51]; ALGEBRAIC[8] = ( ( CONSTANTS[215]*CONSTANTS[35])*CONSTANTS[326] - STATES[21]) - STATES[20]; ALGEBRAIC[37] = ( ALGEBRAIC[8]*(CONSTANTS[59]+CONSTANTS[51]) - STATES[28]*(CONSTANTS[51]+CONSTANTS[59]))+ ( CONSTANTS[49]*CONSTANTS[51])*(1.00000+CONSTANTS[59]/CONSTANTS[54]); ALGEBRAIC[61] = ( - STATES[28]*CONSTANTS[49])*CONSTANTS[51]; ALGEBRAIC[73] = (- ALGEBRAIC[37]+ pow(( ALGEBRAIC[37]*ALGEBRAIC[37] - ( 4.00000*CONSTANTS[225])*ALGEBRAIC[61]), 1.0 / 2))/( 2.00000*CONSTANTS[225]); ALGEBRAIC[89] = ALGEBRAIC[8]/(1.00000+ (ALGEBRAIC[73]/CONSTANTS[49])*(1.00000+CONSTANTS[59]/CONSTANTS[51])); ALGEBRAIC[101] = ( ALGEBRAIC[73]*ALGEBRAIC[89])/CONSTANTS[49]; ALGEBRAIC[111] = (CONSTANTS[59]/CONSTANTS[51])*ALGEBRAIC[101]; ALGEBRAIC[7] = ( ( CONSTANTS[216]*CONSTANTS[295])*CONSTANTS[321] - STATES[2]) - STATES[15]; ALGEBRAIC[59] = ( ALGEBRAIC[7]*(CONSTANTS[47]+CONSTANTS[59]) - ALGEBRAIC[35]*(CONSTANTS[47]+CONSTANTS[59]))+ ( CONSTANTS[46]*CONSTANTS[47])*(1.00000+CONSTANTS[59]/CONSTANTS[48]); ALGEBRAIC[71] = ( - ALGEBRAIC[35]*CONSTANTS[47])*CONSTANTS[46]; ALGEBRAIC[87] = (- ALGEBRAIC[59]+ pow(( ALGEBRAIC[59]*ALGEBRAIC[59] - ( 4.00000*CONSTANTS[224])*ALGEBRAIC[71]), 1.0 / 2))/( 2.00000*CONSTANTS[224]); ALGEBRAIC[99] = ALGEBRAIC[7]/(1.00000+ (ALGEBRAIC[87]/CONSTANTS[46])*(1.00000+CONSTANTS[59]/CONSTANTS[47])); ALGEBRAIC[110] = ( ( CONSTANTS[59]*ALGEBRAIC[87])*ALGEBRAIC[99])/( CONSTANTS[46]*CONSTANTS[47]); ALGEBRAIC[119] = ( ALGEBRAIC[99]*ALGEBRAIC[87])/CONSTANTS[46]; ALGEBRAIC[118] = ( CONSTANTS[59]*ALGEBRAIC[87])/CONSTANTS[48]; ALGEBRAIC[130] = ((CONSTANTS[399] - STATES[142]) - STATES[141]) - STATES[140]; ALGEBRAIC[1] = pow( STATES[3]*1.00000, CONSTANTS[12]); ALGEBRAIC[31] = CONSTANTS[6]*(CONSTANTS[8]+ALGEBRAIC[1]/(CONSTANTS[3]+ALGEBRAIC[1])); ALGEBRAIC[67] = ( ALGEBRAIC[31]*CONSTANTS[329])*CONSTANTS[227]; ALGEBRAIC[83] = ( CONSTANTS[236]*(STATES[43] - STATES[45]))/CONSTANTS[309]; ALGEBRAIC[96] = ( CONSTANTS[237]*(STATES[45] - STATES[44]))/CONSTANTS[309]; ALGEBRAIC[107] = ( CONSTANTS[349]*CONSTANTS[185])/(1.00000+CONSTANTS[170]/STATES[45]); ALGEBRAIC[116] = ( (CONSTANTS[372]+ (CONSTANTS[174] - 1.00000)*STATES[131])*CONSTANTS[187])/(1.00000+CONSTANTS[172]/STATES[45]); ALGEBRAIC[124] = ALGEBRAIC[107]+ALGEBRAIC[116]; ALGEBRAIC[134] = (( ( - CONSTANTS[268]*ALGEBRAIC[130])*STATES[45]+ CONSTANTS[276]*STATES[142]) - ( CONSTANTS[269]*STATES[142])*STATES[45])+ CONSTANTS[277]*STATES[141]; ALGEBRAIC[140] = ((CONSTANTS[380] - STATES[134]) - STATES[133]) - STATES[132]; ALGEBRAIC[2] = pow( STATES[1]*1.00000, CONSTANTS[13]); ALGEBRAIC[32] = pow( STATES[1]*1.00000, CONSTANTS[14]); ALGEBRAIC[56] = ( CONSTANTS[7]*(CONSTANTS[9]+ALGEBRAIC[2]/(CONSTANTS[4]+ALGEBRAIC[2])))*(1.00000 - ( (1.00000 - ( CONSTANTS[15]*ALGEBRAIC[32])/(CONSTANTS[5]+ALGEBRAIC[32]))*STATES[0])/(CONSTANTS[2]+STATES[0])); ALGEBRAIC[82] = ( ALGEBRAIC[56]*CONSTANTS[320])*CONSTANTS[227]; ALGEBRAIC[95] = ( CONSTANTS[236]*(STATES[43] - STATES[45]))/CONSTANTS[306]; ALGEBRAIC[105] = ( CONSTANTS[235]*(STATES[43] - STATES[44]))/CONSTANTS[306]; ALGEBRAIC[114] = ( CONSTANTS[347]*CONSTANTS[185])/(1.00000+CONSTANTS[170]/STATES[43]); ALGEBRAIC[122] = ( (CONSTANTS[377]+ (CONSTANTS[174] - 1.00000)*STATES[127])*CONSTANTS[186])/(1.00000+CONSTANTS[171]/STATES[43]); ALGEBRAIC[128] = ( (CONSTANTS[370]+ (CONSTANTS[174] - 1.00000)*STATES[129])*CONSTANTS[187])/(1.00000+CONSTANTS[172]/STATES[43]); ALGEBRAIC[135] = (ALGEBRAIC[114]+ALGEBRAIC[122])+ALGEBRAIC[128]; ALGEBRAIC[145] = (( ( - CONSTANTS[199]*ALGEBRAIC[140])*STATES[43]+ CONSTANTS[246]*STATES[134]) - ( CONSTANTS[200]*STATES[134])*STATES[43])+ CONSTANTS[247]*STATES[133]; ALGEBRAIC[150] = ((CONSTANTS[335] - STATES[138]) - STATES[137]) - STATES[136]; ALGEBRAIC[0] = pow( STATES[2]*1.00000, CONSTANTS[12]); ALGEBRAIC[55] = CONSTANTS[6]*(CONSTANTS[8]+ALGEBRAIC[0]/(CONSTANTS[3]+ALGEBRAIC[0])); ALGEBRAIC[68] = ( ALGEBRAIC[55]*CONSTANTS[324])*CONSTANTS[227]; ALGEBRAIC[30] = pow( STATES[2]*1.00000, CONSTANTS[13]); ALGEBRAIC[84] = CONSTANTS[7]*(CONSTANTS[9]+ALGEBRAIC[30]/(CONSTANTS[4]+ALGEBRAIC[30])); ALGEBRAIC[106] = ( ALGEBRAIC[84]*CONSTANTS[328])*CONSTANTS[227]; ALGEBRAIC[115] = ( CONSTANTS[235]*(STATES[43] - STATES[44]))/CONSTANTS[307]; ALGEBRAIC[123] = ( CONSTANTS[237]*(STATES[45] - STATES[44]))/CONSTANTS[307]; ALGEBRAIC[129] = ( CONSTANTS[348]*CONSTANTS[185])/(1.00000+CONSTANTS[170]/STATES[44]); ALGEBRAIC[136] = ( (CONSTANTS[378]+ (CONSTANTS[174] - 1.00000)*STATES[128])*CONSTANTS[186])/(1.00000+CONSTANTS[171]/STATES[44]); ALGEBRAIC[141] = ( (CONSTANTS[371]+ (CONSTANTS[174] - 1.00000)*STATES[130])*CONSTANTS[187])/(1.00000+CONSTANTS[172]/STATES[44]); ALGEBRAIC[146] = (ALGEBRAIC[129]+ALGEBRAIC[136])+ALGEBRAIC[141]; ALGEBRAIC[154] = (( ( - CONSTANTS[249]*ALGEBRAIC[150])*STATES[44]+ CONSTANTS[265]*STATES[138]) - ( CONSTANTS[250]*STATES[138])*STATES[44])+ CONSTANTS[266]*STATES[137]; ALGEBRAIC[6] = ( ( CONSTANTS[37]*CONSTANTS[295])*CONSTANTS[319] - STATES[1]) - STATES[9]; ALGEBRAIC[69] = (((CONSTANTS[258]+CONSTANTS[271])/CONSTANTS[223]+ALGEBRAIC[33])+ALGEBRAIC[57]) - ALGEBRAIC[6]; ALGEBRAIC[85] = (( CONSTANTS[271]*(ALGEBRAIC[33] - ALGEBRAIC[6])+ CONSTANTS[258]*(ALGEBRAIC[57] - ALGEBRAIC[6]))+CONSTANTS[279])/CONSTANTS[223]; ALGEBRAIC[97] = ( ALGEBRAIC[6]*CONSTANTS[279])/CONSTANTS[223]; ALGEBRAIC[109] = ((( (- ALGEBRAIC[97]/27.0000)*pow(ALGEBRAIC[69], 3.00000) - ( ( ( ALGEBRAIC[69]*ALGEBRAIC[69])*ALGEBRAIC[85])*ALGEBRAIC[85])/108.000)+( ( ALGEBRAIC[69]*ALGEBRAIC[85])*ALGEBRAIC[97])/6.00000)+pow(ALGEBRAIC[85], 3.00000)/27.0000)+( ALGEBRAIC[97]*ALGEBRAIC[97])/4.00000; ALGEBRAIC[117] = (ALGEBRAIC[109]<0.00000 ? pow(- ALGEBRAIC[109], 1.0 / 2) : 0.00000); ALGEBRAIC[125] = (((ALGEBRAIC[109]>0.00000 ? pow(ALGEBRAIC[109], 1.0 / 2) : 0.00000)+ALGEBRAIC[97]/2.00000)+( ALGEBRAIC[69]*ALGEBRAIC[85])/6.00000) - pow(ALGEBRAIC[69], 3.00000)/27.0000; ALGEBRAIC[131] = atan(ALGEBRAIC[117]/ALGEBRAIC[125])/3.00000; ALGEBRAIC[137] = pow( ALGEBRAIC[125]*ALGEBRAIC[125]+ ALGEBRAIC[117]*ALGEBRAIC[117], 1.00000/6.00000); ALGEBRAIC[142] = (ALGEBRAIC[85]/3.00000 - ( ALGEBRAIC[69]*ALGEBRAIC[69])/9.00000)/( ALGEBRAIC[137]*ALGEBRAIC[137]); ALGEBRAIC[147] = ( ALGEBRAIC[137]* sin(ALGEBRAIC[131]))*(1.00000+ALGEBRAIC[142]); ALGEBRAIC[151] = ( ALGEBRAIC[137]*cos(ALGEBRAIC[131]))*(1.00000 - ALGEBRAIC[142]) - ALGEBRAIC[69]/3.00000; ALGEBRAIC[156] = pow(( ALGEBRAIC[151]*ALGEBRAIC[151]+ ALGEBRAIC[147]*ALGEBRAIC[147]), 1.0 / 2); ALGEBRAIC[160] = ALGEBRAIC[33]/((1.00000+CONSTANTS[59]/CONSTANTS[48])+( ALGEBRAIC[156]*(CONSTANTS[47]+CONSTANTS[59]))/( CONSTANTS[46]*CONSTANTS[47])); ALGEBRAIC[164] = ( CONSTANTS[59]*ALGEBRAIC[160])/CONSTANTS[48]; ALGEBRAIC[168] = ( ( CONSTANTS[59]*ALGEBRAIC[160])*ALGEBRAIC[156])/( CONSTANTS[46]*CONSTANTS[47]); ALGEBRAIC[9] = ( ( CONSTANTS[38]*CONSTANTS[295])*CONSTANTS[326] - STATES[3]) - STATES[23]; ALGEBRAIC[72] = (((CONSTANTS[259]+CONSTANTS[272])/CONSTANTS[226]+ALGEBRAIC[36])+ALGEBRAIC[60]) - ALGEBRAIC[9]; ALGEBRAIC[88] = (( CONSTANTS[272]*(ALGEBRAIC[36] - ALGEBRAIC[9])+ CONSTANTS[259]*(ALGEBRAIC[60] - ALGEBRAIC[9]))+CONSTANTS[280])/CONSTANTS[226]; ALGEBRAIC[100] = ( ALGEBRAIC[9]*CONSTANTS[280])/CONSTANTS[226]; ALGEBRAIC[112] = ((( (- ALGEBRAIC[100]/27.0000)*pow(ALGEBRAIC[72], 3.00000) - ( ( ( ALGEBRAIC[72]*ALGEBRAIC[72])*ALGEBRAIC[88])*ALGEBRAIC[88])/108.000)+( ( ALGEBRAIC[72]*ALGEBRAIC[88])*ALGEBRAIC[100])/6.00000)+pow(ALGEBRAIC[88], 3.00000)/27.0000)+( ALGEBRAIC[100]*ALGEBRAIC[100])/4.00000; ALGEBRAIC[120] = (ALGEBRAIC[112]<0.00000 ? pow(- ALGEBRAIC[112], 1.0 / 2) : 0.00000); ALGEBRAIC[126] = (((ALGEBRAIC[112]>0.00000 ? pow(ALGEBRAIC[112], 1.0 / 2) : 0.00000)+ALGEBRAIC[100]/2.00000)+( ALGEBRAIC[72]*ALGEBRAIC[88])/6.00000) - pow(ALGEBRAIC[72], 3.00000)/27.0000; ALGEBRAIC[132] = atan(ALGEBRAIC[120]/ALGEBRAIC[126])/3.00000; ALGEBRAIC[138] = pow( ALGEBRAIC[126]*ALGEBRAIC[126]+ ALGEBRAIC[120]*ALGEBRAIC[120], 1.00000/6.00000); ALGEBRAIC[143] = (ALGEBRAIC[88]/3.00000 - ( ALGEBRAIC[72]*ALGEBRAIC[72])/9.00000)/( ALGEBRAIC[138]*ALGEBRAIC[138]); ALGEBRAIC[148] = ( ALGEBRAIC[138]* sin(ALGEBRAIC[132]))*(1.00000+ALGEBRAIC[143]); ALGEBRAIC[152] = ( ALGEBRAIC[138]*cos(ALGEBRAIC[132]))*(1.00000 - ALGEBRAIC[143]) - ALGEBRAIC[72]/3.00000; ALGEBRAIC[157] = pow(( ALGEBRAIC[152]*ALGEBRAIC[152]+ ALGEBRAIC[148]*ALGEBRAIC[148]), 1.0 / 2); ALGEBRAIC[161] = ALGEBRAIC[36]/((1.00000+CONSTANTS[59]/CONSTANTS[48])+( ALGEBRAIC[157]*(CONSTANTS[47]+CONSTANTS[59]))/( CONSTANTS[46]*CONSTANTS[47])); ALGEBRAIC[165] = ( CONSTANTS[59]*ALGEBRAIC[161])/CONSTANTS[48]; ALGEBRAIC[169] = ( ( CONSTANTS[59]*ALGEBRAIC[161])*ALGEBRAIC[157])/( CONSTANTS[46]*CONSTANTS[47]); ALGEBRAIC[176] = ALGEBRAIC[57]/((1.00000+CONSTANTS[59]/CONSTANTS[53])+( ALGEBRAIC[156]*(CONSTANTS[52]+CONSTANTS[59]))/( CONSTANTS[50]*CONSTANTS[52])); ALGEBRAIC[180] = ( CONSTANTS[59]*ALGEBRAIC[176])/CONSTANTS[53]; ALGEBRAIC[184] = ( ( CONSTANTS[59]*ALGEBRAIC[176])*ALGEBRAIC[156])/( CONSTANTS[50]*CONSTANTS[52]); ALGEBRAIC[177] = ALGEBRAIC[60]/((1.00000+CONSTANTS[59]/CONSTANTS[53])+( ALGEBRAIC[157]*(CONSTANTS[52]+CONSTANTS[59]))/( CONSTANTS[50]*CONSTANTS[52])); ALGEBRAIC[181] = ( CONSTANTS[59]*ALGEBRAIC[177])/CONSTANTS[53]; ALGEBRAIC[185] = ( ( CONSTANTS[59]*ALGEBRAIC[177])*ALGEBRAIC[157])/( CONSTANTS[50]*CONSTANTS[52]); ALGEBRAIC[188] = ALGEBRAIC[168]+ CONSTANTS[60]*ALGEBRAIC[184]; ALGEBRAIC[172] = ( ALGEBRAIC[160]*ALGEBRAIC[156])/CONSTANTS[46]; ALGEBRAIC[192] = ( ALGEBRAIC[176]*ALGEBRAIC[156])/CONSTANTS[50]; ALGEBRAIC[196] = ALGEBRAIC[172]+ CONSTANTS[60]*ALGEBRAIC[192]; ALGEBRAIC[189] = ALGEBRAIC[169]+ CONSTANTS[63]*ALGEBRAIC[185]; ALGEBRAIC[173] = ( ALGEBRAIC[161]*ALGEBRAIC[157])/CONSTANTS[46]; ALGEBRAIC[193] = ( ALGEBRAIC[177]*ALGEBRAIC[157])/CONSTANTS[50]; ALGEBRAIC[197] = ALGEBRAIC[173]+ CONSTANTS[63]*ALGEBRAIC[193]; ALGEBRAIC[133] = CONSTANTS[274] - STATES[35]; ALGEBRAIC[139] = CONSTANTS[262] - STATES[35]*CONSTANTS[261]; ALGEBRAIC[144] = - CONSTANTS[230]*STATES[35]; ALGEBRAIC[149] = - ALGEBRAIC[133]/3.00000+ ( (2.00000/3.00000)* pow(( ALGEBRAIC[133]*ALGEBRAIC[133] - 3.00000*ALGEBRAIC[139]), 1.0 / 2))*cos(acos((( ( 9.00000*ALGEBRAIC[133])*ALGEBRAIC[139] - ( ( 2.00000*ALGEBRAIC[133])*ALGEBRAIC[133])*ALGEBRAIC[133]) - 27.0000*ALGEBRAIC[144])/( 2.00000*pow( ALGEBRAIC[133]*ALGEBRAIC[133] - 3.00000*ALGEBRAIC[139], 1.50000)))/3.00000); ALGEBRAIC[190] = ( CONSTANTS[79]*(1.00000 - STATES[42]))/(1.00000+CONSTANTS[81]/ALGEBRAIC[149]); ALGEBRAIC[194] = ALGEBRAIC[190]+STATES[42]; ALGEBRAIC[199] = ALGEBRAIC[194]/(ALGEBRAIC[194]+CONSTANTS[80]); ALGEBRAIC[200] = 1.00000/(1.00000+pow(CONSTANTS[80]/ALGEBRAIC[194], 2.00000)); ALGEBRAIC[198] = (CONSTANTS[205] - CONSTANTS[208])+STATES[144]; ALGEBRAIC[203] = 0.500000*( pow((pow(ALGEBRAIC[198], 2.00000)+ ( 4.00000*CONSTANTS[205])*CONSTANTS[208]), 1.0 / 2) - ALGEBRAIC[198]); ALGEBRAIC[206] = (CONSTANTS[28]/CONSTANTS[319]+CONSTANTS[82]/CONSTANTS[326])+ALGEBRAIC[203]/CONSTANTS[321]; ALGEBRAIC[155] = 1.00000/( (1.00000+exp((4.79800+STATES[50])/- 7.56990))*(1.00000+exp((25.0000+STATES[50])/- 5.00000))); ALGEBRAIC[195] = 0.590000+( 0.800000*exp( 0.0520000*(STATES[50]+13.0000)))/(1.00000+exp( 0.132000*(STATES[50]+13.0000))); ALGEBRAIC[202] = ALGEBRAIC[155]/ALGEBRAIC[195]; ALGEBRAIC[205] = (1.00000 - ALGEBRAIC[155])/ALGEBRAIC[195]; ALGEBRAIC[179] = 1.00000+pow(0.00200000/ALGEBRAIC[149], 4.00000); ALGEBRAIC[183] = 6.00000/ALGEBRAIC[179]; ALGEBRAIC[163] = 1.00000/(1.00000+exp((29.9790+STATES[50])/3.17750)); ALGEBRAIC[171] = (0.100000+ALGEBRAIC[163])/1.10000; ALGEBRAIC[214] = 1.00000/( ( 70.0000*(1.00000 - 0.500000*STATES[36]))*(1.00000+exp((STATES[50]+49.1000)/10.3490))); ALGEBRAIC[216] = 1.00000/(1.00000+exp((STATES[50]+0.213000)/- 10.8070)); ALGEBRAIC[221] = 1.00000/(ALGEBRAIC[214]+ALGEBRAIC[216]/38.4940); ALGEBRAIC[224] = ALGEBRAIC[171]/ALGEBRAIC[221]; ALGEBRAIC[233] = (1.00000 - ALGEBRAIC[171])/ALGEBRAIC[221]; ALGEBRAIC[167] = (0.000100000+ALGEBRAIC[163])/1.00010; ALGEBRAIC[159] = 0.100000*STATES[36]; ALGEBRAIC[175] = 1.00000+pow(0.0100000/ALGEBRAIC[149], 10.0000); ALGEBRAIC[187] = (32.5000 - (18.0000 - ALGEBRAIC[159])/ALGEBRAIC[179]) - 10.0000/ALGEBRAIC[175]; ALGEBRAIC[218] = 1.00000/(ALGEBRAIC[214]+ALGEBRAIC[216]/ALGEBRAIC[187]); ALGEBRAIC[227] = ALGEBRAIC[167]/ALGEBRAIC[218]; ALGEBRAIC[239] = (1.00000 - ALGEBRAIC[167])/ALGEBRAIC[218]; ALGEBRAIC[230] = (fabs(ALGEBRAIC[227])<1.00000e-12 ? 1.00000e-12 : ALGEBRAIC[227]); ALGEBRAIC[236] = (fabs(ALGEBRAIC[233])<1.00000e-12 ? 1.00000e-12 : ALGEBRAIC[233]); ALGEBRAIC[242] = ( CONSTANTS[103]*( ( ALGEBRAIC[224]*ALGEBRAIC[239])*ALGEBRAIC[183]))/( ( ALGEBRAIC[236]*ALGEBRAIC[230])*CONSTANTS[102]); ALGEBRAIC[62] = CONSTANTS[274] - STATES[33]; ALGEBRAIC[74] = CONSTANTS[262] - STATES[33]*CONSTANTS[261]; ALGEBRAIC[90] = - CONSTANTS[230]*STATES[33]; ALGEBRAIC[102] = - ALGEBRAIC[62]/3.00000+ ( (2.00000/3.00000)* pow(( ALGEBRAIC[62]*ALGEBRAIC[62] - 3.00000*ALGEBRAIC[74]), 1.0 / 2))*cos(acos((( ( 9.00000*ALGEBRAIC[62])*ALGEBRAIC[74] - ( ( 2.00000*ALGEBRAIC[62])*ALGEBRAIC[62])*ALGEBRAIC[62]) - 27.0000*ALGEBRAIC[90])/( 2.00000*pow( ALGEBRAIC[62]*ALGEBRAIC[62] - 3.00000*ALGEBRAIC[74], 1.50000)))/3.00000); ALGEBRAIC[209] = (ALGEBRAIC[149] - ALGEBRAIC[102])/CONSTANTS[95]; ALGEBRAIC[10] = (STATES[4]+CONSTANTS[392])/CONSTANTS[17]; ALGEBRAIC[220] = (ALGEBRAIC[10] - CONSTANTS[397])/(0.927300 - CONSTANTS[397]); ALGEBRAIC[223] = (ALGEBRAIC[220]<0.00000 ? 0.00000 : ALGEBRAIC[220]); ALGEBRAIC[226] = 0.000257900*(1.00000+ 0.100000*STATES[36]); ALGEBRAIC[229] = exp( ( 2.00000*STATES[50])*CONSTANTS[263]); ALGEBRAIC[232] = ( ( ( ( ALGEBRAIC[226]*4.00000)*STATES[50])*CONSTANTS[275])*( ALGEBRAIC[149]*ALGEBRAIC[229] - 0.341000*CONSTANTS[97]))/(ALGEBRAIC[229] - 1.00000); ALGEBRAIC[235] = ALGEBRAIC[232]*(STATES[55]+STATES[58]); ALGEBRAIC[238] = 0.000155200*(1.00000+ 0.400000*STATES[36]); ALGEBRAIC[241] = exp( ( 2.00000*STATES[50])*CONSTANTS[263]); ALGEBRAIC[244] = ( ( ( ( ALGEBRAIC[238]*4.00000)*STATES[50])*CONSTANTS[275])*( ALGEBRAIC[149]*ALGEBRAIC[241] - 0.341000*CONSTANTS[97]))/(ALGEBRAIC[241] - 1.00000); ALGEBRAIC[246] = ALGEBRAIC[244]*(STATES[63]+STATES[66]); ALGEBRAIC[248] = (1.00000 - ALGEBRAIC[223])*ALGEBRAIC[246]+ ALGEBRAIC[223]*ALGEBRAIC[235]; ALGEBRAIC[191] = 1.00000/( (1.00000+exp((13.5600 - STATES[50])/9.45000))*(1.00000+exp((25.0000+STATES[50])/- 5.00000))); ALGEBRAIC[208] = ALGEBRAIC[191]/ALGEBRAIC[195]; ALGEBRAIC[210] = (1.00000 - ALGEBRAIC[191])/ALGEBRAIC[195]; ALGEBRAIC[234] = 1.00000+pow(0.00110000/ALGEBRAIC[149], 4.00000); ALGEBRAIC[237] = 14.9186/ALGEBRAIC[234]; ALGEBRAIC[219] = 1.00000/(1.00000+exp((17.5000+STATES[50])/3.00000)); ALGEBRAIC[225] = (0.247400+ALGEBRAIC[219])/1.24740; ALGEBRAIC[228] = 1.00000/(ALGEBRAIC[214]+ALGEBRAIC[216]/26.5530); ALGEBRAIC[245] = ALGEBRAIC[225]/ALGEBRAIC[228]; ALGEBRAIC[251] = (1.00000 - ALGEBRAIC[225])/ALGEBRAIC[228]; ALGEBRAIC[222] = (0.00100000+ALGEBRAIC[219])/1.00100; ALGEBRAIC[212] = 5.00000*STATES[36]; ALGEBRAIC[231] = 1.00000+pow(0.0120000/ALGEBRAIC[149], 10.0000); ALGEBRAIC[240] = (13.8250 - (6.38360 - ALGEBRAIC[212])/ALGEBRAIC[234]) - 3.36960/ALGEBRAIC[231]; ALGEBRAIC[243] = 1.00000/(ALGEBRAIC[214]+ALGEBRAIC[216]/ALGEBRAIC[240]); ALGEBRAIC[247] = ALGEBRAIC[222]/ALGEBRAIC[243]; ALGEBRAIC[257] = (1.00000 - ALGEBRAIC[222])/ALGEBRAIC[243]; ALGEBRAIC[249] = (fabs(ALGEBRAIC[247])<1.00000e-12 ? 1.00000e-12 : ALGEBRAIC[247]); ALGEBRAIC[254] = (fabs(ALGEBRAIC[251])<1.00000e-12 ? 1.00000e-12 : ALGEBRAIC[251]); ALGEBRAIC[260] = ( CONSTANTS[105]*( ( ALGEBRAIC[245]*ALGEBRAIC[257])*ALGEBRAIC[237]))/( ( ALGEBRAIC[254]*ALGEBRAIC[249])*CONSTANTS[104]); ALGEBRAIC[252] = CONSTANTS[243]*(1.00000+ 2.00000*STATES[41]); ALGEBRAIC[255] = 0.112500*ALGEBRAIC[252]; ALGEBRAIC[113] = (CONSTANTS[72]+CONSTANTS[73]) - STATES[34]; ALGEBRAIC[121] = STATES[34]*CONSTANTS[73]; ALGEBRAIC[127] = ( pow(( ALGEBRAIC[113]*ALGEBRAIC[113]+ 4.00000*ALGEBRAIC[121]), 1.0 / 2) - ALGEBRAIC[113])/2.00000; ALGEBRAIC[269] = ( ALGEBRAIC[248]*1.00000)/(1.00000+pow(1.00000/ALGEBRAIC[127], 8.00000)); ALGEBRAIC[271] = ALGEBRAIC[255]*ALGEBRAIC[269]; ALGEBRAIC[263] = 1.00000+0.0123000/ALGEBRAIC[127]; ALGEBRAIC[265] = ALGEBRAIC[252]/ALGEBRAIC[263]; ALGEBRAIC[258] = CONSTANTS[243]*(1.00000+ 0.00000*STATES[41]); ALGEBRAIC[261] = 0.112500*ALGEBRAIC[258]; ALGEBRAIC[272] = ( 1.99250*ALGEBRAIC[261])*ALGEBRAIC[269]; ALGEBRAIC[267] = ( 0.535700*ALGEBRAIC[258])/ALGEBRAIC[263]; ALGEBRAIC[286] = 1.00000+pow(CONSTANTS[134]/ALGEBRAIC[149], 2.00000); ALGEBRAIC[285] = exp( ( (CONSTANTS[139] - 1.00000)*STATES[50])*CONSTANTS[263]); ALGEBRAIC[287] = 1.00000+ CONSTANTS[140]*ALGEBRAIC[285]; ALGEBRAIC[283] = pow(STATES[49], 3.00000); ALGEBRAIC[288] = ( CONSTANTS[136]*ALGEBRAIC[283]+ CONSTANTS[364]*ALGEBRAIC[149])+ ( CONSTANTS[362]*CONSTANTS[97])*(1.00000+ALGEBRAIC[149]/CONSTANTS[135]); ALGEBRAIC[289] = ( ( CONSTANTS[135]*CONSTANTS[366])*(1.00000+ALGEBRAIC[283]/CONSTANTS[362])+ ALGEBRAIC[283]*CONSTANTS[97])+ CONSTANTS[366]*ALGEBRAIC[149]; ALGEBRAIC[284] = exp( ( CONSTANTS[139]*STATES[50])*CONSTANTS[263]); ALGEBRAIC[290] = ( 0.200000*CONSTANTS[141])*( ( ALGEBRAIC[283]*CONSTANTS[97])*ALGEBRAIC[284] - ( CONSTANTS[366]*ALGEBRAIC[149])*ALGEBRAIC[285]); ALGEBRAIC[291] = ALGEBRAIC[290]/( ( ALGEBRAIC[286]*ALGEBRAIC[287])*(ALGEBRAIC[288]+ALGEBRAIC[289])); ALGEBRAIC[207] = (STATES[49] - STATES[48])/CONSTANTS[94]; ALGEBRAIC[38] = (STATES[5]+CONSTANTS[395])/CONSTANTS[30]; ALGEBRAIC[311] = (ALGEBRAIC[38] - CONSTANTS[398])/(0.958600 - CONSTANTS[398]); ALGEBRAIC[313] = (ALGEBRAIC[311]<0.00000 ? 0.00000 : ALGEBRAIC[311]); ALGEBRAIC[317] = (1.00000 - ALGEBRAIC[313])*STATES[118]+ ALGEBRAIC[313]*STATES[119]; ALGEBRAIC[307] = ( CONSTANTS[155]*exp(ALGEBRAIC[127]/CONSTANTS[153]))*(ALGEBRAIC[127] - ALGEBRAIC[149]); ALGEBRAIC[309] = ( CONSTANTS[156]*exp(ALGEBRAIC[127]/CONSTANTS[154]))*(ALGEBRAIC[127] - ALGEBRAIC[149]); ALGEBRAIC[315] = (1.00000 - ALGEBRAIC[313])*ALGEBRAIC[307]+ ALGEBRAIC[313]*ALGEBRAIC[309]; ALGEBRAIC[319] = ALGEBRAIC[315]+ALGEBRAIC[317]; ALGEBRAIC[211] = (STATES[30] - ALGEBRAIC[127])/CONSTANTS[96]; ALGEBRAIC[153] = (STATES[31] - 0.673519)/(0.999180 - 0.673519); ALGEBRAIC[158] = (ALGEBRAIC[153]<0.00000 ? 0.00000 : ALGEBRAIC[153]); ALGEBRAIC[162] = (1.00000 - ALGEBRAIC[158])*CONSTANTS[77]+ ALGEBRAIC[158]*CONSTANTS[229]; ALGEBRAIC[174] = ALGEBRAIC[162]+CONSTANTS[75]; ALGEBRAIC[178] = ((ALGEBRAIC[174] - STATES[32])+CONSTANTS[71])+CONSTANTS[78]; ALGEBRAIC[166] = ALGEBRAIC[162]*CONSTANTS[75]; ALGEBRAIC[182] = ((ALGEBRAIC[166] - STATES[32]*ALGEBRAIC[174])+ CONSTANTS[78]*CONSTANTS[75])+ CONSTANTS[71]*ALGEBRAIC[162]; ALGEBRAIC[170] = - ALGEBRAIC[166]*STATES[32]; ALGEBRAIC[186] = - ALGEBRAIC[178]/3.00000+ ( (2.00000/3.00000)* pow(( ALGEBRAIC[178]*ALGEBRAIC[178] - 3.00000*ALGEBRAIC[182]), 1.0 / 2))*cos(acos((( ( 9.00000*ALGEBRAIC[178])*ALGEBRAIC[182] - ( ( 2.00000*ALGEBRAIC[178])*ALGEBRAIC[178])*ALGEBRAIC[178]) - 27.0000*ALGEBRAIC[170])/( 2.00000*pow( ALGEBRAIC[178]*ALGEBRAIC[178] - 3.00000*ALGEBRAIC[182], 1.50000)))/3.00000); ALGEBRAIC[201] = (ALGEBRAIC[149] - ALGEBRAIC[186])/CONSTANTS[94]; ALGEBRAIC[250] = exp( STATES[50]*CONSTANTS[263]); ALGEBRAIC[253] = ( ( ( CONSTANTS[107]*STATES[50])*CONSTANTS[275])*(STATES[46] - CONSTANTS[98]*ALGEBRAIC[250]))/(1.00000 - ALGEBRAIC[250]); ALGEBRAIC[320] = 1.00000 - 1.00000/(1.00000+pow(ALGEBRAIC[317]/CONSTANTS[108], 2.00000)); ALGEBRAIC[323] = ( ALGEBRAIC[253]*ALGEBRAIC[320])*STATES[67]; ALGEBRAIC[204] = (STATES[47] - STATES[46])/CONSTANTS[94]; ALGEBRAIC[306] = 1.00000/(1.00000+pow(0.0300000/ALGEBRAIC[194], 2.00000)); ALGEBRAIC[308] = (1.00000 - ALGEBRAIC[306])*CONSTANTS[161]+ ALGEBRAIC[306]*CONSTANTS[379]; ALGEBRAIC[324] = ( ALGEBRAIC[308]*STATES[30])/CONSTANTS[164]; ALGEBRAIC[310] = (STATES[125] - 0.659100)/(0.994500 - 0.659100); ALGEBRAIC[312] = (ALGEBRAIC[310]<0.00000 ? 0.00000 : ALGEBRAIC[310]); ALGEBRAIC[314] = ALGEBRAIC[312]*STATES[40]; ALGEBRAIC[316] = STATES[40] - ALGEBRAIC[314]; ALGEBRAIC[318] = ALGEBRAIC[312] - ALGEBRAIC[314]; ALGEBRAIC[321] = ((1.00000 - ALGEBRAIC[318]) - ALGEBRAIC[316]) - ALGEBRAIC[314]; ALGEBRAIC[322] = (( ALGEBRAIC[321]*CONSTANTS[159]+ ALGEBRAIC[318]*CONSTANTS[374])+ ALGEBRAIC[316]*CONSTANTS[369])+ ALGEBRAIC[314]*CONSTANTS[376]; ALGEBRAIC[326] = ( ALGEBRAIC[308]*ALGEBRAIC[186])/(ALGEBRAIC[186]+ALGEBRAIC[322]); ALGEBRAIC[328] = ALGEBRAIC[326] - ALGEBRAIC[324]; ALGEBRAIC[213] = ( 2.00000*STATES[50])*CONSTANTS[263]; ALGEBRAIC[215] = exp(ALGEBRAIC[213]); ALGEBRAIC[217] = ( ( ( ( CONSTANTS[101]*2.00000)*CONSTANTS[87])*ALGEBRAIC[213])*( ALGEBRAIC[186]*ALGEBRAIC[215] - 0.341000*CONSTANTS[97]))/(ALGEBRAIC[215] - 1.00000); ALGEBRAIC[292] = 1.00000+pow(CONSTANTS[134]/ALGEBRAIC[186], 2.00000); ALGEBRAIC[293] = 1.00000+ CONSTANTS[140]*ALGEBRAIC[285]; ALGEBRAIC[282] = pow(STATES[48], 3.00000); ALGEBRAIC[294] = ( CONSTANTS[136]*ALGEBRAIC[282]+ CONSTANTS[364]*ALGEBRAIC[186])+ ( CONSTANTS[362]*CONSTANTS[97])*(1.00000+ALGEBRAIC[186]/CONSTANTS[135]); ALGEBRAIC[295] = ( ( CONSTANTS[135]*CONSTANTS[366])*(1.00000+ALGEBRAIC[282]/CONSTANTS[362])+ ALGEBRAIC[282]*CONSTANTS[97])+ CONSTANTS[366]*ALGEBRAIC[186]; ALGEBRAIC[296] = ( 0.800000*CONSTANTS[141])*( ( ALGEBRAIC[282]*CONSTANTS[97])*ALGEBRAIC[284] - ( CONSTANTS[366]*ALGEBRAIC[186])*ALGEBRAIC[285]); ALGEBRAIC[297] = ALGEBRAIC[296]/( ( ALGEBRAIC[292]*ALGEBRAIC[293])*(ALGEBRAIC[294]+ALGEBRAIC[295])); ALGEBRAIC[304] = ( CONSTANTS[151]*ALGEBRAIC[186])/(CONSTANTS[152]+ALGEBRAIC[186]); ALGEBRAIC[327] = - CONSTANTS[238]*log(CONSTANTS[98]/STATES[46]); ALGEBRAIC[331] = CONSTANTS[238]*log(CONSTANTS[99]/STATES[126]); ALGEBRAIC[332] = ALGEBRAIC[331] - ALGEBRAIC[327]; ALGEBRAIC[333] = ( CONSTANTS[91]*ALGEBRAIC[332])/(ALGEBRAIC[332]+CONSTANTS[92]); ALGEBRAIC[352] = CONSTANTS[238]*log(CONSTANTS[100]/STATES[48]); ALGEBRAIC[353] = pow(ALGEBRAIC[352] - ALGEBRAIC[327], 4.00000); ALGEBRAIC[354] = ( CONSTANTS[93]*ALGEBRAIC[353])/(ALGEBRAIC[353]+CONSTANTS[346]); ALGEBRAIC[329] = CONSTANTS[106]*(STATES[50] - ALGEBRAIC[327]); ALGEBRAIC[355] = ( ( ( CONSTANTS[241]*pow(STATES[114], 3.00000))*STATES[106])*STATES[107])*(STATES[50] - ALGEBRAIC[352]); ALGEBRAIC[356] = ( ( ( CONSTANTS[241]*pow(STATES[108], 3.00000))*STATES[106])*STATES[107])*(STATES[50] - ALGEBRAIC[352]); ALGEBRAIC[357] = ( ( ( CONSTANTS[241]*pow(STATES[111], 3.00000))*STATES[109])*STATES[110])*(STATES[50] - ALGEBRAIC[352]); ALGEBRAIC[358] = ( ( ( ( CONSTANTS[241]*pow(STATES[114], 3.00000))*STATES[112])*STATES[113])*(STATES[50] - ALGEBRAIC[352]))*1.25000; ALGEBRAIC[273] = (STATES[105] - 0.239480)/(0.950143 - 0.239480); ALGEBRAIC[274] = (ALGEBRAIC[273]<0.00000 ? 0.00000 : ALGEBRAIC[273]); ALGEBRAIC[275] = ALGEBRAIC[274]*STATES[38]; ALGEBRAIC[276] = STATES[38] - ALGEBRAIC[275]; ALGEBRAIC[277] = ALGEBRAIC[274] - ALGEBRAIC[275]; ALGEBRAIC[278] = ((1.00000 - ALGEBRAIC[277]) - ALGEBRAIC[276]) - ALGEBRAIC[275]; ALGEBRAIC[359] = (( ALGEBRAIC[278]*ALGEBRAIC[357]+ ALGEBRAIC[277]*ALGEBRAIC[358])+ ALGEBRAIC[276]*ALGEBRAIC[356])+ ALGEBRAIC[275]*ALGEBRAIC[355]; ALGEBRAIC[279] = STATES[50]*CONSTANTS[263]; ALGEBRAIC[280] = exp(ALGEBRAIC[279]); ALGEBRAIC[281] = ( ( ( CONSTANTS[133]*CONSTANTS[87])*ALGEBRAIC[279])*( STATES[48]*ALGEBRAIC[280] - CONSTANTS[100]))/(ALGEBRAIC[280] - 1.00000); ALGEBRAIC[300] = ( CONSTANTS[144]*CONSTANTS[242])/(1.00000+exp( - (STATES[50]+92.0000)*CONSTANTS[263])); ALGEBRAIC[301] = ALGEBRAIC[300]*pow(STATES[48]/(STATES[48]+CONSTANTS[147]), 3.00000); ALGEBRAIC[302] = ALGEBRAIC[300]*pow(STATES[48]/(STATES[48]+CONSTANTS[148]), 3.00000); ALGEBRAIC[298] = (STATES[115] - 0.126345)/(0.998014 - 0.126345); ALGEBRAIC[299] = (ALGEBRAIC[298]<0.00000 ? 0.00000 : ALGEBRAIC[298]); ALGEBRAIC[303] = (1.00000 - ALGEBRAIC[299])*ALGEBRAIC[301]+ ALGEBRAIC[299]*ALGEBRAIC[302]; ALGEBRAIC[360] = ( pow(STATES[117], 3.00000)*STATES[116])*(STATES[50] - ALGEBRAIC[352]); ALGEBRAIC[361] = 0.0160000*ALGEBRAIC[360]; ALGEBRAIC[362] = 0.00650000*ALGEBRAIC[360]; ALGEBRAIC[363] = (1.00000 - STATES[38])*ALGEBRAIC[362]+ STATES[38]*ALGEBRAIC[361]; ALGEBRAIC[365] = (((ALGEBRAIC[359]+ALGEBRAIC[281])+ALGEBRAIC[363])+ ALGEBRAIC[303]*3.00000)+ ALGEBRAIC[297]*3.00000; ALGEBRAIC[305] = (((ALGEBRAIC[248]+ALGEBRAIC[217])+ALGEBRAIC[304]) - ALGEBRAIC[297]*2.00000) - ALGEBRAIC[291]*2.00000; ALGEBRAIC[330] = ALGEBRAIC[329]+ALGEBRAIC[323]; ALGEBRAIC[334] = STATES[50] - ALGEBRAIC[331]; ALGEBRAIC[335] = 1.02000/(1.00000+exp( 0.238500*(ALGEBRAIC[334] - 59.2150))); ALGEBRAIC[336] = ( 0.491240*exp( 0.0803200*(ALGEBRAIC[334]+5.47600))+exp( 0.0617500*(ALGEBRAIC[334] - 594.310)))/(1.00000+exp( - 0.514300*(ALGEBRAIC[334]+4.75300))); ALGEBRAIC[337] = ( CONSTANTS[239]*(ALGEBRAIC[335]/(ALGEBRAIC[335]+ALGEBRAIC[336])))*ALGEBRAIC[334]; ALGEBRAIC[338] = ALGEBRAIC[337]*1.20000; ALGEBRAIC[339] = (1.00000 - STATES[37])*ALGEBRAIC[337]+ STATES[37]*ALGEBRAIC[338]; ALGEBRAIC[256] = 1.00000/(1.00000+exp((STATES[50]+10.0000)/15.4000)); ALGEBRAIC[340] = ( ( CONSTANTS[240]*STATES[68])*ALGEBRAIC[256])*(STATES[50] - ALGEBRAIC[331]); ALGEBRAIC[348] = CONSTANTS[238]*log((CONSTANTS[99]+ CONSTANTS[165]*CONSTANTS[100])/(STATES[126]+ CONSTANTS[165]*STATES[48])); ALGEBRAIC[259] = 0.195610*(1.00000+0.600000/(1.00000+pow(3.80000e-05/ALGEBRAIC[186], 1.40000))); ALGEBRAIC[349] = ( ALGEBRAIC[259]*(STATES[69]+STATES[70]))*(STATES[50] - ALGEBRAIC[348]); ALGEBRAIC[350] = ( ALGEBRAIC[259]*(STATES[71]+STATES[72]))*(STATES[50] - ALGEBRAIC[348]); ALGEBRAIC[262] = (STATES[103]+CONSTANTS[403])/CONSTANTS[110]; ALGEBRAIC[264] = (ALGEBRAIC[262] - CONSTANTS[404])/(0.785000 - CONSTANTS[404]); ALGEBRAIC[266] = (ALGEBRAIC[264]<0.00000 ? 0.00000 : ALGEBRAIC[264]); ALGEBRAIC[351] = ALGEBRAIC[266]*ALGEBRAIC[350]+ (1.00000 - ALGEBRAIC[266])*ALGEBRAIC[349]; ALGEBRAIC[341] = ( CONSTANTS[123]*(STATES[50] - ALGEBRAIC[331]))/(1.00000+exp((15.0000 - STATES[50])/17.0000)); ALGEBRAIC[342] = (( CONSTANTS[123]*(STATES[50] - ALGEBRAIC[331]))/(1.00000+exp((36.0000 - STATES[50])/17.0000)))*3.62000; ALGEBRAIC[268] = (STATES[104] - 0.0589380)/(0.393747 - 0.0589380); ALGEBRAIC[270] = (ALGEBRAIC[268]<0.00000 ? 0.00000 : ALGEBRAIC[268]); ALGEBRAIC[343] = (1.00000 - ALGEBRAIC[270])*ALGEBRAIC[341]+ ALGEBRAIC[270]*ALGEBRAIC[342]; ALGEBRAIC[325] = exp(STATES[50]/550.000); ALGEBRAIC[344] = ( ( CONSTANTS[157]*pow(STATES[120], 3.00000))*ALGEBRAIC[325])*(STATES[50] - ALGEBRAIC[331]); ALGEBRAIC[345] = ALGEBRAIC[344]*( 0.735600*STATES[121]+ 0.264400*STATES[123]); ALGEBRAIC[346] = ALGEBRAIC[344]*( 0.735600*STATES[122]+ 0.264400*STATES[124]); ALGEBRAIC[347] = (1.00000 - STATES[39])*ALGEBRAIC[346]+ STATES[39]*ALGEBRAIC[345]; ALGEBRAIC[364] = ((((ALGEBRAIC[339]+ALGEBRAIC[340])+ALGEBRAIC[351])+ALGEBRAIC[343])+ALGEBRAIC[347]) - 2.00000*ALGEBRAIC[303]; ALGEBRAIC[366] = ALGEBRAIC[365]+ ALGEBRAIC[291]*3.00000; ALGEBRAIC[367] = ((ALGEBRAIC[366]+ALGEBRAIC[364])+ALGEBRAIC[305])+ALGEBRAIC[330]; ALGEBRAIC[368] = ((VOI - CONSTANTS[213]) - CONSTANTS[214]*floor((VOI - CONSTANTS[213])/CONSTANTS[214])<CONSTANTS[212] ? 1.00000 : 0.00000)*CONSTANTS[256]; }