Generated Code

The following is c code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

/*
   There are a total of 369 entries in the algebraic variable array.
   There are a total of 145 entries in each of the rate and state variable arrays.
   There are a total of 410 entries in the constant variable array.
 */
/*
 * CONSTANTS[324] is AC47_cyt in component ac (uM).
 * CONSTANTS[329] is AC47_eca in component ac (uM).
 * CONSTANTS[320] is AC56_cav in component ac (uM).
 * CONSTANTS[328] is AC56_cyt in component ac (uM).
 * CONSTANTS[296] is AC_tot in component ac (uM).
 * CONSTANTS[0] is ATP in component ac (uM).
 * CONSTANTS[1] is KmATP in component ac (uM).
 * CONSTANTS[2] is KmGiAC56 in component ac (uM).
 * CONSTANTS[3] is KmGsAC47 in component ac (dimensionless).
 * CONSTANTS[4] is KmGsAC56 in component ac (dimensionless).
 * CONSTANTS[5] is KmGsGiAC56 in component ac (dimensionless).
 * ALGEBRAIC[0] is ac_kAC47_cyt_gsa in component ac (dimensionless).
 * ALGEBRAIC[1] is ac_kAC47_eca_gsa in component ac (dimensionless).
 * ALGEBRAIC[2] is ac_kAC56_cav_gsa in component ac (dimensionless).
 * ALGEBRAIC[30] is ac_kAC56_cyt_gsa in component ac (dimensionless).
 * CONSTANTS[6] is afAC47 in component ac (hertz).
 * CONSTANTS[7] is afAC56 in component ac (hertz).
 * CONSTANTS[8] is basalAC47 in component ac (dimensionless).
 * CONSTANTS[9] is basalAC56 in component ac (dimensionless).
 * CONSTANTS[294] is R_b1_tot in component beta (uM).
 * STATES[0] is Gi_bg in component beta_cav (uM).
 * STATES[1] is Gs_aGTP in component beta_cav (uM).
 * STATES[2] is Gs_aGTP in component beta_cyt (uM).
 * STATES[3] is Gs_aGTP in component beta_eca (uM).
 * ALGEBRAIC[68] is dcAMP_AC47_cyt in component ac (mol_per_m3_per_s_times_1e_minus_3).
 * ALGEBRAIC[67] is dcAMP_AC47_eca in component ac (mol_per_m3_per_s_times_1e_minus_3).
 * ALGEBRAIC[82] is dcAMP_AC56_cav in component ac (mol_per_m3_per_s_times_1e_minus_3).
 * ALGEBRAIC[106] is dcAMP_AC56_cyt in component ac (mol_per_m3_per_s_times_1e_minus_3).
 * CONSTANTS[227] is fATP in component ac (dimensionless).
 * CONSTANTS[10] is f_AC47_eca in component ac (dimensionless).
 * CONSTANTS[260] is f_AC56_AC47 in component ac (dimensionless).
 * CONSTANTS[11] is f_AC56_cav in component ac (dimensionless).
 * ALGEBRAIC[32] is gsi in component ac (dimensionless).
 * CONSTANTS[12] is hGsAC47 in component ac (dimensionless).
 * CONSTANTS[13] is hGsAC56 in component ac (dimensionless).
 * CONSTANTS[14] is hGsGiAC56 in component ac (dimensionless).
 * ALGEBRAIC[55] is kAC47_cyt in component ac (hertz).
 * ALGEBRAIC[31] is kAC47_eca in component ac (hertz).
 * ALGEBRAIC[56] is kAC56_cav in component ac (hertz).
 * ALGEBRAIC[84] is kAC56_cyt in component ac (hertz).
 * CONSTANTS[15] is vGsGiAC56 in component ac (dimensionless).
 * CONSTANTS[319] is vr_cav in component cell (dimensionless).
 * CONSTANTS[321] is vr_cyt in component cell (dimensionless).
 * CONSTANTS[326] is vr_eca in component cell (dimensionless).
 * CONSTANTS[16] is ICaL_akap in component akap_sig (uM).
 * CONSTANTS[391] is ICaL_akapf in component akap_sig (uM).
 * CONSTANTS[392] is ICaL_arn in component akap_sig (uM).
 * CONSTANTS[393] is ICaL_arp in component akap_sig (uM).
 * CONSTANTS[17] is ICaL_tot in component akap_sig (uM).
 * CONSTANTS[281] is ICaLf in component akap_sig (uM).
 * STATES[4] is ICaLp in component akap_sig (uM).
 * CONSTANTS[18] is Ka_ical in component akap_sig (uM).
 * CONSTANTS[19] is Ka_ryr in component akap_sig (uM).
 * CONSTANTS[20] is Ki in component akap_sig (uM).
 * CONSTANTS[21] is Kp_ical in component akap_sig (uM).
 * CONSTANTS[22] is Kp_ryr in component akap_sig (uM).
 * CONSTANTS[23] is Kr in component akap_sig (uM).
 * CONSTANTS[24] is Li in component akap_sig (uM).
 * CONSTANTS[25] is Lr in component akap_sig (uM).
 * CONSTANTS[26] is Mi in component akap_sig (uM).
 * CONSTANTS[27] is Mr in component akap_sig (uM).
 * CONSTANTS[380] is PKA_cav in component pka (uM).
 * CONSTANTS[390] is PKAf in component akap_sig (uM).
 * CONSTANTS[28] is PP1_cav in component pp1 (uM).
 * CONSTANTS[291] is PP1f_cav in component akap_sig (uM).
 * CONSTANTS[29] is RyR_akap in component akap_sig (uM).
 * CONSTANTS[394] is RyR_akapf in component akap_sig (uM).
 * CONSTANTS[395] is RyR_arn in component akap_sig (uM).
 * CONSTANTS[396] is RyR_arp in component akap_sig (uM).
 * CONSTANTS[30] is RyR_tot in component akap_sig (uM).
 * CONSTANTS[293] is RyRf in component akap_sig (uM).
 * STATES[5] is RyRp in component akap_sig (uM).
 * CONSTANTS[273] is akap_sig_ICaLf_sum in component akap_sig (dimensionless).
 * ALGEBRAIC[3] is akap_sig_ICaLp_dif in component akap_sig (uM).
 * CONSTANTS[387] is akap_sig_PKAf_arg in component akap_sig (dimensionless).
 * CONSTANTS[381] is akap_sig_PKAf_b in component akap_sig (uM).
 * CONSTANTS[382] is akap_sig_PKAf_c in component akap_sig (mM2_times_1e_minus_6).
 * CONSTANTS[383] is akap_sig_PKAf_d in component akap_sig (mM3_times_1e_minus_9).
 * CONSTANTS[388] is akap_sig_PKAf_mag in component akap_sig (uM).
 * CONSTANTS[384] is akap_sig_PKAf_rr in component akap_sig (mol6_per_m18_times_1e_minus_18).
 * CONSTANTS[389] is akap_sig_PKAf_x in component akap_sig (dimensionless).
 * CONSTANTS[385] is akap_sig_PKAf_yi in component akap_sig (mM3_times_1e_minus_9).
 * CONSTANTS[386] is akap_sig_PKAf_yr in component akap_sig (mM3_times_1e_minus_9).
 * CONSTANTS[288] is akap_sig_PP1f_cav_arg in component akap_sig (dimensionless).
 * CONSTANTS[282] is akap_sig_PP1f_cav_b in component akap_sig (uM).
 * CONSTANTS[283] is akap_sig_PP1f_cav_c in component akap_sig (mM2_times_1e_minus_6).
 * CONSTANTS[284] is akap_sig_PP1f_cav_d in component akap_sig (mM3_times_1e_minus_9).
 * CONSTANTS[289] is akap_sig_PP1f_cav_mag in component akap_sig (uM).
 * CONSTANTS[285] is akap_sig_PP1f_cav_rr in component akap_sig (mol6_per_m18_times_1e_minus_18).
 * CONSTANTS[290] is akap_sig_PP1f_cav_x in component akap_sig (dimensionless).
 * CONSTANTS[286] is akap_sig_PP1f_cav_yi in component akap_sig (mM3_times_1e_minus_9).
 * CONSTANTS[287] is akap_sig_PP1f_cav_yr in component akap_sig (mM3_times_1e_minus_9).
 * CONSTANTS[292] is akap_sig_RyRf_sum in component akap_sig (dimensionless).
 * ALGEBRAIC[4] is akap_sig_RyRp_dif in component akap_sig (uM).
 * ALGEBRAIC[10] is fp_ICaL in component akap_sig (dimensionless).
 * ALGEBRAIC[38] is fp_RyR in component akap_sig (dimensionless).
 * CONSTANTS[31] is ka_ical in component akap_sig (hertz).
 * CONSTANTS[32] is ka_ryr in component akap_sig (hertz).
 * CONSTANTS[33] is kp_ical in component akap_sig (hertz).
 * CONSTANTS[34] is kp_ryr in component akap_sig (hertz).
 * STATES[6] is C in component pka_cav (uM).
 * VOI is time in component engine (ms).
 * CONSTANTS[35] is Gi_tot in component beta (uM).
 * CONSTANTS[295] is Gs_tot in component beta (uM).
 * CONSTANTS[297] is R_b2_tot in component beta (uM).
 * CONSTANTS[36] is f_Gi_cav in component beta (dimensionless).
 * CONSTANTS[215] is f_Gi_eca in component beta (dimensionless).
 * CONSTANTS[37] is f_Gs_cav in component beta (dimensionless).
 * CONSTANTS[216] is f_Gs_cyt in component beta (dimensionless).
 * CONSTANTS[38] is f_Gs_eca in component beta (dimensionless).
 * CONSTANTS[39] is f_Rb1_cav in component beta (dimensionless).
 * CONSTANTS[298] is f_Rb1_cyt in component beta (dimensionless).
 * CONSTANTS[40] is f_Rb1_eca in component beta (dimensionless).
 * CONSTANTS[41] is f_Rb2_cav in component beta (dimensionless).
 * CONSTANTS[299] is f_Rb2_eca in component beta (dimensionless).
 * CONSTANTS[42] is k_act1_Gi in component beta (hertz).
 * CONSTANTS[43] is k_act1_Gs in component beta (hertz).
 * CONSTANTS[44] is k_act2_Gi in component beta (hertz).
 * CONSTANTS[45] is k_act2_Gs in component beta (hertz).
 * CONSTANTS[46] is k_b1_c in component beta (uM).
 * CONSTANTS[47] is k_b1_h in component beta (uM).
 * CONSTANTS[48] is k_b1_l in component beta (uM).
 * CONSTANTS[49] is k_b2_a in component beta (uM).
 * CONSTANTS[50] is k_b2_c in component beta (uM).
 * CONSTANTS[51] is k_b2_f in component beta (uM).
 * CONSTANTS[52] is k_b2_h in component beta (uM).
 * CONSTANTS[53] is k_b2_l in component beta (uM).
 * CONSTANTS[54] is k_b2_n in component beta (uM).
 * CONSTANTS[217] is k_grk_dp in component beta (hertz).
 * CONSTANTS[218] is k_grk_p in component beta (hertz).
 * CONSTANTS[219] is k_hydr_Gi in component beta (hertz).
 * CONSTANTS[55] is k_hydr_Gs in component beta (hertz).
 * CONSTANTS[257] is k_pka_dp in component beta (hertz).
 * CONSTANTS[220] is k_pka_p in component beta (per_mM_per_ms).
 * CONSTANTS[221] is k_reas_Gi in component beta (per_mM_per_ms).
 * CONSTANTS[56] is k_reas_Gs in component beta (per_mM_per_ms).
 * CONSTANTS[57] is rate_bds in component beta (per_mM_per_ms).
 * CONSTANTS[58] is GRK in component beta_cav (dimensionless).
 * STATES[7] is Gi_aGDP in component beta_cav (uM).
 * STATES[8] is Gi_aGTP in component beta_cav (uM).
 * ALGEBRAIC[5] is Gi_abg in component beta_cav (uM).
 * ALGEBRAIC[86] is Gi_f in component beta_cav (uM).
 * STATES[9] is Gs_aGDP in component beta_cav (uM).
 * ALGEBRAIC[6] is Gs_abg in component beta_cav (uM).
 * STATES[10] is Gs_bg in component beta_cav (uM).
 * ALGEBRAIC[156] is Gs_f in component beta_cav (uM).
 * ALGEBRAIC[188] is LRGs_tot in component beta_cav (uM).
 * ALGEBRAIC[164] is LRb1 in component beta_cav (uM).
 * ALGEBRAIC[168] is LRb1Gs in component beta_cav (uM).
 * ALGEBRAIC[180] is LRb2 in component beta_cav (uM).
 * ALGEBRAIC[108] is LRb2Gi in component beta_cav (uM).
 * ALGEBRAIC[184] is LRb2Gs in component beta_cav (uM).
 * ALGEBRAIC[196] is RGs_tot in component beta_cav (uM).
 * CONSTANTS[322] is R_b1_tot in component beta_cav (uM).
 * CONSTANTS[323] is R_b2_tot in component beta_cav (uM).
 * ALGEBRAIC[172] is Rb1Gs in component beta_cav (uM).
 * ALGEBRAIC[160] is Rb1_f in component beta_cav (uM).
 * STATES[11] is Rb1_grk_tot in component beta_cav (uM).
 * ALGEBRAIC[33] is Rb1_np_tot in component beta_cav (uM).
 * STATES[12] is Rb1_pka_tot in component beta_cav (uM).
 * ALGEBRAIC[98] is Rb2Gi in component beta_cav (uM).
 * ALGEBRAIC[192] is Rb2Gs in component beta_cav (uM).
 * ALGEBRAIC[176] is Rb2_f in component beta_cav (uM).
 * STATES[13] is Rb2_grk_tot in component beta_cav (uM).
 * ALGEBRAIC[57] is Rb2_np_tot in component beta_cav (uM).
 * ALGEBRAIC[70] is Rb2_pka_f in component beta_cav (uM).
 * STATES[14] is Rb2_pka_tot in component beta_cav (uM).
 * CONSTANTS[223] is beta_cav_Gs_f_a in component beta_cav (mol4_per_m12_times_1e_minus_12).
 * ALGEBRAIC[131] is beta_cav_Gs_f_arg in component beta_cav (dimensionless).
 * ALGEBRAIC[69] is beta_cav_Gs_f_b in component beta_cav (uM).
 * ALGEBRAIC[85] is beta_cav_Gs_f_c in component beta_cav (mM2_times_1e_minus_6).
 * CONSTANTS[258] is beta_cav_Gs_f_c11 in component beta_cav (mol5_per_m15_times_1e_minus_15).
 * CONSTANTS[271] is beta_cav_Gs_f_c22 in component beta_cav (mol5_per_m15_times_1e_minus_15).
 * CONSTANTS[279] is beta_cav_Gs_f_c33 in component beta_cav (mol6_per_m18_times_1e_minus_18).
 * ALGEBRAIC[97] is beta_cav_Gs_f_d in component beta_cav (mM3_times_1e_minus_9).
 * ALGEBRAIC[147] is beta_cav_Gs_f_i in component beta_cav (uM).
 * ALGEBRAIC[137] is beta_cav_Gs_f_mag in component beta_cav (uM).
 * ALGEBRAIC[151] is beta_cav_Gs_f_r in component beta_cav (uM).
 * ALGEBRAIC[109] is beta_cav_Gs_f_rr in component beta_cav (mol6_per_m18_times_1e_minus_18).
 * ALGEBRAIC[142] is beta_cav_Gs_f_x in component beta_cav (dimensionless).
 * ALGEBRAIC[117] is beta_cav_Gs_f_yi in component beta_cav (mM3_times_1e_minus_9).
 * ALGEBRAIC[125] is beta_cav_Gs_f_yr in component beta_cav (mM3_times_1e_minus_9).
 * CONSTANTS[222] is beta_cav_Rb2_pka_f_a in component beta_cav (uM).
 * ALGEBRAIC[34] is beta_cav_Rb2_pka_f_b in component beta_cav (mM2_times_1e_minus_6).
 * ALGEBRAIC[58] is beta_cav_Rb2_pka_f_c in component beta_cav (mM3_times_1e_minus_9).
 * CONSTANTS[59] is L in component iso (uM).
 * CONSTANTS[60] is k_GsAct_b2 in component beta_cav (dimensionless).
 * CONSTANTS[61] is GRK in component beta_cyt (dimensionless).
 * STATES[15] is Gs_aGDP in component beta_cyt (uM).
 * ALGEBRAIC[7] is Gs_abg in component beta_cyt (uM).
 * STATES[16] is Gs_bg in component beta_cyt (uM).
 * ALGEBRAIC[99] is Gs_f in component beta_cyt (uM).
 * ALGEBRAIC[110] is LRb1Gs_np in component beta_cyt (uM).
 * ALGEBRAIC[118] is LRb1_np in component beta_cyt (uM).
 * CONSTANTS[325] is R_b1_tot in component beta_cyt (uM).
 * ALGEBRAIC[119] is Rb1Gs_np in component beta_cyt (uM).
 * STATES[17] is Rb1_grk_tot in component beta_cyt (uM).
 * ALGEBRAIC[87] is Rb1_np_f in component beta_cyt (uM).
 * ALGEBRAIC[35] is Rb1_np_tot in component beta_cyt (uM).
 * STATES[18] is Rb1_pka_tot in component beta_cyt (uM).
 * CONSTANTS[224] is beta_cyt_Rb1_np_f_a in component beta_cyt (uM).
 * ALGEBRAIC[59] is beta_cyt_Rb1_np_f_b in component beta_cyt (mM2_times_1e_minus_6).
 * ALGEBRAIC[71] is beta_cyt_Rb1_np_f_c in component beta_cyt (mM3_times_1e_minus_9).
 * STATES[19] is C in component pka_cyt (uM).
 * CONSTANTS[62] is GRK in component beta_eca (dimensionless).
 * STATES[20] is Gi_aGDP in component beta_eca (uM).
 * STATES[21] is Gi_aGTP in component beta_eca (uM).
 * ALGEBRAIC[8] is Gi_abg in component beta_eca (uM).
 * STATES[22] is Gi_bg in component beta_eca (uM).
 * ALGEBRAIC[89] is Gi_f in component beta_eca (uM).
 * STATES[23] is Gs_aGDP in component beta_eca (uM).
 * ALGEBRAIC[9] is Gs_abg in component beta_eca (uM).
 * STATES[24] is Gs_bg in component beta_eca (uM).
 * ALGEBRAIC[157] is Gs_f in component beta_eca (uM).
 * ALGEBRAIC[189] is LRGs_tot in component beta_eca (uM).
 * ALGEBRAIC[165] is LRb1 in component beta_eca (uM).
 * ALGEBRAIC[169] is LRb1Gs in component beta_eca (uM).
 * ALGEBRAIC[181] is LRb2 in component beta_eca (uM).
 * ALGEBRAIC[111] is LRb2Gi in component beta_eca (uM).
 * ALGEBRAIC[185] is LRb2Gs in component beta_eca (uM).
 * ALGEBRAIC[197] is RGs_tot in component beta_eca (uM).
 * CONSTANTS[330] is R_b1_tot in component beta_eca (uM).
 * CONSTANTS[331] is R_b2_tot in component beta_eca (uM).
 * ALGEBRAIC[173] is Rb1Gs in component beta_eca (uM).
 * ALGEBRAIC[161] is Rb1_f in component beta_eca (uM).
 * STATES[25] is Rb1_grk_tot in component beta_eca (uM).
 * ALGEBRAIC[36] is Rb1_np_tot in component beta_eca (uM).
 * STATES[26] is Rb1_pka_tot in component beta_eca (uM).
 * ALGEBRAIC[101] is Rb2Gi in component beta_eca (uM).
 * ALGEBRAIC[193] is Rb2Gs in component beta_eca (uM).
 * ALGEBRAIC[177] is Rb2_f in component beta_eca (uM).
 * STATES[27] is Rb2_grk_tot in component beta_eca (uM).
 * ALGEBRAIC[60] is Rb2_np_tot in component beta_eca (uM).
 * ALGEBRAIC[73] is Rb2_pka_f in component beta_eca (uM).
 * STATES[28] is Rb2_pka_tot in component beta_eca (uM).
 * CONSTANTS[226] is beta_eca_Gs_f_a in component beta_eca (mol4_per_m12_times_1e_minus_12).
 * ALGEBRAIC[132] is beta_eca_Gs_f_arg in component beta_eca (dimensionless).
 * ALGEBRAIC[72] is beta_eca_Gs_f_b in component beta_eca (uM).
 * ALGEBRAIC[88] is beta_eca_Gs_f_c in component beta_eca (mM2_times_1e_minus_6).
 * CONSTANTS[259] is beta_eca_Gs_f_c11 in component beta_eca (mol5_per_m15_times_1e_minus_15).
 * CONSTANTS[272] is beta_eca_Gs_f_c22 in component beta_eca (mol5_per_m15_times_1e_minus_15).
 * CONSTANTS[280] is beta_eca_Gs_f_c33 in component beta_eca (mol6_per_m18_times_1e_minus_18).
 * ALGEBRAIC[100] is beta_eca_Gs_f_d in component beta_eca (mM3_times_1e_minus_9).
 * ALGEBRAIC[148] is beta_eca_Gs_f_i in component beta_eca (uM).
 * ALGEBRAIC[138] is beta_eca_Gs_f_mag in component beta_eca (uM).
 * ALGEBRAIC[152] is beta_eca_Gs_f_r in component beta_eca (uM).
 * ALGEBRAIC[112] is beta_eca_Gs_f_rr in component beta_eca (mol6_per_m18_times_1e_minus_18).
 * ALGEBRAIC[143] is beta_eca_Gs_f_x in component beta_eca (dimensionless).
 * ALGEBRAIC[120] is beta_eca_Gs_f_yi in component beta_eca (mM3_times_1e_minus_9).
 * ALGEBRAIC[126] is beta_eca_Gs_f_yr in component beta_eca (mM3_times_1e_minus_9).
 * CONSTANTS[225] is beta_eca_Rb2_pka_f_a in component beta_eca (uM).
 * ALGEBRAIC[37] is beta_eca_Rb2_pka_f_b in component beta_eca (mM2_times_1e_minus_6).
 * ALGEBRAIC[61] is beta_eca_Rb2_pka_f_c in component beta_eca (mM3_times_1e_minus_9).
 * CONSTANTS[63] is k_GsAct_b2 in component beta_eca (dimensionless).
 * STATES[29] is C in component pka_eca (uM).
 * CONSTANTS[302] is AF in component cell (m2_mol_per_s_per_A_times_1e_minus_4).
 * ALGEBRAIC[186] is Ca in component calcium (mM).
 * ALGEBRAIC[102] is Ca_CaL in component calcium (mM).
 * ALGEBRAIC[127] is Ca_jsr in component calcium (mM).
 * STATES[30] is Ca_nsr in component calcium (mM).
 * ALGEBRAIC[149] is Ca_sr in component calcium (mM).
 * ALGEBRAIC[305] is ICa_tot in component calcium (uA_per_cm2).
 * ALGEBRAIC[217] is ICab in component icab (uA_per_cm2).
 * ALGEBRAIC[297] is INaCa in component inaca (uA_per_cm2).
 * ALGEBRAIC[291] is INaCaSR in component inaca (uA_per_cm2).
 * ALGEBRAIC[201] is Idiff_Ca in component diff (mM_per_ms).
 * ALGEBRAIC[209] is Idiff_sr in component diff (mM_per_ms).
 * ALGEBRAIC[304] is IpCa in component ipca (uA_per_cm2).
 * ALGEBRAIC[319] is Irel in component irel (mM_per_ms).
 * ALGEBRAIC[211] is Itr in component diff (mM_per_ms).
 * ALGEBRAIC[328] is Iup in component iup (mM_per_ms).
 * CONSTANTS[64] is Ka_tni in component calcium (uM).
 * CONSTANTS[65] is Kp_tni in component calcium (uM).
 * CONSTANTS[66] is PP2A in component pp1 (uM).
 * CONSTANTS[228] is bar_sum in component calcium (mM).
 * CONSTANTS[67] is bsl_bar in component calcium (mM).
 * CONSTANTS[68] is bsl_km in component calcium (mM).
 * CONSTANTS[69] is bsr_bar in component calcium (mM).
 * CONSTANTS[70] is bsr_km in component calcium (mM).
 * ALGEBRAIC[62] is calcium_Ca_CaL_b in component calcium (mM).
 * ALGEBRAIC[74] is calcium_Ca_CaL_c in component calcium (mM2).
 * ALGEBRAIC[90] is calcium_Ca_CaL_d in component calcium (mM3).
 * ALGEBRAIC[178] is calcium_Ca_b in component calcium (mM).
 * ALGEBRAIC[182] is calcium_Ca_c in component calcium (mM2).
 * ALGEBRAIC[170] is calcium_Ca_d in component calcium (mM3).
 * ALGEBRAIC[113] is calcium_Ca_jsr_b in component calcium (mM).
 * ALGEBRAIC[121] is calcium_Ca_jsr_c in component calcium (mM2).
 * CONSTANTS[312] is calcium_Ca_nsr_r1 in component calcium (dimensionless).
 * ALGEBRAIC[133] is calcium_Ca_sr_b in component calcium (mM).
 * ALGEBRAIC[139] is calcium_Ca_sr_c in component calcium (mM2).
 * ALGEBRAIC[144] is calcium_Ca_sr_d in component calcium (mM3).
 * ALGEBRAIC[153] is calcium_fhat_val in component calcium (dimensionless).
 * CONSTANTS[305] is calcium_uCa_CaL_r1 in component calcium (mol_per_m_per_s_per_A_times_1e5).
 * CONSTANTS[315] is calcium_uCa_CaL_r2 in component calcium (dimensionless).
 * CONSTANTS[308] is calcium_uCa_r1 in component calcium (mol_per_m_per_s_per_A_times_1e5).
 * CONSTANTS[313] is calcium_uCa_r2 in component calcium (dimensionless).
 * CONSTANTS[316] is calcium_uCa_sr_r1 in component calcium (mol_per_m_per_s_per_A_times_1e5).
 * CONSTANTS[317] is calcium_uCa_sr_r2 in component calcium (dimensionless).
 * CONSTANTS[71] is cbar in component calcium (mM).
 * CONSTANTS[72] is csqn_bar in component calcium (mM).
 * CONSTANTS[73] is csqn_km in component calcium (mM).
 * STATES[31] is f_tni in component calcium (dimensionless).
 * ALGEBRAIC[158] is fhat in component calcium (dimensionless).
 * ALGEBRAIC[248] is ICaL in component ical (uA_per_cm2).
 * CONSTANTS[74] is ka_tni in component calcium (hertz).
 * CONSTANTS[75] is kc in component calcium (mM).
 * CONSTANTS[230] is km_pro in component calcium (mM2).
 * CONSTANTS[261] is km_sum in component calcium (mM).
 * CONSTANTS[76] is kp_tni in component calcium (hertz).
 * ALGEBRAIC[166] is kpro in component calcium (mM2).
 * ALGEBRAIC[174] is ksum in component calcium (mM).
 * ALGEBRAIC[162] is kt in component calcium (mM).
 * CONSTANTS[77] is ktn in component calcium (mM).
 * CONSTANTS[229] is ktp in component calcium (mM).
 * CONSTANTS[318] is r3 in component calcium (dimensionless).
 * CONSTANTS[262] is ss_pro in component calcium (mM2).
 * CONSTANTS[274] is ss_sum in component calcium (mM).
 * CONSTANTS[78] is tbar in component calcium (mM).
 * STATES[32] is uCa in component calcium (mM).
 * STATES[33] is uCa_CaL in component calcium (mM).
 * STATES[34] is uCa_jsr in component calcium (mM).
 * STATES[35] is uCa_sr in component calcium (mM).
 * CONSTANTS[304] is v_CaL in component cell (uL).
 * CONSTANTS[307] is v_cyt in component cell (uL).
 * CONSTANTS[310] is v_jsr in component cell (uL).
 * CONSTANTS[311] is v_nsr in component cell (uL).
 * CONSTANTS[314] is v_sr in component cell (uL).
 * CONSTANTS[79] is CaMK0 in component camk (dimensionless).
 * CONSTANTS[80] is K in component camk (dimensionless).
 * CONSTANTS[81] is Km in component camk (mM).
 * CONSTANTS[82] is PP1_eca in component pp1 (uM).
 * ALGEBRAIC[206] is PP1_tot in component camk (uM).
 * ALGEBRAIC[203] is PP1f_cyt in component pp1 (uM).
 * ALGEBRAIC[194] is active in component camk (dimensionless).
 * ALGEBRAIC[190] is bound in component camk (dimensionless).
 * ALGEBRAIC[199] is c in component camk (dimensionless).
 * ALGEBRAIC[200] is camk_f_ryr_d in component camk (dimensionless).
 * CONSTANTS[83] is camk_trap_alpha in component camk (mS_per_uF).
 * CONSTANTS[84] is camk_trap_beta in component camk (mS_per_uF).
 * STATES[36] is f_ical in component camk (dimensionless).
 * STATES[37] is f_ik1 in component camk (dimensionless).
 * STATES[38] is f_ina in component camk (dimensionless).
 * STATES[39] is f_ito in component camk (dimensionless).
 * STATES[40] is f_plb in component camk (dimensionless).
 * STATES[41] is f_ryr in component camk (dimensionless).
 * CONSTANTS[231] is tau_cal in component camk (ms).
 * CONSTANTS[232] is tau_ik1 in component camk (ms).
 * CONSTANTS[233] is tau_ina in component camk (ms).
 * CONSTANTS[234] is tau_ito in component camk (ms).
 * CONSTANTS[85] is tau_plb in component camk (ms).
 * CONSTANTS[86] is tau_ryr in component camk (ms).
 * STATES[42] is trap in component camk (dimensionless).
 * STATES[43] is cAMP_cav in component camp (uM).
 * STATES[44] is cAMP_cyt in component camp (uM).
 * STATES[45] is cAMP_eca in component camp (uM).
 * ALGEBRAIC[95] is camp_cAMP_cav_j1 in component camp (mol_per_m3_per_s_times_1e_minus_3).
 * ALGEBRAIC[105] is camp_cAMP_cav_j2 in component camp (mol_per_m3_per_s_times_1e_minus_3).
 * ALGEBRAIC[135] is camp_cAMP_cav_pde in component camp (mol_per_m3_per_s_times_1e_minus_3).
 * ALGEBRAIC[115] is camp_cAMP_cyt_j1 in component camp (mol_per_m3_per_s_times_1e_minus_3).
 * ALGEBRAIC[123] is camp_cAMP_cyt_j2 in component camp (mol_per_m3_per_s_times_1e_minus_3).
 * ALGEBRAIC[146] is camp_cAMP_cyt_pde in component camp (mol_per_m3_per_s_times_1e_minus_3).
 * ALGEBRAIC[83] is camp_cAMP_eca_j1 in component camp (mol_per_m3_per_s_times_1e_minus_3).
 * ALGEBRAIC[96] is camp_cAMP_eca_j2 in component camp (mol_per_m3_per_s_times_1e_minus_3).
 * ALGEBRAIC[124] is camp_cAMP_eca_pde in component camp (mol_per_m3_per_s_times_1e_minus_3).
 * ALGEBRAIC[114] is dcAMP_PDE2_cav in component pde (mol_per_m3_per_s_times_1e_minus_3).
 * ALGEBRAIC[129] is dcAMP_PDE2_cyt in component pde (mol_per_m3_per_s_times_1e_minus_3).
 * ALGEBRAIC[107] is dcAMP_PDE2_eca in component pde (mol_per_m3_per_s_times_1e_minus_3).
 * ALGEBRAIC[122] is dcAMP_PDE3_cav in component pde (mol_per_m3_per_s_times_1e_minus_3).
 * ALGEBRAIC[136] is dcAMP_PDE3_cyt in component pde (mol_per_m3_per_s_times_1e_minus_3).
 * ALGEBRAIC[128] is dcAMP_PDE4_cav in component pde (mol_per_m3_per_s_times_1e_minus_3).
 * ALGEBRAIC[141] is dcAMP_PDE4_cyt in component pde (mol_per_m3_per_s_times_1e_minus_3).
 * ALGEBRAIC[116] is dcAMP_PDE4_eca in component pde (mol_per_m3_per_s_times_1e_minus_3).
 * CONSTANTS[235] is j_cav_cyt in component camp (m3_per_s_times_1e_minus_9).
 * CONSTANTS[236] is j_cav_eca in component camp (m3_per_s_times_1e_minus_9).
 * CONSTANTS[237] is j_eca_cyt in component camp (m3_per_s_times_1e_minus_9).
 * ALGEBRAIC[145] is dcAMP in component pka_cav (mol_per_m3_per_s_times_1e_minus_3).
 * ALGEBRAIC[154] is dcAMP in component pka_cyt (mol_per_m3_per_s_times_1e_minus_3).
 * ALGEBRAIC[134] is dcAMP in component pka_eca (mol_per_m3_per_s_times_1e_minus_3).
 * CONSTANTS[306] is v_cav in component cell (uL).
 * CONSTANTS[309] is v_eca in component cell (uL).
 * CONSTANTS[87] is F in component phys (C_per_mol).
 * CONSTANTS[301] is capArea in component cell (cm2).
 * CONSTANTS[300] is geoArea in component cell (cm2).
 * CONSTANTS[88] is length in component cell (cm).
 * CONSTANTS[89] is pi in component cell (dimensionless).
 * CONSTANTS[90] is radius in component cell (cm).
 * CONSTANTS[303] is volume in component cell (uL).
 * ALGEBRAIC[333] is CTKCl in component ctkcl (mM_per_ms).
 * ALGEBRAIC[354] is CTNaCl in component ctnacl (mM_per_ms).
 * STATES[46] is Cl in component chloride (mM).
 * STATES[47] is Cl_sr in component chloride (mM).
 * ALGEBRAIC[323] is IClCa in component iclca (uA_per_cm2).
 * ALGEBRAIC[330] is ICl_tot in component chloride (uA_per_cm2).
 * ALGEBRAIC[329] is IClb in component iclb (uA_per_cm2).
 * ALGEBRAIC[204] is Idiff_Cl in component diff (mM_per_ms).
 * CONSTANTS[332] is chloride_Cl_r1 in component chloride (mol_per_m_per_s_per_A_times_1e5).
 * CONSTANTS[337] is chloride_Cl_r2 in component chloride (dimensionless).
 * CONSTANTS[341] is chloride_Cl_sr_r1 in component chloride (mol_per_m_per_s_per_A_times_1e5).
 * ALGEBRAIC[327] is ECl in component nernst (mV).
 * ALGEBRAIC[331] is EK in component nernst (mV).
 * CONSTANTS[91] is KClBar in component ctkcl (mM_per_ms).
 * ALGEBRAIC[332] is ctkcl_CTKCl_z1 in component ctkcl (mV).
 * CONSTANTS[92] is ctkcl_CTKCl_z2 in component ctkcl (mV).
 * ALGEBRAIC[352] is ENa in component nernst (mV).
 * CONSTANTS[93] is NaClBar in component ctnacl (mM_per_ms).
 * ALGEBRAIC[353] is ctnacl_CTNaCl_z1 in component ctnacl (g4_m8_per_s12_per_A4).
 * CONSTANTS[346] is ctnacl_CTNaCl_z2 in component ctnacl (g4_m8_per_s12_per_A4).
 * ALGEBRAIC[207] is Idiff_Na in component diff (mM_per_ms).
 * STATES[48] is Na in component sodium (mM).
 * STATES[49] is Na_sr in component sodium (mM).
 * CONSTANTS[94] is tau in component diff (ms).
 * CONSTANTS[95] is tau_sr in component diff (ms).
 * CONSTANTS[96] is tau_tr in component diff (ms).
 * CONSTANTS[97] is Cao in component extra (mM).
 * CONSTANTS[98] is Clo in component extra (mM).
 * CONSTANTS[99] is Ko in component extra (mM).
 * CONSTANTS[100] is Nao in component extra (mM).
 * CONSTANTS[263] is FRT in component phys (per_mV).
 * STATES[50] is V in component membrane (mV).
 * ALGEBRAIC[215] is efrt in component icab (dimensionless).
 * CONSTANTS[101] is pCab in component icab (cm_per_s).
 * ALGEBRAIC[213] is vfrt in component icab (dimensionless).
 * ALGEBRAIC[223] is f_hat in component ical (dimensionless).
 * ALGEBRAIC[235] is ICaL in component ical_camk (uA_per_cm2).
 * CONSTANTS[397] is ical_f_hat_ratio in component ical (dimensionless).
 * ALGEBRAIC[220] is ical_f_hat_val in component ical (dimensionless).
 * ALGEBRAIC[246] is ICaL in component ical_np (uA_per_cm2).
 * STATES[51] is C in component ical_camk (dimensionless).
 * STATES[52] is CI in component ical_camk (dimensionless).
 * STATES[53] is CIs in component ical_camk (dimensionless).
 * STATES[54] is Cs in component ical_camk (dimensionless).
 * CONSTANTS[275] is FFRT in component phys (s4_A2_per_g_per_m2_per_mol).
 * ALGEBRAIC[232] is IBar in component ical_camk (uA_per_cm2).
 * STATES[55] is O in component ical_camk (dimensionless).
 * STATES[56] is OI in component ical_camk (dimensionless).
 * STATES[57] is OIs in component ical_camk (dimensionless).
 * STATES[58] is Os in component ical_camk (dimensionless).
 * ALGEBRAIC[226] is PCa in component ical_camk (cm_per_s).
 * ALGEBRAIC[155] is ac_inf in component ical_camk (dimensionless).
 * ALGEBRAIC[195] is ac_tau in component ical_np (ms).
 * ALGEBRAIC[202] is alpha in component ical_camk (mS_per_uF).
 * ALGEBRAIC[205] is beta in component ical_camk (mS_per_uF).
 * ALGEBRAIC[183] is delta in component ical_camk (mS_per_uF).
 * ALGEBRAIC[242] is delta1 in component ical_camk (mS_per_uF).
 * ALGEBRAIC[159] is delta_tau in component ical_camk (dimensionless).
 * ALGEBRAIC[229] is ical_camk_IBar_vv in component ical_camk (dimensionless).
 * ALGEBRAIC[230] is ical_camk_delta1_xs_cor in component ical_camk (mS_per_uF).
 * ALGEBRAIC[236] is ical_camk_delta1_y_cor in component ical_camk (mS_per_uF).
 * ALGEBRAIC[214] is in_a in component ical_np (dimensionless).
 * ALGEBRAIC[216] is in_b in component ical_np (dimensionless).
 * ALGEBRAIC[167] is in_hi_inf in component ical_camk (dimensionless).
 * ALGEBRAIC[218] is in_hi_tau in component ical_camk (ms).
 * ALGEBRAIC[163] is in_inf in component ical_camk (dimensionless).
 * ALGEBRAIC[171] is in_lo_inf in component ical_camk (dimensionless).
 * ALGEBRAIC[221] is in_lo_tau in component ical_camk (ms).
 * ALGEBRAIC[187] is inca in component ical_camk (dimensionless).
 * ALGEBRAIC[175] is ss_cal_10 in component ical_camk (dimensionless).
 * ALGEBRAIC[179] is ss_cal_4 in component ical_camk (dimensionless).
 * CONSTANTS[102] is theta in component ical_camk (mS_per_uF).
 * CONSTANTS[103] is theta1 in component ical_camk (mS_per_uF).
 * ALGEBRAIC[224] is x in component ical_camk (mS_per_uF).
 * ALGEBRAIC[227] is xs in component ical_camk (mS_per_uF).
 * ALGEBRAIC[233] is y in component ical_camk (mS_per_uF).
 * ALGEBRAIC[239] is ys in component ical_camk (mS_per_uF).
 * STATES[59] is C in component ical_np (dimensionless).
 * STATES[60] is CI in component ical_np (dimensionless).
 * STATES[61] is CIs in component ical_np (dimensionless).
 * STATES[62] is Cs in component ical_np (dimensionless).
 * ALGEBRAIC[244] is IBar in component ical_np (uA_per_cm2).
 * STATES[63] is O in component ical_np (dimensionless).
 * STATES[64] is OI in component ical_np (dimensionless).
 * STATES[65] is OIs in component ical_np (dimensionless).
 * STATES[66] is Os in component ical_np (dimensionless).
 * ALGEBRAIC[238] is PCa in component ical_np (cm_per_s).
 * ALGEBRAIC[191] is ac_inf in component ical_np (dimensionless).
 * ALGEBRAIC[208] is alpha in component ical_np (mS_per_uF).
 * ALGEBRAIC[210] is beta in component ical_np (mS_per_uF).
 * ALGEBRAIC[237] is delta in component ical_np (mS_per_uF).
 * ALGEBRAIC[260] is delta1 in component ical_np (mS_per_uF).
 * ALGEBRAIC[212] is delta_tau in component ical_np (dimensionless).
 * ALGEBRAIC[241] is ical_np_IBar_vv in component ical_np (dimensionless).
 * ALGEBRAIC[249] is ical_np_delta1_xs_cor in component ical_np (mS_per_uF).
 * ALGEBRAIC[254] is ical_np_delta1_y_cor in component ical_np (mS_per_uF).
 * ALGEBRAIC[222] is in_hi_inf in component ical_np (dimensionless).
 * ALGEBRAIC[243] is in_hi_tau in component ical_np (ms).
 * ALGEBRAIC[219] is in_inf in component ical_np (dimensionless).
 * ALGEBRAIC[225] is in_lo_inf in component ical_np (dimensionless).
 * ALGEBRAIC[228] is in_lo_tau in component ical_np (ms).
 * ALGEBRAIC[240] is inca in component ical_np (dimensionless).
 * ALGEBRAIC[231] is ss_cal_10 in component ical_np (dimensionless).
 * ALGEBRAIC[234] is ss_cal_4 in component ical_np (dimensionless).
 * CONSTANTS[104] is theta in component ical_np (mS_per_uF).
 * CONSTANTS[105] is theta1 in component ical_np (mS_per_uF).
 * ALGEBRAIC[245] is x in component ical_np (mS_per_uF).
 * ALGEBRAIC[247] is xs in component ical_np (mS_per_uF).
 * ALGEBRAIC[251] is y in component ical_np (mS_per_uF).
 * ALGEBRAIC[257] is ys in component ical_np (mS_per_uF).
 * CONSTANTS[106] is Gbar in component iclb (mS_per_cm2).
 * ALGEBRAIC[253] is IClCa_bar in component iclca (uA_per_cm2).
 * ALGEBRAIC[317] is Irel_pure in component irel (mM_per_ms).
 * ALGEBRAIC[320] is KClCa in component iclca (dimensionless).
 * CONSTANTS[107] is PCl in component iclca (cm_per_s).
 * STATES[67] is i2 in component iclca (dimensionless).
 * ALGEBRAIC[11] is iclca_i2_alpha in component iclca (dimensionless).
 * ALGEBRAIC[39] is iclca_i2_beta in component iclca (dimensionless).
 * CONSTANTS[108] is kCaCl in component iclca (mM_per_ms).
 * CONSTANTS[109] is tau in component iclca (ms).
 * ALGEBRAIC[250] is vexp in component iclca (dimensionless).
 * CONSTANTS[239] is Gbar in component ik1 (mS_per_cm2).
 * ALGEBRAIC[339] is IK1 in component ik1 (uA_per_cm2).
 * ALGEBRAIC[338] is IK1_camk in component ik1 (uA_per_cm2).
 * ALGEBRAIC[337] is IK1_np in component ik1 (uA_per_cm2).
 * ALGEBRAIC[335] is ik1_IK1_np_alpha in component ik1 (dimensionless).
 * ALGEBRAIC[336] is ik1_IK1_np_beta in component ik1 (dimensionless).
 * ALGEBRAIC[334] is ik1_IK1_np_vv in component ik1 (mV).
 * CONSTANTS[240] is GKr in component ikr (mS_per_cm2).
 * ALGEBRAIC[340] is IKr in component ikr (uA_per_cm2).
 * STATES[68] is ac in component ikr (dimensionless).
 * ALGEBRAIC[12] is ikr_ac_tau in component ikr (ms).
 * ALGEBRAIC[40] is inf in component ikr (dimensionless).
 * ALGEBRAIC[256] is inx in component ikr (dimensionless).
 * ALGEBRAIC[348] is EKs in component nernst (mV).
 * ALGEBRAIC[259] is G in component iks (mS_per_cm2).
 * ALGEBRAIC[351] is IKs in component iks (uA_per_cm2).
 * CONSTANTS[403] is IKs_arn in component iks_sig (uM).
 * ALGEBRAIC[349] is IKs_np in component iks (uA_per_cm2).
 * ALGEBRAIC[350] is IKs_pka in component iks (uA_per_cm2).
 * CONSTANTS[110] is IKs_tot in component iks_sig (uM).
 * ALGEBRAIC[266] is f_hat in component iks (dimensionless).
 * ALGEBRAIC[262] is fp_iks in component iks_sig (dimensionless).
 * CONSTANTS[404] is iks_f_hat_ratio in component iks (dimensionless).
 * ALGEBRAIC[264] is iks_f_hat_val in component iks (dimensionless).
 * STATES[69] is O1 in component iks_np (dimensionless).
 * STATES[70] is O2 in component iks_np (dimensionless).
 * STATES[71] is O1 in component iks_pka (dimensionless).
 * STATES[72] is O2 in component iks_pka (dimensionless).
 * STATES[73] is C1 in component iks_np (dimensionless).
 * STATES[74] is C10 in component iks_np (dimensionless).
 * STATES[75] is C11 in component iks_np (dimensionless).
 * STATES[76] is C12 in component iks_np (dimensionless).
 * STATES[77] is C13 in component iks_np (dimensionless).
 * STATES[78] is C14 in component iks_np (dimensionless).
 * STATES[79] is C15 in component iks_np (dimensionless).
 * STATES[80] is C2 in component iks_np (dimensionless).
 * STATES[81] is C3 in component iks_np (dimensionless).
 * STATES[82] is C4 in component iks_np (dimensionless).
 * STATES[83] is C5 in component iks_np (dimensionless).
 * STATES[84] is C6 in component iks_np (dimensionless).
 * STATES[85] is C7 in component iks_np (dimensionless).
 * STATES[86] is C8 in component iks_np (dimensionless).
 * STATES[87] is C9 in component iks_np (dimensionless).
 * ALGEBRAIC[13] is a in component iks_np (mS_per_uF).
 * ALGEBRAIC[41] is b in component iks_np (mS_per_uF).
 * ALGEBRAIC[63] is d in component iks_np (mS_per_uF).
 * ALGEBRAIC[75] is e in component iks_np (mS_per_uF).
 * ALGEBRAIC[91] is g in component iks_np (mS_per_uF).
 * ALGEBRAIC[92] is o in component iks_np (mS_per_uF).
 * ALGEBRAIC[103] is p in component iks_np (mS_per_uF).
 * CONSTANTS[111] is t in component iks_np (mS_per_uF).
 * STATES[88] is C1 in component iks_pka (dimensionless).
 * STATES[89] is C10 in component iks_pka (dimensionless).
 * STATES[90] is C11 in component iks_pka (dimensionless).
 * STATES[91] is C12 in component iks_pka (dimensionless).
 * STATES[92] is C13 in component iks_pka (dimensionless).
 * STATES[93] is C14 in component iks_pka (dimensionless).
 * STATES[94] is C15 in component iks_pka (dimensionless).
 * STATES[95] is C2 in component iks_pka (dimensionless).
 * STATES[96] is C3 in component iks_pka (dimensionless).
 * STATES[97] is C4 in component iks_pka (dimensionless).
 * STATES[98] is C5 in component iks_pka (dimensionless).
 * STATES[99] is C6 in component iks_pka (dimensionless).
 * STATES[100] is C7 in component iks_pka (dimensionless).
 * STATES[101] is C8 in component iks_pka (dimensionless).
 * STATES[102] is C9 in component iks_pka (dimensionless).
 * ALGEBRAIC[14] is a in component iks_pka (mS_per_uF).
 * ALGEBRAIC[42] is b in component iks_pka (mS_per_uF).
 * ALGEBRAIC[64] is d in component iks_pka (mS_per_uF).
 * ALGEBRAIC[76] is e in component iks_pka (mS_per_uF).
 * ALGEBRAIC[93] is g in component iks_pka (mS_per_uF).
 * ALGEBRAIC[94] is o in component iks_pka (mS_per_uF).
 * ALGEBRAIC[104] is p in component iks_pka (mS_per_uF).
 * CONSTANTS[112] is t in component iks_pka (mS_per_uF).
 * CONSTANTS[405] is IKs_arp in component iks_sig (uM).
 * CONSTANTS[356] is IKsf in component iks_sig (uM).
 * STATES[103] is IKsp in component iks_sig (uM).
 * CONSTANTS[113] is K in component iks_sig (uM).
 * CONSTANTS[114] is Ka_iks in component iks_sig (uM).
 * CONSTANTS[115] is Kp_iks in component iks_sig (uM).
 * CONSTANTS[116] is L in component iks_sig (uM).
 * CONSTANTS[117] is M in component iks_sig (uM).
 * CONSTANTS[399] is PKA_eca in component pka (uM).
 * CONSTANTS[401] is PKAf in component iks_sig (uM).
 * CONSTANTS[360] is PP1f_eca in component iks_sig (uM).
 * CONSTANTS[118] is Yotiao in component iks_sig (uM).
 * CONSTANTS[402] is Yotiaof in component iks_sig (uM).
 * CONSTANTS[353] is iks_sig_IKsf_sum in component iks_sig (dimensionless).
 * ALGEBRAIC[15] is iks_sig_IKsp_dif in component iks_sig (uM).
 * CONSTANTS[400] is iks_sig_PKAf_sum in component iks_sig (dimensionless).
 * CONSTANTS[358] is iks_sig_PP1f_eca_sum in component iks_sig (dimensionless).
 * CONSTANTS[119] is ka_iks in component iks_sig (hertz).
 * CONSTANTS[120] is kp_iks in component iks_sig (hertz).
 * ALGEBRAIC[343] is IKur in component ikur (uA_per_cm2).
 * ALGEBRAIC[341] is IKur_np in component ikur (uA_per_cm2).
 * ALGEBRAIC[342] is IKur_p in component ikur (uA_per_cm2).
 * CONSTANTS[121] is Ka_ikur in component ikur (uM).
 * CONSTANTS[122] is Kp_ikur in component ikur (uM).
 * STATES[104] is f_ikur in component ikur (dimensionless).
 * ALGEBRAIC[270] is fhat in component ikur (dimensionless).
 * CONSTANTS[123] is gbar_np in component ikur (mS_per_cm2).
 * ALGEBRAIC[268] is ikur_fhat_val in component ikur (dimensionless).
 * CONSTANTS[124] is ka_ikur in component ikur (hertz).
 * CONSTANTS[125] is kp_ikur in component ikur (hertz).
 * ALGEBRAIC[359] is INa in component ina (uA_per_cm2).
 * ALGEBRAIC[355] is INa_both in component ina (uA_per_cm2).
 * ALGEBRAIC[356] is INa_camk in component ina (uA_per_cm2).
 * ALGEBRAIC[357] is INa_np in component ina (uA_per_cm2).
 * ALGEBRAIC[358] is INa_pka in component ina (uA_per_cm2).
 * CONSTANTS[126] is Ka_ina in component ina (uM).
 * CONSTANTS[127] is Kp_ina in component ina (uM).
 * ALGEBRAIC[275] is f_both in component ina (dimensionless).
 * ALGEBRAIC[276] is f_camk_only in component ina (dimensionless).
 * STATES[105] is f_ina in component ina (dimensionless).
 * ALGEBRAIC[278] is f_np in component ina (dimensionless).
 * ALGEBRAIC[274] is f_pka in component ina (dimensionless).
 * ALGEBRAIC[277] is f_pka_only in component ina (dimensionless).
 * CONSTANTS[241] is gNaBar in component ina (mS_per_cm2).
 * STATES[106] is h in component ina_camk (dimensionless).
 * STATES[107] is j in component ina_camk (dimensionless).
 * STATES[108] is m in component ina_camk (dimensionless).
 * ALGEBRAIC[273] is ina_f_pka_val in component ina (dimensionless).
 * STATES[109] is h in component ina_np (dimensionless).
 * STATES[110] is j in component ina_np (dimensionless).
 * STATES[111] is m in component ina_np (dimensionless).
 * STATES[112] is h in component ina_pka (dimensionless).
 * STATES[113] is j in component ina_pka (dimensionless).
 * STATES[114] is m in component ina_pka (dimensionless).
 * CONSTANTS[128] is ka_ina in component ina (hertz).
 * CONSTANTS[129] is kp_ina in component ina (hertz).
 * CONSTANTS[130] is dVIn in component ina_camk (mV).
 * ALGEBRAIC[16] is ina_camk_h_alpha in component ina_camk (mS_per_uF).
 * ALGEBRAIC[43] is ina_camk_h_beta in component ina_camk (mS_per_uF).
 * ALGEBRAIC[17] is ina_camk_j_alpha in component ina_camk (mS_per_uF).
 * ALGEBRAIC[44] is ina_camk_j_beta in component ina_camk (mS_per_uF).
 * ALGEBRAIC[18] is ina_camk_m_alpha in component ina_camk (mS_per_uF).
 * ALGEBRAIC[45] is ina_camk_m_beta in component ina_camk (mS_per_uF).
 * ALGEBRAIC[19] is ina_np_h_alpha in component ina_np (mS_per_uF).
 * ALGEBRAIC[46] is ina_np_h_beta in component ina_np (mS_per_uF).
 * ALGEBRAIC[20] is ina_np_j_alpha in component ina_np (mS_per_uF).
 * ALGEBRAIC[47] is ina_np_j_beta in component ina_np (mS_per_uF).
 * ALGEBRAIC[21] is ina_np_m_alpha in component ina_np (mS_per_uF).
 * ALGEBRAIC[48] is ina_np_m_beta in component ina_np (mS_per_uF).
 * CONSTANTS[131] is dVAc in component ina_pka (mV).
 * CONSTANTS[132] is dVIn in component ina_pka (mV).
 * ALGEBRAIC[22] is ina_pka_h_alpha in component ina_pka (mS_per_uF).
 * ALGEBRAIC[49] is ina_pka_h_beta in component ina_pka (mS_per_uF).
 * ALGEBRAIC[23] is ina_pka_j_alpha in component ina_pka (mS_per_uF).
 * ALGEBRAIC[50] is ina_pka_j_beta in component ina_pka (mS_per_uF).
 * ALGEBRAIC[24] is ina_pka_m_alpha in component ina_pka (mS_per_uF).
 * ALGEBRAIC[51] is ina_pka_m_beta in component ina_pka (mS_per_uF).
 * ALGEBRAIC[281] is INab in component inab (uA_per_cm2).
 * CONSTANTS[133] is P in component inab (cm_per_s).
 * ALGEBRAIC[280] is ePhi in component inab (dimensionless).
 * ALGEBRAIC[279] is inab_INab_phi in component inab (dimensionless).
 * CONSTANTS[362] is KmNai3 in component inaca (mM3).
 * CONSTANTS[364] is KmNao3 in component inaca (mM3).
 * CONSTANTS[134] is Km_Ca in component inaca (mM).
 * CONSTANTS[135] is Km_Cai in component inaca (mM).
 * CONSTANTS[136] is Km_Cao in component inaca (mM).
 * CONSTANTS[137] is Km_Nai in component inaca (mM).
 * CONSTANTS[138] is Km_Nao in component inaca (mM).
 * ALGEBRAIC[282] is Na_i3 in component inaca (mM3).
 * CONSTANTS[366] is Na_o3 in component inaca (mM3).
 * ALGEBRAIC[283] is Na_ss3 in component inaca (mM3).
 * CONSTANTS[139] is eta in component inaca (dimensionless).
 * ALGEBRAIC[284] is exp1 in component inaca (dimensionless).
 * ALGEBRAIC[285] is exp2 in component inaca (dimensionless).
 * ALGEBRAIC[286] is inaca_INaCaSR_denom1 in component inaca (dimensionless).
 * ALGEBRAIC[287] is inaca_INaCaSR_denom2 in component inaca (dimensionless).
 * ALGEBRAIC[288] is inaca_INaCaSR_denom3 in component inaca (mol4_per_m12).
 * ALGEBRAIC[289] is inaca_INaCaSR_denom4 in component inaca (mol4_per_m12).
 * ALGEBRAIC[290] is inaca_INaCaSR_num in component inaca (A_mol4_per_m14_times_1e_minus_2).
 * ALGEBRAIC[292] is inaca_INaCa_denom1 in component inaca (dimensionless).
 * ALGEBRAIC[293] is inaca_INaCa_denom2 in component inaca (dimensionless).
 * ALGEBRAIC[294] is inaca_INaCa_denom3 in component inaca (mol4_per_m12).
 * ALGEBRAIC[295] is inaca_INaCa_denom4 in component inaca (mol4_per_m12).
 * ALGEBRAIC[296] is inaca_INaCa_num in component inaca (A_mol4_per_m14_times_1e_minus_2).
 * CONSTANTS[140] is kSat in component inaca (dimensionless).
 * CONSTANTS[141] is vMax in component inaca (uA_per_cm2).
 * ALGEBRAIC[303] is INaK in component inak (uA_per_cm2).
 * ALGEBRAIC[301] is INaK_np in component inak (uA_per_cm2).
 * ALGEBRAIC[302] is INaK_p in component inak (uA_per_cm2).
 * CONSTANTS[142] is Ka_inak in component inak (uM).
 * CONSTANTS[143] is Kp_inak in component inak (uM).
 * STATES[115] is f_inak in component inak (dimensionless).
 * ALGEBRAIC[299] is fhat in component inak (dimensionless).
 * CONSTANTS[144] is ibar in component inak (uA_per_cm2).
 * ALGEBRAIC[298] is inak_fhat_val in component inak (dimensionless).
 * CONSTANTS[145] is ka_inak in component inak (hertz).
 * CONSTANTS[146] is km_ko in component inak (mM).
 * CONSTANTS[147] is km_np in component inak (mM).
 * CONSTANTS[148] is km_p in component inak (mM).
 * CONSTANTS[149] is kp_inak in component inak (hertz).
 * ALGEBRAIC[300] is phi in component inak (uA_per_cm2).
 * CONSTANTS[242] is pk in component inak (dimensionless).
 * ALGEBRAIC[363] is INaL in component inal (uA_per_cm2).
 * ALGEBRAIC[361] is INaL_camk in component inal (uA_per_cm2).
 * ALGEBRAIC[362] is INaL_np in component inal (uA_per_cm2).
 * ALGEBRAIC[360] is conductance in component inal (mV).
 * STATES[116] is h in component inal (dimensionless).
 * ALGEBRAIC[25] is h_inf in component inal (dimensionless).
 * ALGEBRAIC[26] is inal_m_alpha in component inal (mS_per_uF).
 * ALGEBRAIC[52] is inal_m_beta in component inal (mS_per_uF).
 * STATES[117] is m in component inal (dimensionless).
 * CONSTANTS[150] is tau_h in component inal (ms).
 * CONSTANTS[151] is IpCa_bar in component ipca (uA_per_cm2).
 * CONSTANTS[152] is Km_pCa in component ipca (mM).
 * ALGEBRAIC[315] is Ileak_ryr in component irel (mM_per_ms).
 * ALGEBRAIC[307] is Ileak_ryr_np in component irel (mM_per_ms).
 * ALGEBRAIC[309] is Ileak_ryr_p in component irel (mM_per_ms).
 * STATES[118] is Irel_np in component irel (mM_per_ms).
 * STATES[119] is Irel_p in component irel (mM_per_ms).
 * CONSTANTS[153] is Km_ryr_leak_np in component irel (mM).
 * CONSTANTS[154] is Km_ryr_leak_p in component irel (mM).
 * ALGEBRAIC[255] is alpha_np in component irel (mM_per_ms).
 * ALGEBRAIC[261] is alpha_p in component irel (mM_per_ms).
 * CONSTANTS[243] is beta_0 in component irel (ms).
 * ALGEBRAIC[252] is beta_np in component irel (ms).
 * ALGEBRAIC[258] is beta_p in component irel (ms).
 * ALGEBRAIC[313] is fhat in component irel (dimensionless).
 * CONSTANTS[398] is irel_fhat_ratio in component irel (dimensionless).
 * ALGEBRAIC[311] is irel_fhat_val in component irel (dimensionless).
 * ALGEBRAIC[271] is irel_inf_np in component irel (mM_per_ms).
 * ALGEBRAIC[272] is irel_inf_p in component irel (mM_per_ms).
 * ALGEBRAIC[265] is irel_tau_np in component irel (ms).
 * ALGEBRAIC[267] is irel_tau_p in component irel (ms).
 * CONSTANTS[155] is k_ryr_leak_np in component irel (mS_per_uF).
 * CONSTANTS[156] is k_ryr_leak_p in component irel (mS_per_uF).
 * ALGEBRAIC[263] is x in component irel (dimensionless).
 * ALGEBRAIC[269] is y in component irel (dimensionless).
 * CONSTANTS[157] is Gbar in component ito (mS_per_cm2).
 * ALGEBRAIC[347] is ITo in component ito (uA_per_cm2).
 * ALGEBRAIC[345] is ITo_camk in component ito (uA_per_cm2).
 * ALGEBRAIC[346] is ITo_np in component ito (uA_per_cm2).
 * ALGEBRAIC[325] is R in component ito (dimensionless).
 * ALGEBRAIC[27] is a_inf in component ito (dimensionless).
 * STATES[120] is a_np in component ito (dimensionless).
 * ALGEBRAIC[77] is a_tau in component ito (ms).
 * ALGEBRAIC[28] is alph_if in component ito (dimensionless).
 * ALGEBRAIC[54] is alph_is in component ito (dimensionless).
 * ALGEBRAIC[66] is beta_i in component ito (mS_per_uF).
 * STATES[121] is if_camk in component ito (dimensionless).
 * STATES[122] is if_np in component ito (dimensionless).
 * STATES[123] is is_camk in component ito (dimensionless).
 * STATES[124] is is_np in component ito (dimensionless).
 * ALGEBRAIC[53] is ito_a_np_alpha in component ito (dimensionless).
 * ALGEBRAIC[65] is ito_a_np_beta in component ito (dimensionless).
 * ALGEBRAIC[78] is ito_if_camk_alpha in component ito (mS_per_uF).
 * ALGEBRAIC[79] is ito_if_np_alpha in component ito (mS_per_uF).
 * ALGEBRAIC[80] is ito_is_camk_alpha in component ito (mS_per_uF).
 * ALGEBRAIC[81] is ito_is_np_alpha in component ito (mS_per_uF).
 * ALGEBRAIC[344] is x in component ito (uA_per_cm2).
 * ALGEBRAIC[308] is Imax in component iup (mM_per_ms).
 * CONSTANTS[158] is Ka_plb in component iup (uM).
 * CONSTANTS[376] is Km_both in component iup (mM).
 * CONSTANTS[369] is Km_camk in component iup (mM).
 * CONSTANTS[159] is Km_np in component iup (mM).
 * CONSTANTS[374] is Km_pka in component iup (mM).
 * ALGEBRAIC[322] is Km_up in component iup (mM).
 * CONSTANTS[160] is Kp_plb in component iup (uM).
 * ALGEBRAIC[306] is f_SERCA2a in component iup (dimensionless).
 * ALGEBRAIC[314] is f_both in component iup (dimensionless).
 * ALGEBRAIC[316] is f_camk_only in component iup (dimensionless).
 * ALGEBRAIC[321] is f_np in component iup (dimensionless).
 * ALGEBRAIC[312] is f_pka in component iup (dimensionless).
 * ALGEBRAIC[318] is f_pka_only in component iup (dimensionless).
 * STATES[125] is f_plb in component iup (dimensionless).
 * ALGEBRAIC[310] is iup_f_pka_val in component iup (dimensionless).
 * CONSTANTS[161] is iupmax in component iup (mM_per_ms).
 * CONSTANTS[379] is iupmaxCAMK in component iup (mM_per_ms).
 * CONSTANTS[162] is ka_plb in component iup (hertz).
 * CONSTANTS[163] is kp_plb in component iup (hertz).
 * ALGEBRAIC[324] is leak in component iup (mM_per_ms).
 * CONSTANTS[164] is nsrmax in component iup (mM).
 * ALGEBRAIC[326] is uptake in component iup (mM_per_ms).
 * ALGEBRAIC[364] is IK_tot in component potassium (uA_per_cm2).
 * ALGEBRAIC[366] is INa_tot in component sodium (uA_per_cm2).
 * ALGEBRAIC[367] is i_ion in component membrane (uA_per_cm2).
 * ALGEBRAIC[368] is i_stim in component stimulus (uA_per_cm2).
 * CONSTANTS[165] is PNaK in component nernst (dimensionless).
 * CONSTANTS[238] is RTF in component phys (mV).
 * STATES[126] is K in component potassium (mM).
 * CONSTANTS[166] is KPDEp in component pde (uM).
 * CONSTANTS[167] is KmIbmxPde2 in component pde (dimensionless).
 * CONSTANTS[168] is KmIbmxPde3 in component pde (dimensionless).
 * CONSTANTS[169] is KmIbmxPde4 in component pde (dimensionless).
 * CONSTANTS[170] is KmPDE2 in component pde (uM).
 * CONSTANTS[171] is KmPDE3 in component pde (uM).
 * CONSTANTS[172] is KmPDE4 in component pde (uM).
 * CONSTANTS[347] is PDE2_cav in component pde (uM).
 * CONSTANTS[348] is PDE2_cyt in component pde (uM).
 * CONSTANTS[349] is PDE2_eca in component pde (uM).
 * CONSTANTS[173] is PDE2_tot in component pde (uM).
 * STATES[127] is PDE3_P_cav in component pde (uM).
 * STATES[128] is PDE3_P_cyt in component pde (uM).
 * CONSTANTS[377] is PDE3_cav in component pde (uM).
 * CONSTANTS[378] is PDE3_cyt in component pde (uM).
 * CONSTANTS[363] is PDE3_tot in component pde (uM).
 * STATES[129] is PDE4_P_cav in component pde (uM).
 * STATES[130] is PDE4_P_cyt in component pde (uM).
 * STATES[131] is PDE4_P_eca in component pde (uM).
 * CONSTANTS[370] is PDE4_cav in component pde (uM).
 * CONSTANTS[371] is PDE4_cyt in component pde (uM).
 * CONSTANTS[372] is PDE4_eca in component pde (uM).
 * CONSTANTS[365] is PDE4_tot in component pde (uM).
 * CONSTANTS[174] is delta_k_pde34 in component pde (dimensionless).
 * CONSTANTS[175] is f_pde2_cav in component pde (dimensionless).
 * CONSTANTS[333] is f_pde2_cyt in component pde (dimensionless).
 * CONSTANTS[176] is f_pde2_eca in component pde (dimensionless).
 * CONSTANTS[334] is f_pde2_part in component pde (dimensionless).
 * CONSTANTS[367] is f_pde3_cav in component pde (dimensionless).
 * CONSTANTS[373] is f_pde3_cyt in component pde (dimensionless).
 * CONSTANTS[177] is f_pde4_cav in component pde (dimensionless).
 * CONSTANTS[339] is f_pde4_cyt in component pde (dimensionless).
 * CONSTANTS[343] is f_pde4_eca in component pde (dimensionless).
 * CONSTANTS[178] is f_pde4_part in component pde (dimensionless).
 * CONSTANTS[179] is f_pde_part in component pde (dimensionless).
 * CONSTANTS[180] is ff_pde3_cyt in component pde (dimensionless).
 * CONSTANTS[181] is h_ibmx_pde2 in component pde (dimensionless).
 * CONSTANTS[182] is h_ibmx_pde3 in component pde (dimensionless).
 * CONSTANTS[183] is h_ibmx_pde4 in component pde (dimensionless).
 * CONSTANTS[184] is ibmx in component pde (uM).
 * CONSTANTS[342] is ibmx2 in component pde (uM).
 * CONSTANTS[375] is ibmx3 in component pde (uM).
 * CONSTANTS[368] is ibmx4 in component pde (uM).
 * CONSTANTS[338] is ibmx_h2 in component pde (dimensionless).
 * CONSTANTS[350] is ibmx_h3 in component pde (dimensionless).
 * CONSTANTS[354] is ibmx_h4 in component pde (dimensionless).
 * CONSTANTS[185] is kPDE2 in component pde (hertz).
 * CONSTANTS[186] is kPDE3 in component pde (hertz).
 * CONSTANTS[187] is kPDE4 in component pde (hertz).
 * CONSTANTS[244] is kbPDEp in component pde (hertz).
 * CONSTANTS[188] is kfPDEp in component pde (per_mM_per_ms).
 * CONSTANTS[359] is pde_PDE3_tot_alpha in component pde (dimensionless).
 * CONSTANTS[361] is pde_PDE3_tot_beta in component pde (dimensionless).
 * CONSTANTS[189] is r_pde34_frac in component pde (dimensionless).
 * CONSTANTS[357] is r_pde3_cyt in component pde (dimensionless).
 * CONSTANTS[190] is R in component phys (mJ_per_mol_per_K).
 * CONSTANTS[191] is T in component phys (kelvin).
 * CONSTANTS[245] is K_pki in component pka (uM).
 * CONSTANTS[335] is PKA_cyt in component pka (uM).
 * CONSTANTS[192] is PKA_tot in component pka (uM).
 * CONSTANTS[344] is PKI_cav in component pka (uM).
 * CONSTANTS[355] is PKI_cyt in component pka (uM).
 * CONSTANTS[351] is PKI_eca in component pka (uM).
 * CONSTANTS[336] is PKI_tot in component pka (uM).
 * CONSTANTS[264] is b_pki in component pka (hertz).
 * CONSTANTS[193] is f_cav in component pka (dimensionless).
 * CONSTANTS[327] is f_cyt in component pka (dimensionless).
 * CONSTANTS[194] is f_eca in component pka (dimensionless).
 * CONSTANTS[195] is f_pki in component pka (per_mM_per_ms).
 * CONSTANTS[340] is f_pki_cav in component pka (dimensionless).
 * CONSTANTS[352] is f_pki_cyt in component pka (dimensionless).
 * CONSTANTS[345] is f_pki_eca in component pka (dimensionless).
 * STATES[132] is A2R in component pka_cav (uM).
 * STATES[133] is A2RC in component pka_cav (uM).
 * STATES[134] is ARC in component pka_cav (uM).
 * CONSTANTS[196] is K1 in component pka_cav (uM).
 * CONSTANTS[197] is K2 in component pka_cav (uM).
 * CONSTANTS[198] is K3 in component pka_cav (m3_per_mol_times_1e3).
 * STATES[135] is PKIC in component pka_cav (uM).
 * ALGEBRAIC[140] is RCf in component pka_cav (uM).
 * CONSTANTS[246] is b1 in component pka_cav (hertz).
 * CONSTANTS[247] is b2 in component pka_cav (hertz).
 * CONSTANTS[248] is b3 in component pka_cav (per_mM_per_ms).
 * CONSTANTS[199] is f1 in component pka_cav (per_mM_per_ms).
 * CONSTANTS[200] is f2 in component pka_cav (per_mM_per_ms).
 * CONSTANTS[201] is f3 in component pka_cav (hertz).
 * STATES[136] is A2R in component pka_cyt (uM).
 * STATES[137] is A2RC in component pka_cyt (uM).
 * STATES[138] is ARC in component pka_cyt (uM).
 * CONSTANTS[202] is K1 in component pka_cyt (uM).
 * CONSTANTS[203] is K2 in component pka_cyt (uM).
 * CONSTANTS[204] is K3 in component pka_cyt (m3_per_mol_times_1e3).
 * STATES[139] is PKIC in component pka_cyt (uM).
 * ALGEBRAIC[150] is RCf in component pka_cyt (uM).
 * CONSTANTS[265] is b1 in component pka_cyt (hertz).
 * CONSTANTS[266] is b2 in component pka_cyt (hertz).
 * CONSTANTS[267] is b3 in component pka_cyt (per_mM_per_ms).
 * CONSTANTS[249] is f1 in component pka_cyt (per_mM_per_ms).
 * CONSTANTS[250] is f2 in component pka_cyt (per_mM_per_ms).
 * CONSTANTS[251] is f3 in component pka_cyt (hertz).
 * STATES[140] is A2R in component pka_eca (uM).
 * STATES[141] is A2RC in component pka_eca (uM).
 * STATES[142] is ARC in component pka_eca (uM).
 * CONSTANTS[252] is K1 in component pka_eca (uM).
 * CONSTANTS[253] is K2 in component pka_eca (uM).
 * CONSTANTS[254] is K3 in component pka_eca (m3_per_mol_times_1e3).
 * STATES[143] is PKIC in component pka_eca (uM).
 * ALGEBRAIC[130] is RCf in component pka_eca (uM).
 * CONSTANTS[276] is b1 in component pka_eca (hertz).
 * CONSTANTS[277] is b2 in component pka_eca (hertz).
 * CONSTANTS[278] is b3 in component pka_eca (per_mM_per_ms).
 * CONSTANTS[268] is f1 in component pka_eca (per_mM_per_ms).
 * CONSTANTS[269] is f2 in component pka_eca (per_mM_per_ms).
 * CONSTANTS[270] is f3 in component pka_eca (hertz).
 * CONSTANTS[406] is potassium_K_r1 in component potassium (mol_per_m_per_s_per_A_times_1e5).
 * CONSTANTS[205] is K in component pp1 (uM).
 * CONSTANTS[206] is Kdp in component pp1 (uM).
 * CONSTANTS[207] is Kp in component pp1 (uM).
 * CONSTANTS[208] is PP1_cyt in component pp1 (uM).
 * ALGEBRAIC[29] is di in component pp1 (uM).
 * CONSTANTS[209] is f in component pp1 (dimensionless).
 * STATES[144] is inhib1_p in component pp1 (uM).
 * CONSTANTS[255] is inhib1_tot in component pp1 (uM).
 * CONSTANTS[210] is kdp in component pp1 (hertz).
 * CONSTANTS[211] is kp in component pp1 (hertz).
 * ALGEBRAIC[198] is pp1_PP1f_cyt_sum in component pp1 (uM).
 * ALGEBRAIC[365] is INa_cyt in component sodium (uA_per_cm2).
 * CONSTANTS[407] is sodium_Na_r1 in component sodium (mol_per_m_per_s_per_A_times_1e5).
 * CONSTANTS[408] is sodium_Na_r2 in component sodium (dimensionless).
 * CONSTANTS[409] is sodium_Na_sr_r1 in component sodium (mol_per_m_per_s_per_A_times_1e5).
 * CONSTANTS[256] is amplitude in component stimulus (uA_per_cm2).
 * CONSTANTS[212] is duration in component stimulus (ms).
 * CONSTANTS[213] is offset in component stimulus (ms).
 * CONSTANTS[214] is period in component stimulus (ms).
 * RATES[4] is d/dt ICaLp in component akap_sig (uM).
 * RATES[5] is d/dt RyRp in component akap_sig (uM).
 * RATES[7] is d/dt Gi_aGDP in component beta_cav (uM).
 * RATES[8] is d/dt Gi_aGTP in component beta_cav (uM).
 * RATES[0] is d/dt Gi_bg in component beta_cav (uM).
 * RATES[9] is d/dt Gs_aGDP in component beta_cav (uM).
 * RATES[1] is d/dt Gs_aGTP in component beta_cav (uM).
 * RATES[10] is d/dt Gs_bg in component beta_cav (uM).
 * RATES[11] is d/dt Rb1_grk_tot in component beta_cav (uM).
 * RATES[12] is d/dt Rb1_pka_tot in component beta_cav (uM).
 * RATES[13] is d/dt Rb2_grk_tot in component beta_cav (uM).
 * RATES[14] is d/dt Rb2_pka_tot in component beta_cav (uM).
 * RATES[15] is d/dt Gs_aGDP in component beta_cyt (uM).
 * RATES[2] is d/dt Gs_aGTP in component beta_cyt (uM).
 * RATES[16] is d/dt Gs_bg in component beta_cyt (uM).
 * RATES[17] is d/dt Rb1_grk_tot in component beta_cyt (uM).
 * RATES[18] is d/dt Rb1_pka_tot in component beta_cyt (uM).
 * RATES[20] is d/dt Gi_aGDP in component beta_eca (uM).
 * RATES[21] is d/dt Gi_aGTP in component beta_eca (uM).
 * RATES[22] is d/dt Gi_bg in component beta_eca (uM).
 * RATES[23] is d/dt Gs_aGDP in component beta_eca (uM).
 * RATES[3] is d/dt Gs_aGTP in component beta_eca (uM).
 * RATES[24] is d/dt Gs_bg in component beta_eca (uM).
 * RATES[25] is d/dt Rb1_grk_tot in component beta_eca (uM).
 * RATES[26] is d/dt Rb1_pka_tot in component beta_eca (uM).
 * RATES[27] is d/dt Rb2_grk_tot in component beta_eca (uM).
 * RATES[28] is d/dt Rb2_pka_tot in component beta_eca (uM).
 * RATES[30] is d/dt Ca_nsr in component calcium (mM).
 * RATES[31] is d/dt f_tni in component calcium (dimensionless).
 * RATES[32] is d/dt uCa in component calcium (mM).
 * RATES[33] is d/dt uCa_CaL in component calcium (mM).
 * RATES[34] is d/dt uCa_jsr in component calcium (mM).
 * RATES[35] is d/dt uCa_sr in component calcium (mM).
 * RATES[36] is d/dt f_ical in component camk (dimensionless).
 * RATES[37] is d/dt f_ik1 in component camk (dimensionless).
 * RATES[38] is d/dt f_ina in component camk (dimensionless).
 * RATES[39] is d/dt f_ito in component camk (dimensionless).
 * RATES[40] is d/dt f_plb in component camk (dimensionless).
 * RATES[41] is d/dt f_ryr in component camk (dimensionless).
 * RATES[42] is d/dt trap in component camk (dimensionless).
 * RATES[43] is d/dt cAMP_cav in component camp (uM).
 * RATES[44] is d/dt cAMP_cyt in component camp (uM).
 * RATES[45] is d/dt cAMP_eca in component camp (uM).
 * RATES[46] is d/dt Cl in component chloride (mM).
 * RATES[47] is d/dt Cl_sr in component chloride (mM).
 * RATES[51] is d/dt C in component ical_camk (dimensionless).
 * RATES[52] is d/dt CI in component ical_camk (dimensionless).
 * RATES[53] is d/dt CIs in component ical_camk (dimensionless).
 * RATES[54] is d/dt Cs in component ical_camk (dimensionless).
 * RATES[55] is d/dt O in component ical_camk (dimensionless).
 * RATES[56] is d/dt OI in component ical_camk (dimensionless).
 * RATES[57] is d/dt OIs in component ical_camk (dimensionless).
 * RATES[58] is d/dt Os in component ical_camk (dimensionless).
 * RATES[59] is d/dt C in component ical_np (dimensionless).
 * RATES[60] is d/dt CI in component ical_np (dimensionless).
 * RATES[61] is d/dt CIs in component ical_np (dimensionless).
 * RATES[62] is d/dt Cs in component ical_np (dimensionless).
 * RATES[63] is d/dt O in component ical_np (dimensionless).
 * RATES[64] is d/dt OI in component ical_np (dimensionless).
 * RATES[65] is d/dt OIs in component ical_np (dimensionless).
 * RATES[66] is d/dt Os in component ical_np (dimensionless).
 * RATES[67] is d/dt i2 in component iclca (dimensionless).
 * RATES[68] is d/dt ac in component ikr (dimensionless).
 * RATES[73] is d/dt C1 in component iks_np (dimensionless).
 * RATES[74] is d/dt C10 in component iks_np (dimensionless).
 * RATES[75] is d/dt C11 in component iks_np (dimensionless).
 * RATES[76] is d/dt C12 in component iks_np (dimensionless).
 * RATES[77] is d/dt C13 in component iks_np (dimensionless).
 * RATES[78] is d/dt C14 in component iks_np (dimensionless).
 * RATES[79] is d/dt C15 in component iks_np (dimensionless).
 * RATES[80] is d/dt C2 in component iks_np (dimensionless).
 * RATES[81] is d/dt C3 in component iks_np (dimensionless).
 * RATES[82] is d/dt C4 in component iks_np (dimensionless).
 * RATES[83] is d/dt C5 in component iks_np (dimensionless).
 * RATES[84] is d/dt C6 in component iks_np (dimensionless).
 * RATES[85] is d/dt C7 in component iks_np (dimensionless).
 * RATES[86] is d/dt C8 in component iks_np (dimensionless).
 * RATES[87] is d/dt C9 in component iks_np (dimensionless).
 * RATES[69] is d/dt O1 in component iks_np (dimensionless).
 * RATES[70] is d/dt O2 in component iks_np (dimensionless).
 * RATES[88] is d/dt C1 in component iks_pka (dimensionless).
 * RATES[89] is d/dt C10 in component iks_pka (dimensionless).
 * RATES[90] is d/dt C11 in component iks_pka (dimensionless).
 * RATES[91] is d/dt C12 in component iks_pka (dimensionless).
 * RATES[92] is d/dt C13 in component iks_pka (dimensionless).
 * RATES[93] is d/dt C14 in component iks_pka (dimensionless).
 * RATES[94] is d/dt C15 in component iks_pka (dimensionless).
 * RATES[95] is d/dt C2 in component iks_pka (dimensionless).
 * RATES[96] is d/dt C3 in component iks_pka (dimensionless).
 * RATES[97] is d/dt C4 in component iks_pka (dimensionless).
 * RATES[98] is d/dt C5 in component iks_pka (dimensionless).
 * RATES[99] is d/dt C6 in component iks_pka (dimensionless).
 * RATES[100] is d/dt C7 in component iks_pka (dimensionless).
 * RATES[101] is d/dt C8 in component iks_pka (dimensionless).
 * RATES[102] is d/dt C9 in component iks_pka (dimensionless).
 * RATES[71] is d/dt O1 in component iks_pka (dimensionless).
 * RATES[72] is d/dt O2 in component iks_pka (dimensionless).
 * RATES[103] is d/dt IKsp in component iks_sig (uM).
 * RATES[104] is d/dt f_ikur in component ikur (dimensionless).
 * RATES[105] is d/dt f_ina in component ina (dimensionless).
 * RATES[106] is d/dt h in component ina_camk (dimensionless).
 * RATES[107] is d/dt j in component ina_camk (dimensionless).
 * RATES[108] is d/dt m in component ina_camk (dimensionless).
 * RATES[109] is d/dt h in component ina_np (dimensionless).
 * RATES[110] is d/dt j in component ina_np (dimensionless).
 * RATES[111] is d/dt m in component ina_np (dimensionless).
 * RATES[112] is d/dt h in component ina_pka (dimensionless).
 * RATES[113] is d/dt j in component ina_pka (dimensionless).
 * RATES[114] is d/dt m in component ina_pka (dimensionless).
 * RATES[115] is d/dt f_inak in component inak (dimensionless).
 * RATES[116] is d/dt h in component inal (dimensionless).
 * RATES[117] is d/dt m in component inal (dimensionless).
 * RATES[118] is d/dt Irel_np in component irel (mM_per_ms).
 * RATES[119] is d/dt Irel_p in component irel (mM_per_ms).
 * RATES[120] is d/dt a_np in component ito (dimensionless).
 * RATES[121] is d/dt if_camk in component ito (dimensionless).
 * RATES[122] is d/dt if_np in component ito (dimensionless).
 * RATES[123] is d/dt is_camk in component ito (dimensionless).
 * RATES[124] is d/dt is_np in component ito (dimensionless).
 * RATES[125] is d/dt f_plb in component iup (dimensionless).
 * RATES[50] is d/dt V in component membrane (mV).
 * RATES[127] is d/dt PDE3_P_cav in component pde (uM).
 * RATES[128] is d/dt PDE3_P_cyt in component pde (uM).
 * RATES[129] is d/dt PDE4_P_cav in component pde (uM).
 * RATES[130] is d/dt PDE4_P_cyt in component pde (uM).
 * RATES[131] is d/dt PDE4_P_eca in component pde (uM).
 * RATES[132] is d/dt A2R in component pka_cav (uM).
 * RATES[133] is d/dt A2RC in component pka_cav (uM).
 * RATES[134] is d/dt ARC in component pka_cav (uM).
 * RATES[6] is d/dt C in component pka_cav (uM).
 * RATES[135] is d/dt PKIC in component pka_cav (uM).
 * RATES[136] is d/dt A2R in component pka_cyt (uM).
 * RATES[137] is d/dt A2RC in component pka_cyt (uM).
 * RATES[138] is d/dt ARC in component pka_cyt (uM).
 * RATES[19] is d/dt C in component pka_cyt (uM).
 * RATES[139] is d/dt PKIC in component pka_cyt (uM).
 * RATES[140] is d/dt A2R in component pka_eca (uM).
 * RATES[141] is d/dt A2RC in component pka_eca (uM).
 * RATES[142] is d/dt ARC in component pka_eca (uM).
 * RATES[29] is d/dt C in component pka_eca (uM).
 * RATES[143] is d/dt PKIC in component pka_eca (uM).
 * RATES[126] is d/dt K in component potassium (mM).
 * RATES[144] is d/dt inhib1_p in component pp1 (uM).
 * RATES[48] is d/dt Na in component sodium (mM).
 * RATES[49] is d/dt Na_sr in component sodium (mM).
 */
void
initConsts(double* CONSTANTS, double* RATES, double *STATES)
{
CONSTANTS[0] = 5000.0;
CONSTANTS[1] = 315.0;
CONSTANTS[2] = 0.0465;
CONSTANTS[3] = 0.031544;
CONSTANTS[4] = 0.0852;
CONSTANTS[5] = 0.4824;
CONSTANTS[6] = 3.3757;
CONSTANTS[7] = 41.32;
CONSTANTS[8] = 0.03135;
CONSTANTS[9] = 0.037696;
STATES[0] = 2.09911481235842013e-3;
STATES[1] = 6.85041638458664965e-3;
STATES[2] = 7.31420577213055985e-4;
STATES[3] = 1.84627603007976003e-2;
CONSTANTS[10] = 0.16479;
CONSTANTS[11] = 0.087459;
CONSTANTS[12] = 1.0043;
CONSTANTS[13] = 1.3574;
CONSTANTS[14] = 0.6623;
CONSTANTS[15] = 0.8569;
CONSTANTS[16] = 0.025;
CONSTANTS[17] = 0.025;
STATES[4] = 6.73713947839316954e-4;
CONSTANTS[18] = 1.27019999999999993e-6;
CONSTANTS[19] = 6.62979999999999944e-5;
CONSTANTS[20] = 0.01;
CONSTANTS[21] = 0.0063064;
CONSTANTS[22] = 0.043003;
CONSTANTS[23] = 0.01;
CONSTANTS[24] = 0.0001;
CONSTANTS[25] = 0.0001;
CONSTANTS[26] = 0.01;
CONSTANTS[27] = 0.01;
CONSTANTS[28] = 0.25;
CONSTANTS[29] = 0.125;
CONSTANTS[30] = 0.125;
STATES[5] = 4.10693810508170991e-3;
CONSTANTS[31] = 5.10090000000000044e-4;
CONSTANTS[32] = 0.0025548;
CONSTANTS[33] = 0.0006903;
CONSTANTS[34] = 0.0038257;
STATES[6] = 3.26565916584702978e-02;
CONSTANTS[35] = 0.5;
CONSTANTS[36] = 0.85;
CONSTANTS[37] = 0.0011071;
CONSTANTS[38] = 0.5664;
CONSTANTS[39] = 0.081161;
CONSTANTS[40] = 0.48744;
CONSTANTS[41] = 0.85;
CONSTANTS[42] = 4.0;
CONSTANTS[43] = 4.9054;
CONSTANTS[44] = 0.05;
CONSTANTS[45] = 0.25945;
CONSTANTS[46] = 2.449;
CONSTANTS[47] = 0.062;
CONSTANTS[48] = 0.567;
CONSTANTS[49] = 1.6655;
CONSTANTS[50] = 1.8463;
CONSTANTS[51] = 0.1;
CONSTANTS[52] = 0.012;
CONSTANTS[53] = 1.053;
CONSTANTS[54] = 1.053;
CONSTANTS[55] = 0.8;
CONSTANTS[56] = 1210.0;
CONSTANTS[57] = 0.35;
CONSTANTS[58] = 1.0;
STATES[7] = 5.02792845976641014e-4;
STATES[8] = 1.59632196638178009e-3;
STATES[9] = 6.07316088556675987e-4;
STATES[10] = 7.45773247314215036e-3;
STATES[11] = 2.49592854373432000e-10;
STATES[12] = 1.49041813757830998e-2;
STATES[13] = 8.91799633266019011e-10;
STATES[14] = 2.75455839709412009e-2;
CONSTANTS[59] = 0.0;
CONSTANTS[60] = 1.0;
CONSTANTS[61] = 1.0;
STATES[15] = 4.19991861054322011e-4;
STATES[16] = 1.15141243826746994e-3;
STATES[17] = 7.07824478944670999e-11;
STATES[18] = 9.44463350378085993e-3;
STATES[19] = 3.62113356111495976e-01;
CONSTANTS[62] = 1.0;
STATES[20] = 3.41341142614041016e-4;
STATES[21] = 3.64315164237569004e-4;
STATES[22] = 7.05656306851923029e-4;
STATES[23] = 6.39038440072506948e-4;
STATES[24] = 1.91017987408719017e-2;
STATES[25] = 1.18055788874765002e-9;
STATES[26] = 2.03016833596287999e-1;
STATES[27] = 1.13428924662652000e-10;
STATES[28] = 1.10248953370551007e-2;
CONSTANTS[63] = 1.0;
STATES[29] = 5.67249910261072965e-01;
STATES[30] = 1.191;
CONSTANTS[64] = 2.71430000000000008e-5;
CONSTANTS[65] = 0.26714;
CONSTANTS[66] = 1.0;
CONSTANTS[67] = 1.124;
CONSTANTS[68] = 0.0087;
CONSTANTS[69] = 0.047;
CONSTANTS[70] = 0.00087;
CONSTANTS[71] = 0.05;
CONSTANTS[72] = 10.0;
CONSTANTS[73] = 0.8;
STATES[31] = 6.73518785672381992e-1;
CONSTANTS[74] = 0.10408;
CONSTANTS[75] = 0.00238;
CONSTANTS[76] = 0.052633;
CONSTANTS[77] = 0.0005;
CONSTANTS[78] = 0.07;
STATES[32] = 0.013394;
STATES[33] = 0.023413;
STATES[34] = 6.8659;
STATES[35] = 0.023413;
CONSTANTS[79] = 0.05;
CONSTANTS[80] = 0.25;
CONSTANTS[81] = 0.0015;
CONSTANTS[82] = 0.1;
CONSTANTS[83] = 0.05;
CONSTANTS[84] = 0.00068;
STATES[36] = 0.0;
STATES[37] = 0.0;
STATES[38] = 0.0;
STATES[39] = 0.0;
STATES[40] = 0.0;
STATES[41] = 0.0;
CONSTANTS[85] = 100000.0;
CONSTANTS[86] = 10000.0;
STATES[42] = 0.0017546;
STATES[43] = 3.47102959606005013e-1;
STATES[44] = 4.74081735738210996e-1;
STATES[45] = 9.62359241535767040e+00;
CONSTANTS[87] = 96487.0;
CONSTANTS[88] = 0.01;
CONSTANTS[89] = 3.14159265358979312e+00;
CONSTANTS[90] = 0.0011;
STATES[46] = 20.273;
STATES[47] = 20.273;
CONSTANTS[91] = 1.77e-5;
CONSTANTS[92] = 87.8251;
CONSTANTS[93] = 2.46108000000000016e-5;
STATES[48] = 6.8909;
STATES[49] = 6.8909;
CONSTANTS[94] = 0.2;
CONSTANTS[95] = 0.02;
CONSTANTS[96] = 75.0;
CONSTANTS[97] = 1.8;
CONSTANTS[98] = 100.0;
CONSTANTS[99] = 5.4;
CONSTANTS[100] = 140.0;
STATES[50] = -87.491;
CONSTANTS[101] = 1.995e-07;
STATES[51] = 1.0;
STATES[52] = 0.0;
STATES[53] = 0.0;
STATES[54] = 0.0;
STATES[55] = 0.0;
STATES[56] = 0.0;
STATES[57] = 0.0;
STATES[58] = 0.0;
CONSTANTS[102] = 1.0;
CONSTANTS[103] = 1e-06;
STATES[59] = 1.0;
STATES[60] = 0.0;
STATES[61] = 0.0;
STATES[62] = 0.0;
STATES[63] = 0.0;
STATES[64] = 0.0;
STATES[65] = 0.0;
STATES[66] = 0.0;
CONSTANTS[104] = 1.0;
CONSTANTS[105] = 1e-06;
CONSTANTS[106] = 0.000225;
CONSTANTS[107] = 9e-07;
STATES[67] = 0.99604;
CONSTANTS[108] = 0.4;
CONSTANTS[109] = 8.0;
STATES[68] = 1.23059999999999995e-08;
CONSTANTS[110] = 0.025;
STATES[69] = 9.37220000000000071e-16;
STATES[70] = 1.65950000000000014e-17;
STATES[71] = 1.12010000000000000e-15;
STATES[72] = 1.66129999999999997e-18;
STATES[73] = 0.91141;
STATES[74] = 5.36959999999999959e-07;
STATES[75] = 2.48610000000000001e-08;
STATES[76] = 2.87759999999999997e-10;
STATES[77] = 1.12169999999999999e-10;
STATES[78] = 2.59670000000000003e-12;
STATES[79] = 8.78740000000000076e-15;
STATES[80] = 0.084395;
STATES[81] = 0.0029306;
STATES[82] = 4.52285000000000024e-05;
STATES[83] = 2.61750000000000024e-07;
STATES[84] = 0.0011424;
STATES[85] = 7.93370000000000029e-05;
STATES[86] = 1.83659999999999992e-06;
STATES[87] = 1.41719999999999995e-08;
CONSTANTS[111] = 0.0027304;
STATES[88] = 0.95624;
STATES[89] = 3.19559999999999984e-07;
STATES[90] = 7.039e-09;
STATES[91] = 3.87629999999999971e-11;
STATES[92] = 5.02769999999999999e-11;
STATES[93] = 5.53740000000000021e-13;
STATES[94] = 2.96639999999999984e-15;
STATES[95] = 0.042127;
STATES[96] = 6.95969999999999965e-04;
STATES[97] = 5.11010000000000042e-06;
STATES[98] = 1.407e-08;
STATES[99] = 9.02690000000000046e-04;
STATES[100] = 2.98259999999999987e-05;
STATES[101] = 3.285e-07;
STATES[102] = 1.206e-09;
CONSTANTS[112] = 0.0046171;
STATES[103] = 7.65988420110534033e-04;
CONSTANTS[113] = 0.01;
CONSTANTS[114] = 9.97940000000000003e-05;
CONSTANTS[115] = 1.11470000000000002e-04;
CONSTANTS[116] = 0.0001;
CONSTANTS[117] = 0.01;
CONSTANTS[118] = 0.025;
CONSTANTS[119] = 0.16305;
CONSTANTS[120] = 1.0542;
CONSTANTS[121] = 0.27623;
CONSTANTS[122] = 0.002331;
STATES[104] = 5.89379755147717982e-02;
CONSTANTS[123] = 0.00384;
CONSTANTS[124] = 0.069537;
CONSTANTS[125] = 0.317;
CONSTANTS[126] = 0.10988;
CONSTANTS[127] = 7.8605;
STATES[105] = 2.39479458960527997e-01;
STATES[106] = 0.83805;
STATES[107] = 0.99281;
STATES[108] = 6.81269999999999988e-04;
STATES[109] = 0.0068172;
STATES[110] = 0.99709;
STATES[111] = 0.90163;
STATES[112] = 0.001236;
STATES[113] = 0.99123;
STATES[114] = 0.79472;
CONSTANTS[128] = 0.01368;
CONSTANTS[129] = 0.052811;
CONSTANTS[130] = 3.25;
CONSTANTS[131] = 3.7;
CONSTANTS[132] = 4.9;
CONSTANTS[133] = 3.2e-09;
CONSTANTS[134] = 0.000125;
CONSTANTS[135] = 0.0036;
CONSTANTS[136] = 1.3;
CONSTANTS[137] = 12.3;
CONSTANTS[138] = 87.5;
CONSTANTS[139] = 0.27;
CONSTANTS[140] = 0.32;
CONSTANTS[141] = 4.5;
CONSTANTS[142] = 0.0011001;
CONSTANTS[143] = 5.7392;
STATES[115] = 1.26345311579565994e-01;
CONSTANTS[144] = 1.4;
CONSTANTS[145] = 0.015265;
CONSTANTS[146] = 1.5;
CONSTANTS[147] = 2.6;
CONSTANTS[148] = 1.846;
CONSTANTS[149] = 0.092455;
STATES[116] = 0.36003;
STATES[117] = 0.0007053;
CONSTANTS[150] = 600.0;
CONSTANTS[151] = 0.0575;
CONSTANTS[152] = 0.0005;
STATES[118] = 3.66750000000000000e-09;
STATES[119] = 7.30739999999999981e-09;
CONSTANTS[153] = 20.0;
CONSTANTS[154] = 1.1;
CONSTANTS[155] = 0.000175;
CONSTANTS[156] = 0.0005;
CONSTANTS[157] = 0.4975;
STATES[120] = 1.76869999999999985e-05;
STATES[121] = 1.0;
STATES[122] = 0.99798;
STATES[123] = 1.0;
STATES[124] = 0.98747;
CONSTANTS[158] = 9.88539999999999992e-04;
CONSTANTS[159] = 0.00092;
CONSTANTS[160] = 0.80737;
STATES[125] = 5.92167467082830967e-01;
CONSTANTS[161] = 0.004375;
CONSTANTS[162] = 0.11348;
CONSTANTS[163] = 0.48302;
CONSTANTS[164] = 15.0;
CONSTANTS[165] = 0.01833;
STATES[126] = 145.62;
CONSTANTS[166] = 0.52218;
CONSTANTS[167] = 21.58;
CONSTANTS[168] = 2.642;
CONSTANTS[169] = 11.89;
CONSTANTS[170] = 50.0;
CONSTANTS[171] = 0.8;
CONSTANTS[172] = 1.4;
CONSTANTS[173] = 0.029268;
STATES[127] = 2.36821659448036986e-02;
STATES[128] = 1.28402905095187994e-02;
STATES[129] = 6.37363047239019025e-03;
STATES[130] = 9.17039986149184062e-03;
STATES[131] = 4.29171113639321980e-05;
CONSTANTS[174] = 3.0;
CONSTANTS[175] = 0.16957;
CONSTANTS[176] = 2.12570000000000006e-04;
CONSTANTS[177] = 0.12481;
CONSTANTS[178] = 0.125;
CONSTANTS[179] = 0.2;
CONSTANTS[180] = 0.35;
CONSTANTS[181] = 1.167;
CONSTANTS[182] = 0.7629;
CONSTANTS[183] = 0.9024;
CONSTANTS[184] = 0.0;
CONSTANTS[185] = 20.0;
CONSTANTS[186] = 2.5;
CONSTANTS[187] = 4.0;
CONSTANTS[188] = 0.0196;
CONSTANTS[189] = 3.71;
CONSTANTS[190] = 8314.0;
CONSTANTS[191] = 310.0;
CONSTANTS[192] = 0.5;
CONSTANTS[193] = 0.0388;
CONSTANTS[194] = 0.1;
CONSTANTS[195] = 50.0;
STATES[132] = 2.25475702283052998e-01;
STATES[133] = 2.76490711096605019e-03;
STATES[134] = 9.04820284659604013e-02;
CONSTANTS[196] = 2.4984;
CONSTANTS[197] = 11.359;
CONSTANTS[198] = 0.3755;
STATES[135] = 1.92819110624504991e-01;
CONSTANTS[199] = 100.0;
CONSTANTS[200] = 100.0;
CONSTANTS[201] = 100.0;
STATES[136] = 4.89063888619455989e-01;
STATES[137] = 6.64997605558790977e-02;
STATES[138] = 6.46928309115710060e-02;
CONSTANTS[202] = 0.1088;
CONSTANTS[203] = 0.4612;
CONSTANTS[204] = 0.3755;
STATES[139] = 1.26950532507959013e-01;
STATES[140] = 8.17161796756963987e-01;
STATES[141] = 1.74057375932567010e-01;
STATES[142] = 2.05444874210056000e-01;
STATES[143] = 2.49911886495889995e-01;
CONSTANTS[205] = 0.001;
CONSTANTS[206] = 1.95259999999999991e-05;
CONSTANTS[207] = 0.001469;
CONSTANTS[208] = 0.2;
CONSTANTS[209] = 0.3;
STATES[144] = 2.82662056977524001e-02;
CONSTANTS[210] = 0.0035731;
CONSTANTS[211] = 0.010145;
CONSTANTS[212] = 0.5;
CONSTANTS[213] = 100.0;
CONSTANTS[214] = 1000.0;
CONSTANTS[215] = 1.00000 - CONSTANTS[36];
CONSTANTS[216] = (1.00000 - CONSTANTS[37]) - CONSTANTS[38];
CONSTANTS[217] =  CONSTANTS[57]*0.000983300;
CONSTANTS[218] =  CONSTANTS[57]*0.00133000;
CONSTANTS[219] = CONSTANTS[55];
CONSTANTS[220] =  CONSTANTS[57]*0.00650000;
CONSTANTS[221] = CONSTANTS[56];
CONSTANTS[222] = ( (CONSTANTS[51]+CONSTANTS[59])*(CONSTANTS[54]+CONSTANTS[59]))/CONSTANTS[54];
CONSTANTS[223] =  ( ( CONSTANTS[48]*CONSTANTS[53])*(CONSTANTS[47]+CONSTANTS[59]))*(CONSTANTS[52]+CONSTANTS[59]);
CONSTANTS[224] = ( (CONSTANTS[47]+CONSTANTS[59])*(CONSTANTS[48]+CONSTANTS[59]))/CONSTANTS[48];
CONSTANTS[225] = ( (CONSTANTS[51]+CONSTANTS[59])*(CONSTANTS[54]+CONSTANTS[59]))/CONSTANTS[54];
CONSTANTS[226] =  ( ( CONSTANTS[48]*CONSTANTS[53])*(CONSTANTS[47]+CONSTANTS[59]))*(CONSTANTS[52]+CONSTANTS[59]);
CONSTANTS[227] = CONSTANTS[0]/(CONSTANTS[1]+CONSTANTS[0]);
CONSTANTS[228] = CONSTANTS[69]+CONSTANTS[67];
CONSTANTS[229] =  1.50000*CONSTANTS[77];
CONSTANTS[230] =  CONSTANTS[70]*CONSTANTS[68];
CONSTANTS[231] = CONSTANTS[86];
CONSTANTS[232] = CONSTANTS[85];
CONSTANTS[233] = CONSTANTS[85];
CONSTANTS[234] = CONSTANTS[85];
CONSTANTS[235] =  7.50000e-14*1.00000e+06;
CONSTANTS[236] =  5.00000e-15*1.00000e+06;
CONSTANTS[237] =  9.00000e-15*1.00000e+06;
CONSTANTS[238] = ( CONSTANTS[190]*CONSTANTS[191])/CONSTANTS[87];
CONSTANTS[239] =  0.500000* pow((CONSTANTS[99]/5.40000), 1.0 / 2);
CONSTANTS[240] =  0.0138542* pow((CONSTANTS[99]/5.40000), 1.0 / 2);
CONSTANTS[241] =  ( 2.15000*8.25000)*1.10000;
CONSTANTS[242] = CONSTANTS[99]/(CONSTANTS[99]+CONSTANTS[146]);
CONSTANTS[243] =  0.666700*4.75000;
CONSTANTS[244] =  CONSTANTS[166]*CONSTANTS[188];
CONSTANTS[245] = 0.0100000/50.0000;
CONSTANTS[246] =  CONSTANTS[199]*CONSTANTS[196];
CONSTANTS[247] =  CONSTANTS[200]*CONSTANTS[197];
CONSTANTS[248] =  CONSTANTS[201]*CONSTANTS[198];
CONSTANTS[249] = CONSTANTS[199];
CONSTANTS[250] = CONSTANTS[200];
CONSTANTS[251] = CONSTANTS[201];
CONSTANTS[252] = CONSTANTS[196];
CONSTANTS[253] = CONSTANTS[197];
CONSTANTS[254] = CONSTANTS[198];
CONSTANTS[255] =  (CONSTANTS[209]/(1.00000 - CONSTANTS[209]))*CONSTANTS[205]+ CONSTANTS[209]*CONSTANTS[208];
CONSTANTS[256] = - 80.0000;
CONSTANTS[257] =  0.156290*CONSTANTS[220];
CONSTANTS[258] =  ( ( ( CONSTANTS[46]*CONSTANTS[47])*CONSTANTS[53])*(CONSTANTS[52]+CONSTANTS[59]))*(CONSTANTS[48]+CONSTANTS[59]);
CONSTANTS[259] =  ( ( ( CONSTANTS[46]*CONSTANTS[47])*CONSTANTS[53])*(CONSTANTS[52]+CONSTANTS[59]))*(CONSTANTS[48]+CONSTANTS[59]);
CONSTANTS[260] = 1.00000/(1.00000+0.350000);
CONSTANTS[261] = CONSTANTS[70]+CONSTANTS[68];
CONSTANTS[262] = ( CONSTANTS[69]*CONSTANTS[68]+ CONSTANTS[67]*CONSTANTS[70])+CONSTANTS[230];
CONSTANTS[263] = 1.00000/CONSTANTS[238];
CONSTANTS[264] =  CONSTANTS[195]*CONSTANTS[245];
CONSTANTS[265] =  CONSTANTS[249]*CONSTANTS[202];
CONSTANTS[266] =  CONSTANTS[250]*CONSTANTS[203];
CONSTANTS[267] =  CONSTANTS[251]*CONSTANTS[204];
CONSTANTS[268] = CONSTANTS[199];
CONSTANTS[269] = CONSTANTS[200];
CONSTANTS[270] = CONSTANTS[201];
CONSTANTS[271] =  ( ( ( CONSTANTS[50]*CONSTANTS[52])*CONSTANTS[48])*(CONSTANTS[47]+CONSTANTS[59]))*(CONSTANTS[53]+CONSTANTS[59]);
CONSTANTS[272] =  ( ( ( CONSTANTS[50]*CONSTANTS[52])*CONSTANTS[48])*(CONSTANTS[47]+CONSTANTS[59]))*(CONSTANTS[53]+CONSTANTS[59]);
CONSTANTS[273] = 1.00000+(CONSTANTS[16] - CONSTANTS[17])/CONSTANTS[24];
CONSTANTS[274] = CONSTANTS[228]+CONSTANTS[261];
CONSTANTS[275] =  CONSTANTS[87]*CONSTANTS[263];
CONSTANTS[276] =  CONSTANTS[268]*CONSTANTS[252];
CONSTANTS[277] =  CONSTANTS[269]*CONSTANTS[253];
CONSTANTS[278] =  CONSTANTS[270]*CONSTANTS[254];
CONSTANTS[279] =  ( ( ( ( CONSTANTS[46]*CONSTANTS[50])*CONSTANTS[47])*CONSTANTS[52])*(CONSTANTS[48]+CONSTANTS[59]))*(CONSTANTS[53]+CONSTANTS[59]);
CONSTANTS[280] =  ( ( ( ( CONSTANTS[46]*CONSTANTS[50])*CONSTANTS[47])*CONSTANTS[52])*(CONSTANTS[48]+CONSTANTS[59]))*(CONSTANTS[53]+CONSTANTS[59]);
CONSTANTS[281] =  (CONSTANTS[24]/2.00000)*( pow((pow(CONSTANTS[273], 2.00000)+( 4.00000*CONSTANTS[17])/CONSTANTS[24]), 1.0 / 2) - CONSTANTS[273]);
CONSTANTS[282] = (((CONSTANTS[16]+CONSTANTS[29])+CONSTANTS[20])+CONSTANTS[23]) - CONSTANTS[28];
CONSTANTS[283] = (( CONSTANTS[16]*CONSTANTS[23]+ CONSTANTS[29]*CONSTANTS[20])+ CONSTANTS[20]*CONSTANTS[23]) -  CONSTANTS[28]*(CONSTANTS[20]+CONSTANTS[23]);
CONSTANTS[284] =  ( CONSTANTS[28]*CONSTANTS[20])*CONSTANTS[23];
CONSTANTS[285] = ((( (- CONSTANTS[284]/27.0000)*pow(CONSTANTS[282], 3.00000) - ( ( ( CONSTANTS[282]*CONSTANTS[282])*CONSTANTS[283])*CONSTANTS[283])/108.000)+( ( CONSTANTS[282]*CONSTANTS[283])*CONSTANTS[284])/6.00000)+pow(CONSTANTS[283], 3.00000)/27.0000)+( CONSTANTS[284]*CONSTANTS[284])/4.00000;
CONSTANTS[286] = (CONSTANTS[285]<0.00000 ?  pow(- CONSTANTS[285], 1.0 / 2) : 0.00000);
CONSTANTS[287] = (((CONSTANTS[285]>0.00000 ?  pow(CONSTANTS[285], 1.0 / 2) : 0.00000)+CONSTANTS[284]/2.00000)+( CONSTANTS[282]*CONSTANTS[283])/6.00000) - pow(CONSTANTS[282], 3.00000)/27.0000;
CONSTANTS[288] = atan(CONSTANTS[286]/CONSTANTS[287])/3.00000;
CONSTANTS[289] = pow( CONSTANTS[287]*CONSTANTS[287]+ CONSTANTS[286]*CONSTANTS[286], 1.00000/6.00000);
CONSTANTS[290] = (CONSTANTS[283]/3.00000 - ( CONSTANTS[282]*CONSTANTS[282])/9.00000)/( CONSTANTS[289]*CONSTANTS[289]);
CONSTANTS[291] =  ( CONSTANTS[289]*cos(CONSTANTS[288]))*(1.00000 - CONSTANTS[290]) - CONSTANTS[282]/3.00000;
CONSTANTS[292] = 1.00000+(CONSTANTS[29] - CONSTANTS[30])/CONSTANTS[25];
CONSTANTS[293] =  (CONSTANTS[25]/2.00000)*( pow((pow(CONSTANTS[292], 2.00000)+( 4.00000*CONSTANTS[30])/CONSTANTS[25]), 1.0 / 2) - CONSTANTS[292]);
CONSTANTS[294] =  0.850000*0.0250000;
CONSTANTS[295] =  224.000*CONSTANTS[294];
CONSTANTS[296] =  3.00000*CONSTANTS[294];
CONSTANTS[297] =  0.150000*0.0250000;
CONSTANTS[298] = (1.00000 - CONSTANTS[39]) - CONSTANTS[40];
CONSTANTS[299] = 1.00000 - CONSTANTS[41];
CONSTANTS[300] =  ( ( 2.00000*CONSTANTS[89])*CONSTANTS[90])*(CONSTANTS[90]+CONSTANTS[88]);
CONSTANTS[301] =  2.00000*CONSTANTS[300];
CONSTANTS[302] = CONSTANTS[301]/CONSTANTS[87];
CONSTANTS[303] =  ( ( ( 1000.00*CONSTANTS[89])*CONSTANTS[90])*CONSTANTS[90])*CONSTANTS[88];
CONSTANTS[304] =  CONSTANTS[303]*0.00200000;
CONSTANTS[305] = CONSTANTS[302]/( 2.00000*CONSTANTS[304]);
CONSTANTS[306] =  0.0200000*CONSTANTS[303];
CONSTANTS[307] =  CONSTANTS[303]*0.678000;
CONSTANTS[308] = CONSTANTS[302]/( 2.00000*CONSTANTS[307]);
CONSTANTS[309] =  0.0400000*CONSTANTS[303];
CONSTANTS[310] =  CONSTANTS[303]*0.00480000;
CONSTANTS[311] =  CONSTANTS[303]*0.0552000;
CONSTANTS[312] = CONSTANTS[310]/CONSTANTS[311];
CONSTANTS[313] = CONSTANTS[311]/CONSTANTS[307];
CONSTANTS[314] =  CONSTANTS[303]*0.0200000;
CONSTANTS[315] = CONSTANTS[314]/CONSTANTS[304];
CONSTANTS[316] = - CONSTANTS[302]/CONSTANTS[314];
CONSTANTS[317] = - CONSTANTS[310]/CONSTANTS[314];
CONSTANTS[318] = CONSTANTS[314]/CONSTANTS[307];
CONSTANTS[319] = CONSTANTS[303]/CONSTANTS[306];
CONSTANTS[320] =  ( ( CONSTANTS[11]*CONSTANTS[260])*CONSTANTS[296])*CONSTANTS[319];
CONSTANTS[321] = CONSTANTS[303]/CONSTANTS[307];
CONSTANTS[322] =  ( CONSTANTS[39]*CONSTANTS[294])*CONSTANTS[319];
CONSTANTS[323] =  ( CONSTANTS[41]*CONSTANTS[297])*CONSTANTS[319];
CONSTANTS[324] =  ( ( (1.00000 - CONSTANTS[10])*(1.00000 - CONSTANTS[260]))*CONSTANTS[296])*CONSTANTS[321];
CONSTANTS[325] =  ( CONSTANTS[298]*CONSTANTS[294])*CONSTANTS[321];
CONSTANTS[326] = CONSTANTS[303]/CONSTANTS[309];
CONSTANTS[327] = (1.00000 - CONSTANTS[193]) - CONSTANTS[194];
CONSTANTS[328] =  ( ( (1.00000 - CONSTANTS[11])*CONSTANTS[260])*CONSTANTS[296])*CONSTANTS[321];
CONSTANTS[329] =  ( ( CONSTANTS[10]*(1.00000 - CONSTANTS[260]))*CONSTANTS[296])*CONSTANTS[326];
CONSTANTS[330] =  ( CONSTANTS[40]*CONSTANTS[294])*CONSTANTS[326];
CONSTANTS[331] =  ( CONSTANTS[299]*CONSTANTS[297])*CONSTANTS[326];
CONSTANTS[332] = CONSTANTS[302]/CONSTANTS[307];
CONSTANTS[333] = (1.00000 - CONSTANTS[175]) - CONSTANTS[176];
CONSTANTS[334] = CONSTANTS[175]+CONSTANTS[176];
CONSTANTS[335] =  ( CONSTANTS[327]*CONSTANTS[192])*CONSTANTS[321];
CONSTANTS[336] =  0.200000*CONSTANTS[192];
CONSTANTS[337] = CONSTANTS[314]/CONSTANTS[307];
CONSTANTS[338] = pow( CONSTANTS[184]*1.00000, CONSTANTS[181]);
CONSTANTS[339] = 1.00000 - CONSTANTS[178];
CONSTANTS[340] = CONSTANTS[193];
CONSTANTS[341] = CONSTANTS[302]/CONSTANTS[314];
CONSTANTS[342] =  (1.00000 - CONSTANTS[338]/(CONSTANTS[167]+CONSTANTS[338]))*CONSTANTS[173];
CONSTANTS[343] = CONSTANTS[178] - CONSTANTS[177];
CONSTANTS[344] =  ( CONSTANTS[340]*CONSTANTS[336])*CONSTANTS[319];
CONSTANTS[345] = CONSTANTS[194];
CONSTANTS[346] = pow(87.8251, 4.00000);
CONSTANTS[347] =  ( CONSTANTS[342]*CONSTANTS[175])*CONSTANTS[319];
CONSTANTS[348] =  ( CONSTANTS[342]*CONSTANTS[333])*CONSTANTS[321];
CONSTANTS[349] =  ( CONSTANTS[342]*CONSTANTS[176])*CONSTANTS[326];
CONSTANTS[350] = pow( CONSTANTS[184]*1.00000, CONSTANTS[182]);
CONSTANTS[351] =  ( CONSTANTS[345]*CONSTANTS[336])*CONSTANTS[326];
CONSTANTS[352] = (1.00000 - CONSTANTS[340]) - CONSTANTS[345];
CONSTANTS[353] = 1.00000+(CONSTANTS[118] - CONSTANTS[110])/CONSTANTS[116];
CONSTANTS[354] = pow( CONSTANTS[184]*1.00000, CONSTANTS[183]);
CONSTANTS[355] =  ( CONSTANTS[352]*CONSTANTS[336])*CONSTANTS[321];
CONSTANTS[356] =  (CONSTANTS[116]/2.00000)*( pow((pow(CONSTANTS[353], 2.00000)+( 4.00000*CONSTANTS[110])/CONSTANTS[116]), 1.0 / 2) - CONSTANTS[353]);
CONSTANTS[357] = CONSTANTS[180]/(1.00000 - CONSTANTS[180]);
CONSTANTS[358] = 1.00000+(CONSTANTS[118] - CONSTANTS[82])/CONSTANTS[113];
CONSTANTS[359] =  CONSTANTS[357]*( CONSTANTS[178]*(((1.00000+CONSTANTS[189]) -  CONSTANTS[189]*CONSTANTS[334]) - CONSTANTS[179])+ CONSTANTS[334]*(CONSTANTS[179] - 1.00000))+ ( CONSTANTS[189]*CONSTANTS[178])*(CONSTANTS[179] - CONSTANTS[334]);
CONSTANTS[360] =  (CONSTANTS[113]/2.00000)*( pow((pow(CONSTANTS[358], 2.00000)+( 4.00000*CONSTANTS[82])/CONSTANTS[113]), 1.0 / 2) - CONSTANTS[358]);
CONSTANTS[361] =  CONSTANTS[178]*((1.00000+CONSTANTS[189])+ CONSTANTS[179]*(CONSTANTS[357] - CONSTANTS[189])) -  CONSTANTS[179]*(1.00000+CONSTANTS[357]);
CONSTANTS[362] = pow(CONSTANTS[137], 3.00000);
CONSTANTS[363] =  (CONSTANTS[359]/CONSTANTS[361])*CONSTANTS[173];
CONSTANTS[364] = pow(CONSTANTS[138], 3.00000);
CONSTANTS[365] = ( (CONSTANTS[179] - CONSTANTS[334])*CONSTANTS[173]+ CONSTANTS[179]*CONSTANTS[363])/( (1.00000+CONSTANTS[189])*CONSTANTS[178] - CONSTANTS[179]);
CONSTANTS[366] = pow(CONSTANTS[100], 3.00000);
CONSTANTS[367] = ( ( CONSTANTS[189]*CONSTANTS[178])*CONSTANTS[365])/CONSTANTS[363];
CONSTANTS[368] =  (1.00000 - CONSTANTS[354]/(CONSTANTS[169]+CONSTANTS[354]))*CONSTANTS[365];
CONSTANTS[369] = CONSTANTS[159] - 0.000170000;
CONSTANTS[370] =  ( CONSTANTS[368]*CONSTANTS[177])*CONSTANTS[319];
CONSTANTS[371] =  ( CONSTANTS[368]*CONSTANTS[339])*CONSTANTS[321];
CONSTANTS[372] =  ( CONSTANTS[368]*CONSTANTS[343])*CONSTANTS[326];
CONSTANTS[373] = 1.00000 - CONSTANTS[367];
CONSTANTS[374] =  CONSTANTS[159]*(1.00000 - 0.460000);
CONSTANTS[375] =  (1.00000 - CONSTANTS[350]/(CONSTANTS[168]+CONSTANTS[350]))*CONSTANTS[363];
CONSTANTS[376] = CONSTANTS[374];
CONSTANTS[377] =  ( CONSTANTS[375]*CONSTANTS[367])*CONSTANTS[319];
CONSTANTS[378] =  ( CONSTANTS[375]*CONSTANTS[373])*CONSTANTS[321];
CONSTANTS[379] =  3.25000*CONSTANTS[161];
CONSTANTS[380] =  ( CONSTANTS[193]*CONSTANTS[192])*CONSTANTS[319];
CONSTANTS[381] = (((CONSTANTS[16]+CONSTANTS[29])+CONSTANTS[26])+CONSTANTS[27]) - CONSTANTS[380];
CONSTANTS[382] = (( CONSTANTS[16]*CONSTANTS[27]+ CONSTANTS[29]*CONSTANTS[26])+ CONSTANTS[26]*CONSTANTS[27]) -  CONSTANTS[380]*(CONSTANTS[26]+CONSTANTS[27]);
CONSTANTS[383] =  ( CONSTANTS[380]*CONSTANTS[26])*CONSTANTS[27];
CONSTANTS[384] = ((( (- CONSTANTS[383]/27.0000)*pow(CONSTANTS[381], 3.00000) - ( ( ( CONSTANTS[381]*CONSTANTS[381])*CONSTANTS[382])*CONSTANTS[382])/108.000)+( ( CONSTANTS[381]*CONSTANTS[382])*CONSTANTS[383])/6.00000)+pow(CONSTANTS[382], 3.00000)/27.0000)+( CONSTANTS[383]*CONSTANTS[383])/4.00000;
CONSTANTS[385] = (CONSTANTS[384]<0.00000 ?  pow(- CONSTANTS[384], 1.0 / 2) : 0.00000);
CONSTANTS[386] = (((CONSTANTS[384]>0.00000 ?  pow(CONSTANTS[384], 1.0 / 2) : 0.00000)+CONSTANTS[383]/2.00000)+( CONSTANTS[381]*CONSTANTS[382])/6.00000) - pow(CONSTANTS[381], 3.00000)/27.0000;
CONSTANTS[387] = atan(CONSTANTS[385]/CONSTANTS[386])/3.00000;
CONSTANTS[388] = pow( CONSTANTS[386]*CONSTANTS[386]+ CONSTANTS[385]*CONSTANTS[385], 1.00000/6.00000);
CONSTANTS[389] = (CONSTANTS[382]/3.00000 - ( CONSTANTS[381]*CONSTANTS[381])/9.00000)/( CONSTANTS[388]*CONSTANTS[388]);
CONSTANTS[390] =  ( CONSTANTS[388]*cos(CONSTANTS[387]))*(1.00000 - CONSTANTS[389]) - CONSTANTS[381]/3.00000;
CONSTANTS[391] = ((CONSTANTS[16] - CONSTANTS[17])+CONSTANTS[281])/( (CONSTANTS[291]/CONSTANTS[20]+1.00000)*(CONSTANTS[390]/CONSTANTS[26]+1.00000));
CONSTANTS[392] = ( ( CONSTANTS[281]*CONSTANTS[391])*CONSTANTS[390])/( CONSTANTS[24]*CONSTANTS[26]);
CONSTANTS[393] = ( CONSTANTS[392]*CONSTANTS[291])/CONSTANTS[20];
CONSTANTS[394] = ((CONSTANTS[29] - CONSTANTS[30])+CONSTANTS[293])/( (CONSTANTS[291]/CONSTANTS[23]+1.00000)*(CONSTANTS[390]/CONSTANTS[27]+1.00000));
CONSTANTS[395] = ( ( CONSTANTS[293]*CONSTANTS[394])*CONSTANTS[390])/( CONSTANTS[25]*CONSTANTS[27]);
CONSTANTS[396] = ( CONSTANTS[395]*CONSTANTS[291])/CONSTANTS[23];
CONSTANTS[397] = 0.0269000+CONSTANTS[392]/CONSTANTS[17];
CONSTANTS[398] = 0.0329000+CONSTANTS[395]/CONSTANTS[30];
CONSTANTS[399] =  ( CONSTANTS[194]*CONSTANTS[192])*CONSTANTS[326];
CONSTANTS[400] = 1.00000+(CONSTANTS[118] - CONSTANTS[399])/CONSTANTS[117];
CONSTANTS[401] =  (CONSTANTS[117]/2.00000)*( pow((pow(CONSTANTS[400], 2.00000)+( 4.00000*CONSTANTS[399])/CONSTANTS[117]), 1.0 / 2) - CONSTANTS[400]);
CONSTANTS[402] = ((CONSTANTS[118] - CONSTANTS[110])+CONSTANTS[356])/( (1.00000+CONSTANTS[360]/CONSTANTS[113])*(1.00000+CONSTANTS[401]/CONSTANTS[117]));
CONSTANTS[403] = ( ( CONSTANTS[356]*CONSTANTS[402])*CONSTANTS[401])/( CONSTANTS[116]*CONSTANTS[117]);
CONSTANTS[404] = 0.0306000+CONSTANTS[403]/CONSTANTS[110];
CONSTANTS[405] = ( CONSTANTS[403]*CONSTANTS[360])/CONSTANTS[113];
CONSTANTS[406] = - CONSTANTS[302]/CONSTANTS[307];
CONSTANTS[407] = - CONSTANTS[302]/CONSTANTS[307];
CONSTANTS[408] = CONSTANTS[314]/CONSTANTS[307];
CONSTANTS[409] = ( 3.00000*CONSTANTS[302])/CONSTANTS[314];
}
void
computeRates(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
RATES[7] =  0.00100000*( CONSTANTS[219]*STATES[8] -  ( CONSTANTS[221]*STATES[0])*STATES[7]);
RATES[9] =  0.00100000*( CONSTANTS[55]*STATES[1] -  ( CONSTANTS[56]*STATES[10])*STATES[9]);
RATES[15] =  0.00100000*( CONSTANTS[55]*STATES[2] -  ( CONSTANTS[56]*STATES[16])*STATES[15]);
RATES[20] =  0.00100000*( CONSTANTS[219]*STATES[21] -  ( CONSTANTS[221]*STATES[22])*STATES[20]);
RATES[23] =  0.00100000*( CONSTANTS[55]*STATES[3] -  ( CONSTANTS[56]*STATES[24])*STATES[23]);
RATES[31] =  0.00100000*(( ( CONSTANTS[74]*STATES[19])*(1.00000 - STATES[31]))/(CONSTANTS[64]+ (1.00000 - STATES[31])*1.00000) - ( ( CONSTANTS[76]*CONSTANTS[66])*STATES[31])/(CONSTANTS[65]+ STATES[31]*1.00000));
RATES[104] =  0.00100000*(( ( CONSTANTS[124]*STATES[29])*(1.00000 - STATES[104]))/(CONSTANTS[121]+ (1.00000 - STATES[104])*1.00000) - ( ( CONSTANTS[125]*CONSTANTS[82])*STATES[104])/(CONSTANTS[122]+ STATES[104]*1.00000));
RATES[105] =  0.00100000*(( ( CONSTANTS[128]*STATES[6])*(1.00000 - STATES[105]))/(CONSTANTS[126]+ (1.00000 - STATES[105])*1.00000) - ( ( CONSTANTS[129]*CONSTANTS[28])*STATES[105])/(CONSTANTS[127]+ STATES[105]*1.00000));
RATES[115] =  0.00100000*(( ( CONSTANTS[145]*STATES[6])*(1.00000 - STATES[115]))/(CONSTANTS[142]+ (1.00000 - STATES[115])*1.00000) - ( ( CONSTANTS[149]*CONSTANTS[28])*STATES[115])/(CONSTANTS[143]+ STATES[115]*1.00000));
RATES[127] =  0.00100000*( ( CONSTANTS[188]*STATES[6])*(CONSTANTS[377] - STATES[127]) -  CONSTANTS[244]*STATES[127]);
RATES[128] =  0.00100000*( ( CONSTANTS[188]*STATES[19])*(CONSTANTS[378] - STATES[128]) -  CONSTANTS[244]*STATES[128]);
RATES[129] =  0.00100000*( ( CONSTANTS[188]*STATES[6])*(CONSTANTS[370] - STATES[129]) -  CONSTANTS[244]*STATES[129]);
RATES[130] =  0.00100000*( ( CONSTANTS[188]*STATES[19])*(CONSTANTS[371] - STATES[130]) -  CONSTANTS[244]*STATES[130]);
RATES[131] =  0.00100000*( ( CONSTANTS[188]*STATES[29])*(CONSTANTS[372] - STATES[131]) -  CONSTANTS[244]*STATES[131]);
RATES[132] =  0.00100000*( CONSTANTS[201]*STATES[133] -  ( CONSTANTS[248]*STATES[132])*STATES[6]);
RATES[133] =  0.00100000*(( ( CONSTANTS[200]*STATES[134])*STATES[43] -  (CONSTANTS[247]+CONSTANTS[201])*STATES[133])+ ( CONSTANTS[248]*STATES[132])*STATES[6]);
RATES[6] =  0.00100000*((( CONSTANTS[201]*STATES[133] -  ( CONSTANTS[248]*STATES[132])*STATES[6])+ CONSTANTS[264]*STATES[135]) -  ( CONSTANTS[195]*(CONSTANTS[344] - STATES[135]))*STATES[6]);
RATES[135] =  0.00100000*( ( CONSTANTS[195]*(CONSTANTS[344] - STATES[135]))*STATES[6] -  CONSTANTS[264]*STATES[135]);
RATES[136] =  0.00100000*( CONSTANTS[251]*STATES[137] -  ( CONSTANTS[267]*STATES[136])*STATES[19]);
RATES[137] =  0.00100000*(( ( CONSTANTS[250]*STATES[138])*STATES[44] -  (CONSTANTS[266]+CONSTANTS[251])*STATES[137])+ ( CONSTANTS[267]*STATES[136])*STATES[19]);
RATES[19] =  0.00100000*((( CONSTANTS[251]*STATES[137] -  ( CONSTANTS[267]*STATES[136])*STATES[19])+ CONSTANTS[264]*STATES[139]) -  ( CONSTANTS[195]*(CONSTANTS[355] - STATES[139]))*STATES[19]);
RATES[139] =  0.00100000*( ( CONSTANTS[195]*(CONSTANTS[355] - STATES[139]))*STATES[19] -  CONSTANTS[264]*STATES[139]);
RATES[140] =  0.00100000*( CONSTANTS[270]*STATES[141] -  ( CONSTANTS[278]*STATES[140])*STATES[29]);
RATES[141] =  0.00100000*(( ( CONSTANTS[269]*STATES[142])*STATES[45] -  (CONSTANTS[277]+CONSTANTS[270])*STATES[141])+ ( CONSTANTS[278]*STATES[140])*STATES[29]);
RATES[29] =  0.00100000*((( CONSTANTS[270]*STATES[141] -  ( CONSTANTS[278]*STATES[140])*STATES[29])+ CONSTANTS[264]*STATES[143]) -  ( CONSTANTS[195]*(CONSTANTS[351] - STATES[143]))*STATES[29]);
RATES[143] =  0.00100000*( ( CONSTANTS[195]*(CONSTANTS[351] - STATES[143]))*STATES[29] -  CONSTANTS[264]*STATES[143]);
ALGEBRAIC[3] = CONSTANTS[393] - STATES[4];
RATES[4] =  0.00100000*(( ( CONSTANTS[31]*STATES[6])*ALGEBRAIC[3])/(CONSTANTS[18]+ALGEBRAIC[3]) - ( ( CONSTANTS[33]*CONSTANTS[28])*STATES[4])/(CONSTANTS[21]+STATES[4]));
ALGEBRAIC[4] = CONSTANTS[396] - STATES[5];
RATES[5] =  0.00100000*(( ( CONSTANTS[32]*STATES[6])*ALGEBRAIC[4])/(CONSTANTS[19]+ALGEBRAIC[4]) - ( ( CONSTANTS[34]*CONSTANTS[28])*STATES[5])/(CONSTANTS[22]+STATES[5]));
ALGEBRAIC[15] = CONSTANTS[405] - STATES[103];
RATES[103] =  0.00100000*(( ( CONSTANTS[119]*STATES[29])*ALGEBRAIC[15])/(CONSTANTS[114]+ALGEBRAIC[15]) - ( ( CONSTANTS[120]*CONSTANTS[82])*STATES[103])/(CONSTANTS[115]+STATES[103]));
ALGEBRAIC[25] = 1.00000/(1.00000+exp((STATES[50]+91.0000)/6.10000));
RATES[116] = (ALGEBRAIC[25] - STATES[116])/CONSTANTS[150];
ALGEBRAIC[29] = CONSTANTS[255] - STATES[144];
RATES[144] =  0.00100000*(( ( CONSTANTS[211]*STATES[19])*ALGEBRAIC[29])/(CONSTANTS[207]+ALGEBRAIC[29]) - ( ( CONSTANTS[210]*CONSTANTS[66])*STATES[144])/(CONSTANTS[206]+STATES[144]));
ALGEBRAIC[33] = (CONSTANTS[322] - STATES[12]) - STATES[11];
RATES[12] =  0.00100000*( ( CONSTANTS[220]*STATES[6])*ALGEBRAIC[33] -  CONSTANTS[257]*STATES[12]);
ALGEBRAIC[35] = (CONSTANTS[325] - STATES[18]) - STATES[17];
RATES[18] =  0.00100000*( ( CONSTANTS[220]*STATES[19])*ALGEBRAIC[35] -  CONSTANTS[257]*STATES[18]);
ALGEBRAIC[36] = (CONSTANTS[330] - STATES[26]) - STATES[25];
RATES[26] =  0.00100000*( ( CONSTANTS[220]*STATES[29])*ALGEBRAIC[36] -  CONSTANTS[257]*STATES[26]);
ALGEBRAIC[11] = 0.0250000/(1.00000+exp((STATES[50]+58.0000)/5.00000));
ALGEBRAIC[39] = 0.200000/(1.00000+exp((STATES[50]+19.0000)/- 9.00000));
RATES[67] = (ALGEBRAIC[11]/(ALGEBRAIC[11]+ALGEBRAIC[39]) - STATES[67])/CONSTANTS[109];
ALGEBRAIC[12] = 1.00000/(( 0.000600000*(STATES[50] - 1.73840))/(1.00000 - exp( - 0.136000*(STATES[50] - 1.73840))) - ( 0.000300000*(STATES[50]+38.3608))/(1.00000 - exp( 0.152200*(STATES[50]+38.3608))));
ALGEBRAIC[40] = 1.00000/(1.00000+exp((STATES[50]+10.0850)/- 4.25000));
RATES[68] = (ALGEBRAIC[40] - STATES[68])/ALGEBRAIC[12];
ALGEBRAIC[13] = 0.00739900/(1.00000+exp(( CONSTANTS[263]*(STATES[50] - 0.0311960))/- 0.800190));
ALGEBRAIC[41] = 0.00569920/(1.00000+exp(( CONSTANTS[263]*(STATES[50] - 0.0415200))/1.34890));
RATES[73] =  ALGEBRAIC[41]*STATES[80] -  STATES[73]*( 4.00000*ALGEBRAIC[13]);
ALGEBRAIC[14] = 0.00994150/(1.00000+exp(( CONSTANTS[263]*(STATES[50] - 0.0448090))/- 0.581720));
ALGEBRAIC[42] = 0.00332010/(1.00000+exp(( CONSTANTS[263]*(STATES[50] - 0.0942170))/0.953640));
RATES[88] =  ALGEBRAIC[42]*STATES[95] -  STATES[88]*( 4.00000*ALGEBRAIC[14]);
ALGEBRAIC[16] = (STATES[50]+CONSTANTS[130]>=- 40.0000 ? 0.00000 :  0.135000*exp(((87.0000+STATES[50])+CONSTANTS[130])/- 6.80000));
ALGEBRAIC[43] = (STATES[50]+CONSTANTS[130]>=- 40.0000 ? 1.00000/( 0.130000*(1.00000+exp(((STATES[50]+CONSTANTS[130])+27.4034)/- 11.1000))) :  3.56000*exp( 0.0790000*((STATES[50]+CONSTANTS[130])+7.00000))+ 310000.*exp( 0.350000*((STATES[50]+CONSTANTS[130])+7.00000)));
RATES[106] =  ALGEBRAIC[16]*(1.00000 - STATES[106]) -  ALGEBRAIC[43]*STATES[106];
ALGEBRAIC[17] = (STATES[50]+CONSTANTS[130]>=- 40.0000 ? 0.00000 : ( ( - 127140.*exp( 0.244400*(STATES[50]+CONSTANTS[130]))+ - 6.94800e-05*exp( - 0.0439100*(STATES[50]+CONSTANTS[130])))*((STATES[50]+CONSTANTS[130])+37.7800))/(1.00000+exp( 0.311000*((STATES[50]+CONSTANTS[130])+79.2300))));
ALGEBRAIC[44] = (STATES[50]+CONSTANTS[130]>=- 40.0000 ? ( 0.300000*exp( - 2.53500e-07*(STATES[50]+CONSTANTS[130])))/(1.00000+exp( - 0.100000*((STATES[50]+CONSTANTS[130])+32.0000))) : ( 0.121200*exp( - 0.0105200*(STATES[50]+CONSTANTS[130])))/(1.00000+exp( - 0.137800*((STATES[50]+CONSTANTS[130])+40.1400))));
RATES[107] =  ALGEBRAIC[17]*(1.00000 - STATES[107]) -  ALGEBRAIC[44]*STATES[107];
ALGEBRAIC[18] = ( 0.320000*(STATES[50]+58.4729))/(1.00000 - exp( - 0.100000*(STATES[50]+58.4729)));
ALGEBRAIC[45] =  0.0800000*exp((13.7299 - STATES[50])/11.0000);
RATES[108] =  ALGEBRAIC[18]*(1.00000 - STATES[108]) -  ALGEBRAIC[45]*STATES[108];
ALGEBRAIC[19] = (STATES[50]>=- 40.0000 ? 0.00000 :  0.135000*exp((87.0000+STATES[50])/- 6.80000));
ALGEBRAIC[46] = (STATES[50]>=- 40.0000 ? 1.00000/( 0.130000*(1.00000+exp((STATES[50]+27.4034)/- 11.1000))) :  3.56000*exp( 0.0790000*(STATES[50]+7.00000))+ 310000.*exp( 0.350000*(STATES[50]+7.00000)));
RATES[109] =  ALGEBRAIC[19]*(1.00000 - STATES[109]) -  ALGEBRAIC[46]*STATES[109];
ALGEBRAIC[20] = (STATES[50]>=- 40.0000 ? 0.00000 : ( ( - 127140.*exp( 0.244400*STATES[50]) -  6.94800e-05*exp( - 0.0439100*STATES[50]))*(STATES[50]+37.7800))/(1.00000+exp( 0.311000*(STATES[50]+79.2300))));
ALGEBRAIC[47] = (STATES[50]>=- 40.0000 ? ( 0.300000*exp( - 2.53500e-07*STATES[50]))/(1.00000+exp( - 0.100000*(STATES[50]+32.0000))) : ( 0.121200*exp( - 0.0105200*STATES[50]))/(1.00000+exp( - 0.137800*(STATES[50]+40.1400))));
RATES[110] =  ALGEBRAIC[20]*(1.00000 - STATES[110]) -  ALGEBRAIC[47]*STATES[110];
ALGEBRAIC[21] = ( 0.320000*(STATES[50]+58.4729))/(1.00000 - exp( - 0.100000*(STATES[50]+58.4729)));
ALGEBRAIC[48] =  0.0800000*exp((13.7299 - STATES[50])/11.0000);
RATES[111] =  ALGEBRAIC[21]*(1.00000 - STATES[111]) -  ALGEBRAIC[48]*STATES[111];
ALGEBRAIC[22] = (STATES[50]>=- 40.0000 ? 0.00000 :  0.135000*exp(((87.0000+STATES[50])+CONSTANTS[132])/- 6.80000));
ALGEBRAIC[49] = (STATES[50]>=- 40.0000 ? (1.00000/0.130000)/(1.00000+exp(((STATES[50]+CONSTANTS[132])+27.4034)/- 11.1000)) :  3.56000*exp( 0.0790000*((STATES[50]+CONSTANTS[132])+7.00000))+ 310000.*exp( 0.350000*((STATES[50]+CONSTANTS[132])+7.00000)));
RATES[112] =  ALGEBRAIC[22]*(1.00000 - STATES[112]) -  ALGEBRAIC[49]*STATES[112];
ALGEBRAIC[23] = (STATES[50]>=- 40.0000 ? 0.00000 : ( ( - 127140.*exp( 0.244400*(STATES[50]+CONSTANTS[132])) -  6.94800e-05*exp( - 0.0439100*(STATES[50]+CONSTANTS[132])))*((STATES[50]+CONSTANTS[132])+37.7800))/(1.00000+exp( 0.311000*((STATES[50]+CONSTANTS[132])+79.2300))));
ALGEBRAIC[50] = (STATES[50]>=- 40.0000 ? ( 0.300000*exp( - 2.53500e-07*(STATES[50]+CONSTANTS[132])))/(1.00000+exp( - 0.100000*((STATES[50]+CONSTANTS[132])+32.0000))) : ( 0.121200*exp( - 0.0105200*(STATES[50]+CONSTANTS[132])))/(1.00000+exp( - 0.137800*((STATES[50]+CONSTANTS[132])+40.1400))));
RATES[113] =  ALGEBRAIC[23]*(1.00000 - STATES[113]) -  ALGEBRAIC[50]*STATES[113];
ALGEBRAIC[24] = ( 0.320000*((STATES[50]+CONSTANTS[131])+58.4729))/(1.00000 - exp( - 0.100000*((STATES[50]+CONSTANTS[131])+58.4729)));
ALGEBRAIC[51] =  0.0800000*exp(((STATES[50]+CONSTANTS[131]) - 13.7299)/- 11.0000);
RATES[114] =  ALGEBRAIC[24]*(1.00000 - STATES[114]) -  ALGEBRAIC[51]*STATES[114];
ALGEBRAIC[26] = ( 0.320000*(STATES[50]+47.1300))/(1.00000 - exp( - 0.100000*(STATES[50]+47.1300)));
ALGEBRAIC[52] =  0.0800000*exp(STATES[50]/- 11.0000);
RATES[117] =  ALGEBRAIC[26]*(1.00000 - STATES[117]) -  ALGEBRAIC[52]*STATES[117];
ALGEBRAIC[57] = (CONSTANTS[323] - STATES[14]) - STATES[13];
RATES[14] =  0.00100000*( ( CONSTANTS[220]*STATES[6])*ALGEBRAIC[57] -  CONSTANTS[257]*STATES[14]);
ALGEBRAIC[60] = (CONSTANTS[331] - STATES[28]) - STATES[27];
RATES[28] =  0.00100000*( ( CONSTANTS[220]*STATES[29])*ALGEBRAIC[60] -  CONSTANTS[257]*STATES[28]);
ALGEBRAIC[27] = 1.00000/(1.00000+exp((STATES[50]+9.43700)/- 7.13300));
ALGEBRAIC[53] = 1.00000/(1.00000+exp((STATES[50] - 18.4099)/- 29.3814));
ALGEBRAIC[65] = 1.00000/(1.00000+exp((STATES[50]+100.000)/29.3814));
ALGEBRAIC[77] = 1.00000/(ALGEBRAIC[53]/1.20890+ 3.50000*ALGEBRAIC[65]);
RATES[120] = (ALGEBRAIC[27] - STATES[120])/ALGEBRAIC[77];
ALGEBRAIC[66] = ((1.00000/(1.00000+exp((STATES[50]+19.0000)/- 9.00000)))/0.500000)/9.79530;
ALGEBRAIC[28] = 1.00000/(1.00000+exp((STATES[50]+58.0000)/5.00000));
ALGEBRAIC[78] =  0.0479600*ALGEBRAIC[28];
RATES[121] =  ALGEBRAIC[78]*(1.00000 - STATES[121]) -  ALGEBRAIC[66]*STATES[121];
ALGEBRAIC[79] =  0.0214400*ALGEBRAIC[28];
RATES[122] =  ALGEBRAIC[79]*(1.00000 - STATES[122]) -  ALGEBRAIC[66]*STATES[122];
ALGEBRAIC[54] = (1.00000/(1.00000+exp((STATES[50]+60.0000)/5.00000)))/250.000;
ALGEBRAIC[80] =  2.46000*ALGEBRAIC[54];
RATES[123] =  ALGEBRAIC[80]*(1.00000 - STATES[123]) -  ALGEBRAIC[66]*STATES[123];
ALGEBRAIC[81] =  0.560340*ALGEBRAIC[54];
RATES[124] =  ALGEBRAIC[81]*(1.00000 - STATES[124]) -  ALGEBRAIC[66]*STATES[124];
ALGEBRAIC[63] =  0.0906540*exp( ( - 0.111570*STATES[50])*CONSTANTS[263]);
ALGEBRAIC[91] = 0.388390/(1.00000+exp(( CONSTANTS[263]*(STATES[50]+0.150190))/- 0.606930));
RATES[74] = ( ALGEBRAIC[41]*STATES[75]+ ALGEBRAIC[91]*STATES[85]) -  STATES[74]*( 2.00000*ALGEBRAIC[13]+ 2.00000*ALGEBRAIC[63]);
RATES[75] = ((( ( 2.00000*ALGEBRAIC[13])*STATES[74]+ ( 2.00000*ALGEBRAIC[41])*STATES[76])+ ( 2.00000*ALGEBRAIC[91])*STATES[86])+ ( 3.00000*ALGEBRAIC[63])*STATES[77]) -  STATES[75]*(((ALGEBRAIC[13]+ALGEBRAIC[41])+ALGEBRAIC[91])+ 2.00000*ALGEBRAIC[63]);
RATES[76] = (( ALGEBRAIC[13]*STATES[75]+ ( 3.00000*ALGEBRAIC[91])*STATES[87])+ ( 3.00000*ALGEBRAIC[63])*STATES[78]) -  STATES[76]*(( 2.00000*ALGEBRAIC[41]+ 2.00000*ALGEBRAIC[91])+ 2.00000*ALGEBRAIC[63]);
RATES[77] = ( ALGEBRAIC[41]*STATES[78]+ ALGEBRAIC[91]*STATES[75]) -  STATES[77]*(ALGEBRAIC[13]+ 3.00000*ALGEBRAIC[63]);
RATES[78] = (( ALGEBRAIC[13]*STATES[77]+ ( 2.00000*ALGEBRAIC[91])*STATES[76])+ ( 4.00000*ALGEBRAIC[63])*STATES[79]) -  STATES[78]*((ALGEBRAIC[41]+ALGEBRAIC[91])+ 3.00000*ALGEBRAIC[63]);
ALGEBRAIC[75] = 0.00311240+(0.0283300 - 0.00311240)/(1.00000+exp(( CONSTANTS[263]*(STATES[50]+0.0516600))/1.55220));
RATES[79] = ( ALGEBRAIC[91]*STATES[78] -  STATES[79]*( 4.00000*ALGEBRAIC[63]+CONSTANTS[111]))+ ALGEBRAIC[75]*STATES[69];
RATES[80] = (( ( 4.00000*ALGEBRAIC[13])*STATES[73]+ ( 2.00000*ALGEBRAIC[41])*STATES[81])+ ALGEBRAIC[63]*STATES[84]) -  STATES[80]*(( 3.00000*ALGEBRAIC[13]+ALGEBRAIC[41])+ALGEBRAIC[91]);
RATES[81] = (( ( 3.00000*ALGEBRAIC[13])*STATES[80]+ ( 3.00000*ALGEBRAIC[41])*STATES[82])+ ALGEBRAIC[63]*STATES[85]) -  STATES[81]*(( 2.00000*ALGEBRAIC[13]+ 2.00000*ALGEBRAIC[41])+ 2.00000*ALGEBRAIC[91]);
RATES[82] = (( ( 2.00000*ALGEBRAIC[13])*STATES[81]+ ( 4.00000*ALGEBRAIC[41])*STATES[83])+ ALGEBRAIC[63]*STATES[86]) -  STATES[82]*((ALGEBRAIC[13]+ 3.00000*ALGEBRAIC[41])+ 3.00000*ALGEBRAIC[91]);
RATES[83] = ( ALGEBRAIC[13]*STATES[82]+ ALGEBRAIC[63]*STATES[87]) -  STATES[83]*( 4.00000*ALGEBRAIC[41]+ 4.00000*ALGEBRAIC[91]);
RATES[84] = ( ALGEBRAIC[41]*STATES[85]+ ALGEBRAIC[91]*STATES[80]) -  STATES[84]*( 3.00000*ALGEBRAIC[13]+ALGEBRAIC[63]);
RATES[85] = ((( ( 3.00000*ALGEBRAIC[13])*STATES[84]+ ( 2.00000*ALGEBRAIC[41])*STATES[86])+ ( 2.00000*ALGEBRAIC[91])*STATES[81])+ ( 2.00000*ALGEBRAIC[63])*STATES[74]) -  STATES[85]*((( 2.00000*ALGEBRAIC[13]+ALGEBRAIC[41])+ALGEBRAIC[91])+ALGEBRAIC[63]);
RATES[86] = ((( ( 2.00000*ALGEBRAIC[13])*STATES[85]+ ( 3.00000*ALGEBRAIC[41])*STATES[87])+ ( 3.00000*ALGEBRAIC[91])*STATES[82])+ ( 2.00000*ALGEBRAIC[63])*STATES[75]) -  STATES[86]*(((ALGEBRAIC[13]+ 2.00000*ALGEBRAIC[41])+ 2.00000*ALGEBRAIC[91])+ALGEBRAIC[63]);
RATES[87] = (( ALGEBRAIC[13]*STATES[86]+ ( 4.00000*ALGEBRAIC[91])*STATES[83])+ ( 2.00000*ALGEBRAIC[63])*STATES[76]) -  STATES[87]*(( 3.00000*ALGEBRAIC[41]+ 3.00000*ALGEBRAIC[91])+ALGEBRAIC[63]);
ALGEBRAIC[64] =  0.0657000*exp( ( - 0.118990*STATES[50])*CONSTANTS[263]);
ALGEBRAIC[93] = 0.563560/(1.00000+exp(( CONSTANTS[263]*(STATES[50]+0.179860))/- 0.583810));
RATES[89] = ( ALGEBRAIC[42]*STATES[90]+ ALGEBRAIC[93]*STATES[100]) -  STATES[89]*( 2.00000*ALGEBRAIC[14]+ 2.00000*ALGEBRAIC[64]);
RATES[90] = ((( ( 2.00000*ALGEBRAIC[14])*STATES[89]+ ( 2.00000*ALGEBRAIC[42])*STATES[91])+ ( 2.00000*ALGEBRAIC[93])*STATES[101])+ ( 3.00000*ALGEBRAIC[64])*STATES[92]) -  STATES[90]*(((ALGEBRAIC[14]+ALGEBRAIC[42])+ALGEBRAIC[93])+ 2.00000*ALGEBRAIC[64]);
RATES[91] = (( ALGEBRAIC[14]*STATES[90]+ ( 3.00000*ALGEBRAIC[93])*STATES[102])+ ( 3.00000*ALGEBRAIC[64])*STATES[93]) -  STATES[91]*(( 2.00000*ALGEBRAIC[42]+ 2.00000*ALGEBRAIC[93])+ 2.00000*ALGEBRAIC[64]);
RATES[92] = ( ALGEBRAIC[42]*STATES[93]+ ALGEBRAIC[93]*STATES[90]) -  STATES[92]*(ALGEBRAIC[14]+ 3.00000*ALGEBRAIC[64]);
RATES[93] = (( ALGEBRAIC[14]*STATES[92]+ ( 2.00000*ALGEBRAIC[93])*STATES[91])+ ( 4.00000*ALGEBRAIC[64])*STATES[94]) -  STATES[93]*((ALGEBRAIC[42]+ALGEBRAIC[93])+ 3.00000*ALGEBRAIC[64]);
ALGEBRAIC[76] = 0.000385250+(0.0124060 - 0.000385250)/(1.00000+exp(( CONSTANTS[263]*(STATES[50]+0.0641180))/0.779920));
RATES[94] = ( ALGEBRAIC[93]*STATES[93] -  STATES[94]*( 4.00000*ALGEBRAIC[64]+CONSTANTS[112]))+ ALGEBRAIC[76]*STATES[71];
RATES[95] = (( ( 4.00000*ALGEBRAIC[14])*STATES[88]+ ( 2.00000*ALGEBRAIC[42])*STATES[96])+ ALGEBRAIC[64]*STATES[99]) -  STATES[95]*(( 3.00000*ALGEBRAIC[14]+ALGEBRAIC[42])+ALGEBRAIC[93]);
RATES[96] = (( ( 3.00000*ALGEBRAIC[14])*STATES[95]+ ( 3.00000*ALGEBRAIC[42])*STATES[97])+ ALGEBRAIC[64]*STATES[100]) -  STATES[96]*(( 2.00000*ALGEBRAIC[14]+ 2.00000*ALGEBRAIC[42])+ 2.00000*ALGEBRAIC[93]);
RATES[97] = (( ( 2.00000*ALGEBRAIC[14])*STATES[96]+ ( 4.00000*ALGEBRAIC[42])*STATES[98])+ ALGEBRAIC[64]*STATES[101]) -  STATES[97]*((ALGEBRAIC[14]+ 3.00000*ALGEBRAIC[42])+ 3.00000*ALGEBRAIC[93]);
RATES[98] = ( ALGEBRAIC[14]*STATES[97]+ ALGEBRAIC[64]*STATES[102]) -  STATES[98]*( 4.00000*ALGEBRAIC[42]+ 4.00000*ALGEBRAIC[93]);
RATES[99] = ( ALGEBRAIC[42]*STATES[100]+ ALGEBRAIC[93]*STATES[95]) -  STATES[99]*( 3.00000*ALGEBRAIC[14]+ALGEBRAIC[64]);
RATES[100] = ((( ( 3.00000*ALGEBRAIC[14])*STATES[99]+ ( 2.00000*ALGEBRAIC[42])*STATES[101])+ ( 2.00000*ALGEBRAIC[93])*STATES[96])+ ( 2.00000*ALGEBRAIC[64])*STATES[89]) -  STATES[100]*((( 2.00000*ALGEBRAIC[14]+ALGEBRAIC[42])+ALGEBRAIC[93])+ALGEBRAIC[64]);
RATES[101] = ((( ( 2.00000*ALGEBRAIC[14])*STATES[100]+ ( 3.00000*ALGEBRAIC[42])*STATES[102])+ ( 3.00000*ALGEBRAIC[93])*STATES[97])+ ( 2.00000*ALGEBRAIC[64])*STATES[90]) -  STATES[101]*(((ALGEBRAIC[14]+ 2.00000*ALGEBRAIC[42])+ 2.00000*ALGEBRAIC[93])+ALGEBRAIC[64]);
RATES[102] = (( ALGEBRAIC[14]*STATES[101]+ ( 4.00000*ALGEBRAIC[93])*STATES[98])+ ( 2.00000*ALGEBRAIC[64])*STATES[91]) -  STATES[102]*(( 3.00000*ALGEBRAIC[42]+ 3.00000*ALGEBRAIC[93])+ALGEBRAIC[64]);
ALGEBRAIC[92] =  0.000441980*exp( ( - 1.20220*STATES[50])*CONSTANTS[263]);
ALGEBRAIC[103] =  0.000401730*exp( ( 0.000208730*STATES[50])*CONSTANTS[263]);
RATES[69] = ( - (ALGEBRAIC[75]+ALGEBRAIC[103])*STATES[69]+ ALGEBRAIC[92]*STATES[70])+ CONSTANTS[111]*STATES[79];
RATES[70] =  ALGEBRAIC[103]*STATES[69] -  ALGEBRAIC[92]*STATES[70];
ALGEBRAIC[94] =  0.000237300*exp( ( - 1.97420*STATES[50])*CONSTANTS[263]);
ALGEBRAIC[104] =  0.000226520*exp( ( 0.000246900*STATES[50])*CONSTANTS[263]);
RATES[71] = ( - (ALGEBRAIC[76]+ALGEBRAIC[104])*STATES[71]+ ALGEBRAIC[94]*STATES[72])+ CONSTANTS[112]*STATES[94];
RATES[72] =  ALGEBRAIC[104]*STATES[71] -  ALGEBRAIC[94]*STATES[72];
ALGEBRAIC[5] = ( ( CONSTANTS[36]*CONSTANTS[35])*CONSTANTS[319] - STATES[8]) - STATES[7];
ALGEBRAIC[34] = ( ALGEBRAIC[5]*(CONSTANTS[59]+CONSTANTS[51]) -  STATES[14]*(CONSTANTS[51]+CONSTANTS[59]))+ ( CONSTANTS[49]*CONSTANTS[51])*(1.00000+CONSTANTS[59]/CONSTANTS[54]);
ALGEBRAIC[58] =  ( - STATES[14]*CONSTANTS[49])*CONSTANTS[51];
ALGEBRAIC[70] = (- ALGEBRAIC[34]+ pow(( ALGEBRAIC[34]*ALGEBRAIC[34] -  ( 4.00000*CONSTANTS[222])*ALGEBRAIC[58]), 1.0 / 2))/( 2.00000*CONSTANTS[222]);
ALGEBRAIC[86] = ALGEBRAIC[5]/(1.00000+ (ALGEBRAIC[70]/CONSTANTS[49])*(1.00000+CONSTANTS[59]/CONSTANTS[51]));
ALGEBRAIC[98] = ( ALGEBRAIC[70]*ALGEBRAIC[86])/CONSTANTS[49];
ALGEBRAIC[108] = ( ALGEBRAIC[98]*CONSTANTS[59])/CONSTANTS[51];
RATES[8] =  0.00100000*(( CONSTANTS[44]*ALGEBRAIC[98]+ CONSTANTS[42]*ALGEBRAIC[108]) -  CONSTANTS[219]*STATES[8]);
RATES[0] =  0.00100000*(( CONSTANTS[44]*ALGEBRAIC[98]+ CONSTANTS[42]*ALGEBRAIC[108]) -  ( CONSTANTS[221]*STATES[0])*STATES[7]);
ALGEBRAIC[8] = ( ( CONSTANTS[215]*CONSTANTS[35])*CONSTANTS[326] - STATES[21]) - STATES[20];
ALGEBRAIC[37] = ( ALGEBRAIC[8]*(CONSTANTS[59]+CONSTANTS[51]) -  STATES[28]*(CONSTANTS[51]+CONSTANTS[59]))+ ( CONSTANTS[49]*CONSTANTS[51])*(1.00000+CONSTANTS[59]/CONSTANTS[54]);
ALGEBRAIC[61] =  ( - STATES[28]*CONSTANTS[49])*CONSTANTS[51];
ALGEBRAIC[73] = (- ALGEBRAIC[37]+ pow(( ALGEBRAIC[37]*ALGEBRAIC[37] -  ( 4.00000*CONSTANTS[225])*ALGEBRAIC[61]), 1.0 / 2))/( 2.00000*CONSTANTS[225]);
ALGEBRAIC[89] = ALGEBRAIC[8]/(1.00000+ (ALGEBRAIC[73]/CONSTANTS[49])*(1.00000+CONSTANTS[59]/CONSTANTS[51]));
ALGEBRAIC[101] = ( ALGEBRAIC[73]*ALGEBRAIC[89])/CONSTANTS[49];
ALGEBRAIC[111] =  (CONSTANTS[59]/CONSTANTS[51])*ALGEBRAIC[101];
RATES[21] =  0.00100000*(( CONSTANTS[44]*ALGEBRAIC[101]+ CONSTANTS[42]*ALGEBRAIC[111]) -  CONSTANTS[219]*STATES[21]);
RATES[22] =  0.00100000*(( CONSTANTS[44]*ALGEBRAIC[101]+ CONSTANTS[42]*ALGEBRAIC[111]) -  ( CONSTANTS[221]*STATES[22])*STATES[20]);
ALGEBRAIC[7] = ( ( CONSTANTS[216]*CONSTANTS[295])*CONSTANTS[321] - STATES[2]) - STATES[15];
ALGEBRAIC[59] = ( ALGEBRAIC[7]*(CONSTANTS[47]+CONSTANTS[59]) -  ALGEBRAIC[35]*(CONSTANTS[47]+CONSTANTS[59]))+ ( CONSTANTS[46]*CONSTANTS[47])*(1.00000+CONSTANTS[59]/CONSTANTS[48]);
ALGEBRAIC[71] =  ( - ALGEBRAIC[35]*CONSTANTS[47])*CONSTANTS[46];
ALGEBRAIC[87] = (- ALGEBRAIC[59]+ pow(( ALGEBRAIC[59]*ALGEBRAIC[59] -  ( 4.00000*CONSTANTS[224])*ALGEBRAIC[71]), 1.0 / 2))/( 2.00000*CONSTANTS[224]);
ALGEBRAIC[99] = ALGEBRAIC[7]/(1.00000+ (ALGEBRAIC[87]/CONSTANTS[46])*(1.00000+CONSTANTS[59]/CONSTANTS[47]));
ALGEBRAIC[110] = ( ( CONSTANTS[59]*ALGEBRAIC[87])*ALGEBRAIC[99])/( CONSTANTS[46]*CONSTANTS[47]);
ALGEBRAIC[119] = ( ALGEBRAIC[99]*ALGEBRAIC[87])/CONSTANTS[46];
RATES[2] =  0.00100000*(( CONSTANTS[45]*ALGEBRAIC[119]+ CONSTANTS[43]*ALGEBRAIC[110]) -  CONSTANTS[55]*STATES[2]);
RATES[16] =  0.00100000*(( CONSTANTS[45]*ALGEBRAIC[119]+ CONSTANTS[43]*ALGEBRAIC[110]) -  ( CONSTANTS[56]*STATES[16])*STATES[15]);
ALGEBRAIC[118] = ( CONSTANTS[59]*ALGEBRAIC[87])/CONSTANTS[48];
RATES[17] =  0.00100000*( ( CONSTANTS[218]*CONSTANTS[61])*(ALGEBRAIC[118]+ALGEBRAIC[110]) -  CONSTANTS[217]*STATES[17]);
ALGEBRAIC[130] = ((CONSTANTS[399] - STATES[142]) - STATES[141]) - STATES[140];
RATES[142] =  0.00100000*((( ( CONSTANTS[268]*ALGEBRAIC[130])*STATES[45] -  CONSTANTS[276]*STATES[142]) -  ( CONSTANTS[269]*STATES[142])*STATES[45])+ CONSTANTS[277]*STATES[141]);
ALGEBRAIC[1] = pow( STATES[3]*1.00000, CONSTANTS[12]);
ALGEBRAIC[31] =  CONSTANTS[6]*(CONSTANTS[8]+ALGEBRAIC[1]/(CONSTANTS[3]+ALGEBRAIC[1]));
ALGEBRAIC[67] =  ( ALGEBRAIC[31]*CONSTANTS[329])*CONSTANTS[227];
ALGEBRAIC[83] = ( CONSTANTS[236]*(STATES[43] - STATES[45]))/CONSTANTS[309];
ALGEBRAIC[96] = ( CONSTANTS[237]*(STATES[45] - STATES[44]))/CONSTANTS[309];
ALGEBRAIC[107] = ( CONSTANTS[349]*CONSTANTS[185])/(1.00000+CONSTANTS[170]/STATES[45]);
ALGEBRAIC[116] = ( (CONSTANTS[372]+ (CONSTANTS[174] - 1.00000)*STATES[131])*CONSTANTS[187])/(1.00000+CONSTANTS[172]/STATES[45]);
ALGEBRAIC[124] = ALGEBRAIC[107]+ALGEBRAIC[116];
ALGEBRAIC[134] = (( ( - CONSTANTS[268]*ALGEBRAIC[130])*STATES[45]+ CONSTANTS[276]*STATES[142]) -  ( CONSTANTS[269]*STATES[142])*STATES[45])+ CONSTANTS[277]*STATES[141];
RATES[45] =  0.00100000*((((ALGEBRAIC[134]+ALGEBRAIC[67]) - ALGEBRAIC[124])+ALGEBRAIC[83]) - ALGEBRAIC[96]);
ALGEBRAIC[140] = ((CONSTANTS[380] - STATES[134]) - STATES[133]) - STATES[132];
RATES[134] =  0.00100000*((( ( CONSTANTS[199]*ALGEBRAIC[140])*STATES[43] -  CONSTANTS[246]*STATES[134]) -  ( CONSTANTS[200]*STATES[134])*STATES[43])+ CONSTANTS[247]*STATES[133]);
ALGEBRAIC[2] = pow( STATES[1]*1.00000, CONSTANTS[13]);
ALGEBRAIC[32] = pow( STATES[1]*1.00000, CONSTANTS[14]);
ALGEBRAIC[56] =  ( CONSTANTS[7]*(CONSTANTS[9]+ALGEBRAIC[2]/(CONSTANTS[4]+ALGEBRAIC[2])))*(1.00000 - ( (1.00000 - ( CONSTANTS[15]*ALGEBRAIC[32])/(CONSTANTS[5]+ALGEBRAIC[32]))*STATES[0])/(CONSTANTS[2]+STATES[0]));
ALGEBRAIC[82] =  ( ALGEBRAIC[56]*CONSTANTS[320])*CONSTANTS[227];
ALGEBRAIC[95] = ( CONSTANTS[236]*(STATES[43] - STATES[45]))/CONSTANTS[306];
ALGEBRAIC[105] = ( CONSTANTS[235]*(STATES[43] - STATES[44]))/CONSTANTS[306];
ALGEBRAIC[114] = ( CONSTANTS[347]*CONSTANTS[185])/(1.00000+CONSTANTS[170]/STATES[43]);
ALGEBRAIC[122] = ( (CONSTANTS[377]+ (CONSTANTS[174] - 1.00000)*STATES[127])*CONSTANTS[186])/(1.00000+CONSTANTS[171]/STATES[43]);
ALGEBRAIC[128] = ( (CONSTANTS[370]+ (CONSTANTS[174] - 1.00000)*STATES[129])*CONSTANTS[187])/(1.00000+CONSTANTS[172]/STATES[43]);
ALGEBRAIC[135] = (ALGEBRAIC[114]+ALGEBRAIC[122])+ALGEBRAIC[128];
ALGEBRAIC[145] = (( ( - CONSTANTS[199]*ALGEBRAIC[140])*STATES[43]+ CONSTANTS[246]*STATES[134]) -  ( CONSTANTS[200]*STATES[134])*STATES[43])+ CONSTANTS[247]*STATES[133];
RATES[43] =  0.00100000*((((ALGEBRAIC[145]+ALGEBRAIC[82]) - ALGEBRAIC[135]) - ALGEBRAIC[95]) - ALGEBRAIC[105]);
ALGEBRAIC[150] = ((CONSTANTS[335] - STATES[138]) - STATES[137]) - STATES[136];
RATES[138] =  0.00100000*((( ( CONSTANTS[249]*ALGEBRAIC[150])*STATES[44] -  CONSTANTS[265]*STATES[138]) -  ( CONSTANTS[250]*STATES[138])*STATES[44])+ CONSTANTS[266]*STATES[137]);
ALGEBRAIC[0] = pow( STATES[2]*1.00000, CONSTANTS[12]);
ALGEBRAIC[55] =  CONSTANTS[6]*(CONSTANTS[8]+ALGEBRAIC[0]/(CONSTANTS[3]+ALGEBRAIC[0]));
ALGEBRAIC[68] =  ( ALGEBRAIC[55]*CONSTANTS[324])*CONSTANTS[227];
ALGEBRAIC[30] = pow( STATES[2]*1.00000, CONSTANTS[13]);
ALGEBRAIC[84] =  CONSTANTS[7]*(CONSTANTS[9]+ALGEBRAIC[30]/(CONSTANTS[4]+ALGEBRAIC[30]));
ALGEBRAIC[106] =  ( ALGEBRAIC[84]*CONSTANTS[328])*CONSTANTS[227];
ALGEBRAIC[115] = ( CONSTANTS[235]*(STATES[43] - STATES[44]))/CONSTANTS[307];
ALGEBRAIC[123] = ( CONSTANTS[237]*(STATES[45] - STATES[44]))/CONSTANTS[307];
ALGEBRAIC[129] = ( CONSTANTS[348]*CONSTANTS[185])/(1.00000+CONSTANTS[170]/STATES[44]);
ALGEBRAIC[136] = ( (CONSTANTS[378]+ (CONSTANTS[174] - 1.00000)*STATES[128])*CONSTANTS[186])/(1.00000+CONSTANTS[171]/STATES[44]);
ALGEBRAIC[141] = ( (CONSTANTS[371]+ (CONSTANTS[174] - 1.00000)*STATES[130])*CONSTANTS[187])/(1.00000+CONSTANTS[172]/STATES[44]);
ALGEBRAIC[146] = (ALGEBRAIC[129]+ALGEBRAIC[136])+ALGEBRAIC[141];
ALGEBRAIC[154] = (( ( - CONSTANTS[249]*ALGEBRAIC[150])*STATES[44]+ CONSTANTS[265]*STATES[138]) -  ( CONSTANTS[250]*STATES[138])*STATES[44])+ CONSTANTS[266]*STATES[137];
RATES[44] =  0.00100000*(((((ALGEBRAIC[154]+ALGEBRAIC[68])+ALGEBRAIC[106]) - ALGEBRAIC[146])+ALGEBRAIC[115])+ALGEBRAIC[123]);
ALGEBRAIC[6] = ( ( CONSTANTS[37]*CONSTANTS[295])*CONSTANTS[319] - STATES[1]) - STATES[9];
ALGEBRAIC[69] = (((CONSTANTS[258]+CONSTANTS[271])/CONSTANTS[223]+ALGEBRAIC[33])+ALGEBRAIC[57]) - ALGEBRAIC[6];
ALGEBRAIC[85] = (( CONSTANTS[271]*(ALGEBRAIC[33] - ALGEBRAIC[6])+ CONSTANTS[258]*(ALGEBRAIC[57] - ALGEBRAIC[6]))+CONSTANTS[279])/CONSTANTS[223];
ALGEBRAIC[97] = ( ALGEBRAIC[6]*CONSTANTS[279])/CONSTANTS[223];
ALGEBRAIC[109] = ((( (- ALGEBRAIC[97]/27.0000)*pow(ALGEBRAIC[69], 3.00000) - ( ( ( ALGEBRAIC[69]*ALGEBRAIC[69])*ALGEBRAIC[85])*ALGEBRAIC[85])/108.000)+( ( ALGEBRAIC[69]*ALGEBRAIC[85])*ALGEBRAIC[97])/6.00000)+pow(ALGEBRAIC[85], 3.00000)/27.0000)+( ALGEBRAIC[97]*ALGEBRAIC[97])/4.00000;
ALGEBRAIC[117] = (ALGEBRAIC[109]<0.00000 ?  pow(- ALGEBRAIC[109], 1.0 / 2) : 0.00000);
ALGEBRAIC[125] = (((ALGEBRAIC[109]>0.00000 ?  pow(ALGEBRAIC[109], 1.0 / 2) : 0.00000)+ALGEBRAIC[97]/2.00000)+( ALGEBRAIC[69]*ALGEBRAIC[85])/6.00000) - pow(ALGEBRAIC[69], 3.00000)/27.0000;
ALGEBRAIC[131] = atan(ALGEBRAIC[117]/ALGEBRAIC[125])/3.00000;
ALGEBRAIC[137] = pow( ALGEBRAIC[125]*ALGEBRAIC[125]+ ALGEBRAIC[117]*ALGEBRAIC[117], 1.00000/6.00000);
ALGEBRAIC[142] = (ALGEBRAIC[85]/3.00000 - ( ALGEBRAIC[69]*ALGEBRAIC[69])/9.00000)/( ALGEBRAIC[137]*ALGEBRAIC[137]);
ALGEBRAIC[147] =  ( ALGEBRAIC[137]* sin(ALGEBRAIC[131]))*(1.00000+ALGEBRAIC[142]);
ALGEBRAIC[151] =  ( ALGEBRAIC[137]*cos(ALGEBRAIC[131]))*(1.00000 - ALGEBRAIC[142]) - ALGEBRAIC[69]/3.00000;
ALGEBRAIC[156] =  pow(( ALGEBRAIC[151]*ALGEBRAIC[151]+ ALGEBRAIC[147]*ALGEBRAIC[147]), 1.0 / 2);
ALGEBRAIC[160] = ALGEBRAIC[33]/((1.00000+CONSTANTS[59]/CONSTANTS[48])+( ALGEBRAIC[156]*(CONSTANTS[47]+CONSTANTS[59]))/( CONSTANTS[46]*CONSTANTS[47]));
ALGEBRAIC[164] = ( CONSTANTS[59]*ALGEBRAIC[160])/CONSTANTS[48];
ALGEBRAIC[168] = ( ( CONSTANTS[59]*ALGEBRAIC[160])*ALGEBRAIC[156])/( CONSTANTS[46]*CONSTANTS[47]);
RATES[11] =  0.00100000*( ( CONSTANTS[218]*CONSTANTS[58])*(ALGEBRAIC[164]+ALGEBRAIC[168]) -  CONSTANTS[217]*STATES[11]);
ALGEBRAIC[9] = ( ( CONSTANTS[38]*CONSTANTS[295])*CONSTANTS[326] - STATES[3]) - STATES[23];
ALGEBRAIC[72] = (((CONSTANTS[259]+CONSTANTS[272])/CONSTANTS[226]+ALGEBRAIC[36])+ALGEBRAIC[60]) - ALGEBRAIC[9];
ALGEBRAIC[88] = (( CONSTANTS[272]*(ALGEBRAIC[36] - ALGEBRAIC[9])+ CONSTANTS[259]*(ALGEBRAIC[60] - ALGEBRAIC[9]))+CONSTANTS[280])/CONSTANTS[226];
ALGEBRAIC[100] = ( ALGEBRAIC[9]*CONSTANTS[280])/CONSTANTS[226];
ALGEBRAIC[112] = ((( (- ALGEBRAIC[100]/27.0000)*pow(ALGEBRAIC[72], 3.00000) - ( ( ( ALGEBRAIC[72]*ALGEBRAIC[72])*ALGEBRAIC[88])*ALGEBRAIC[88])/108.000)+( ( ALGEBRAIC[72]*ALGEBRAIC[88])*ALGEBRAIC[100])/6.00000)+pow(ALGEBRAIC[88], 3.00000)/27.0000)+( ALGEBRAIC[100]*ALGEBRAIC[100])/4.00000;
ALGEBRAIC[120] = (ALGEBRAIC[112]<0.00000 ?  pow(- ALGEBRAIC[112], 1.0 / 2) : 0.00000);
ALGEBRAIC[126] = (((ALGEBRAIC[112]>0.00000 ?  pow(ALGEBRAIC[112], 1.0 / 2) : 0.00000)+ALGEBRAIC[100]/2.00000)+( ALGEBRAIC[72]*ALGEBRAIC[88])/6.00000) - pow(ALGEBRAIC[72], 3.00000)/27.0000;
ALGEBRAIC[132] = atan(ALGEBRAIC[120]/ALGEBRAIC[126])/3.00000;
ALGEBRAIC[138] = pow( ALGEBRAIC[126]*ALGEBRAIC[126]+ ALGEBRAIC[120]*ALGEBRAIC[120], 1.00000/6.00000);
ALGEBRAIC[143] = (ALGEBRAIC[88]/3.00000 - ( ALGEBRAIC[72]*ALGEBRAIC[72])/9.00000)/( ALGEBRAIC[138]*ALGEBRAIC[138]);
ALGEBRAIC[148] =  ( ALGEBRAIC[138]* sin(ALGEBRAIC[132]))*(1.00000+ALGEBRAIC[143]);
ALGEBRAIC[152] =  ( ALGEBRAIC[138]*cos(ALGEBRAIC[132]))*(1.00000 - ALGEBRAIC[143]) - ALGEBRAIC[72]/3.00000;
ALGEBRAIC[157] =  pow(( ALGEBRAIC[152]*ALGEBRAIC[152]+ ALGEBRAIC[148]*ALGEBRAIC[148]), 1.0 / 2);
ALGEBRAIC[161] = ALGEBRAIC[36]/((1.00000+CONSTANTS[59]/CONSTANTS[48])+( ALGEBRAIC[157]*(CONSTANTS[47]+CONSTANTS[59]))/( CONSTANTS[46]*CONSTANTS[47]));
ALGEBRAIC[165] = ( CONSTANTS[59]*ALGEBRAIC[161])/CONSTANTS[48];
ALGEBRAIC[169] = ( ( CONSTANTS[59]*ALGEBRAIC[161])*ALGEBRAIC[157])/( CONSTANTS[46]*CONSTANTS[47]);
RATES[25] =  0.00100000*( ( CONSTANTS[218]*CONSTANTS[62])*(ALGEBRAIC[165]+ALGEBRAIC[169]) -  CONSTANTS[217]*STATES[25]);
ALGEBRAIC[176] = ALGEBRAIC[57]/((1.00000+CONSTANTS[59]/CONSTANTS[53])+( ALGEBRAIC[156]*(CONSTANTS[52]+CONSTANTS[59]))/( CONSTANTS[50]*CONSTANTS[52]));
ALGEBRAIC[180] = ( CONSTANTS[59]*ALGEBRAIC[176])/CONSTANTS[53];
ALGEBRAIC[184] = ( ( CONSTANTS[59]*ALGEBRAIC[176])*ALGEBRAIC[156])/( CONSTANTS[50]*CONSTANTS[52]);
RATES[13] =  0.00100000*( ( CONSTANTS[218]*CONSTANTS[58])*(ALGEBRAIC[180]+ALGEBRAIC[184]) -  CONSTANTS[217]*STATES[13]);
ALGEBRAIC[177] = ALGEBRAIC[60]/((1.00000+CONSTANTS[59]/CONSTANTS[53])+( ALGEBRAIC[157]*(CONSTANTS[52]+CONSTANTS[59]))/( CONSTANTS[50]*CONSTANTS[52]));
ALGEBRAIC[181] = ( CONSTANTS[59]*ALGEBRAIC[177])/CONSTANTS[53];
ALGEBRAIC[185] = ( ( CONSTANTS[59]*ALGEBRAIC[177])*ALGEBRAIC[157])/( CONSTANTS[50]*CONSTANTS[52]);
RATES[27] =  0.00100000*( ( CONSTANTS[218]*CONSTANTS[62])*(ALGEBRAIC[181]+ALGEBRAIC[185]) -  CONSTANTS[217]*STATES[27]);
ALGEBRAIC[188] = ALGEBRAIC[168]+ CONSTANTS[60]*ALGEBRAIC[184];
ALGEBRAIC[172] = ( ALGEBRAIC[160]*ALGEBRAIC[156])/CONSTANTS[46];
ALGEBRAIC[192] = ( ALGEBRAIC[176]*ALGEBRAIC[156])/CONSTANTS[50];
ALGEBRAIC[196] = ALGEBRAIC[172]+ CONSTANTS[60]*ALGEBRAIC[192];
RATES[1] =  0.00100000*(( CONSTANTS[45]*ALGEBRAIC[196]+ CONSTANTS[43]*ALGEBRAIC[188]) -  CONSTANTS[55]*STATES[1]);
RATES[10] =  0.00100000*(( CONSTANTS[45]*ALGEBRAIC[196]+ CONSTANTS[43]*ALGEBRAIC[188]) -  ( CONSTANTS[56]*STATES[10])*STATES[9]);
ALGEBRAIC[189] = ALGEBRAIC[169]+ CONSTANTS[63]*ALGEBRAIC[185];
ALGEBRAIC[173] = ( ALGEBRAIC[161]*ALGEBRAIC[157])/CONSTANTS[46];
ALGEBRAIC[193] = ( ALGEBRAIC[177]*ALGEBRAIC[157])/CONSTANTS[50];
ALGEBRAIC[197] = ALGEBRAIC[173]+ CONSTANTS[63]*ALGEBRAIC[193];
RATES[3] =  0.00100000*(( CONSTANTS[45]*ALGEBRAIC[197]+ CONSTANTS[43]*ALGEBRAIC[189]) -  CONSTANTS[55]*STATES[3]);
RATES[24] =  0.00100000*(( CONSTANTS[45]*ALGEBRAIC[197]+ CONSTANTS[43]*ALGEBRAIC[189]) -  ( CONSTANTS[56]*STATES[24])*STATES[23]);
ALGEBRAIC[133] = CONSTANTS[274] - STATES[35];
ALGEBRAIC[139] = CONSTANTS[262] -  STATES[35]*CONSTANTS[261];
ALGEBRAIC[144] =  - CONSTANTS[230]*STATES[35];
ALGEBRAIC[149] = - ALGEBRAIC[133]/3.00000+ ( (2.00000/3.00000)* pow(( ALGEBRAIC[133]*ALGEBRAIC[133] -  3.00000*ALGEBRAIC[139]), 1.0 / 2))*cos(acos((( ( 9.00000*ALGEBRAIC[133])*ALGEBRAIC[139] -  ( ( 2.00000*ALGEBRAIC[133])*ALGEBRAIC[133])*ALGEBRAIC[133]) -  27.0000*ALGEBRAIC[144])/( 2.00000*pow( ALGEBRAIC[133]*ALGEBRAIC[133] -  3.00000*ALGEBRAIC[139], 1.50000)))/3.00000);
ALGEBRAIC[190] = ( CONSTANTS[79]*(1.00000 - STATES[42]))/(1.00000+CONSTANTS[81]/ALGEBRAIC[149]);
ALGEBRAIC[194] = ALGEBRAIC[190]+STATES[42];
ALGEBRAIC[199] = ALGEBRAIC[194]/(ALGEBRAIC[194]+CONSTANTS[80]);
RATES[36] = (ALGEBRAIC[199] - STATES[36])/CONSTANTS[231];
RATES[37] = (ALGEBRAIC[199] - STATES[37])/CONSTANTS[232];
RATES[38] = (ALGEBRAIC[199] - STATES[38])/CONSTANTS[233];
RATES[39] = (ALGEBRAIC[199] - STATES[39])/CONSTANTS[234];
RATES[40] = (ALGEBRAIC[199] - STATES[40])/CONSTANTS[85];
ALGEBRAIC[200] = 1.00000/(1.00000+pow(CONSTANTS[80]/ALGEBRAIC[194], 2.00000));
RATES[41] = (ALGEBRAIC[200] - STATES[41])/CONSTANTS[86];
ALGEBRAIC[198] = (CONSTANTS[205] - CONSTANTS[208])+STATES[144];
ALGEBRAIC[203] =  0.500000*( pow((pow(ALGEBRAIC[198], 2.00000)+ ( 4.00000*CONSTANTS[205])*CONSTANTS[208]), 1.0 / 2) - ALGEBRAIC[198]);
RATES[125] =  0.00100000*(( ( CONSTANTS[162]*STATES[19])*(1.00000 - STATES[125]))/(CONSTANTS[158]+ (1.00000 - STATES[125])*1.00000) - ( ( CONSTANTS[163]*ALGEBRAIC[203])*STATES[125])/(CONSTANTS[160]+ STATES[125]*1.00000));
ALGEBRAIC[206] = (CONSTANTS[28]/CONSTANTS[319]+CONSTANTS[82]/CONSTANTS[326])+ALGEBRAIC[203]/CONSTANTS[321];
RATES[42] =  ( CONSTANTS[83]*ALGEBRAIC[190])*ALGEBRAIC[194] -  ( CONSTANTS[84]*STATES[42])*(0.100000+( 0.900000*ALGEBRAIC[206])/0.137100);
ALGEBRAIC[155] = 1.00000/( (1.00000+exp((4.79800+STATES[50])/- 7.56990))*(1.00000+exp((25.0000+STATES[50])/- 5.00000)));
ALGEBRAIC[195] = 0.590000+( 0.800000*exp( 0.0520000*(STATES[50]+13.0000)))/(1.00000+exp( 0.132000*(STATES[50]+13.0000)));
ALGEBRAIC[202] = ALGEBRAIC[155]/ALGEBRAIC[195];
ALGEBRAIC[205] = (1.00000 - ALGEBRAIC[155])/ALGEBRAIC[195];
ALGEBRAIC[179] = 1.00000+pow(0.00200000/ALGEBRAIC[149], 4.00000);
ALGEBRAIC[183] = 6.00000/ALGEBRAIC[179];
ALGEBRAIC[163] = 1.00000/(1.00000+exp((29.9790+STATES[50])/3.17750));
ALGEBRAIC[171] = (0.100000+ALGEBRAIC[163])/1.10000;
ALGEBRAIC[214] = 1.00000/( ( 70.0000*(1.00000 -  0.500000*STATES[36]))*(1.00000+exp((STATES[50]+49.1000)/10.3490)));
ALGEBRAIC[216] = 1.00000/(1.00000+exp((STATES[50]+0.213000)/- 10.8070));
ALGEBRAIC[221] = 1.00000/(ALGEBRAIC[214]+ALGEBRAIC[216]/38.4940);
ALGEBRAIC[224] = ALGEBRAIC[171]/ALGEBRAIC[221];
ALGEBRAIC[233] = (1.00000 - ALGEBRAIC[171])/ALGEBRAIC[221];
RATES[51] = (( - ((ALGEBRAIC[202]+ALGEBRAIC[183])+ALGEBRAIC[233])*STATES[51]+ ALGEBRAIC[205]*STATES[55])+ CONSTANTS[102]*STATES[54])+ ALGEBRAIC[224]*STATES[52];
RATES[55] = (( - ((ALGEBRAIC[205]+ALGEBRAIC[183])+ALGEBRAIC[233])*STATES[55]+ ALGEBRAIC[202]*STATES[51])+ CONSTANTS[102]*STATES[58])+ ALGEBRAIC[224]*STATES[56];
ALGEBRAIC[167] = (0.000100000+ALGEBRAIC[163])/1.00010;
ALGEBRAIC[159] =  0.100000*STATES[36];
ALGEBRAIC[175] = 1.00000+pow(0.0100000/ALGEBRAIC[149], 10.0000);
ALGEBRAIC[187] = (32.5000 - (18.0000 - ALGEBRAIC[159])/ALGEBRAIC[179]) - 10.0000/ALGEBRAIC[175];
ALGEBRAIC[218] = 1.00000/(ALGEBRAIC[214]+ALGEBRAIC[216]/ALGEBRAIC[187]);
ALGEBRAIC[227] = ALGEBRAIC[167]/ALGEBRAIC[218];
ALGEBRAIC[239] = (1.00000 - ALGEBRAIC[167])/ALGEBRAIC[218];
RATES[54] = (( - ((ALGEBRAIC[202]+CONSTANTS[102])+ALGEBRAIC[239])*STATES[54]+ ALGEBRAIC[183]*STATES[51])+ ALGEBRAIC[205]*STATES[58])+ ALGEBRAIC[227]*STATES[53];
RATES[58] = (( - ((ALGEBRAIC[205]+CONSTANTS[102])+ALGEBRAIC[239])*STATES[58]+ ALGEBRAIC[183]*STATES[55])+ ALGEBRAIC[202]*STATES[54])+ ALGEBRAIC[227]*STATES[57];
ALGEBRAIC[230] = (fabs(ALGEBRAIC[227])<1.00000e-12 ? 1.00000e-12 : ALGEBRAIC[227]);
ALGEBRAIC[236] = (fabs(ALGEBRAIC[233])<1.00000e-12 ? 1.00000e-12 : ALGEBRAIC[233]);
ALGEBRAIC[242] = ( CONSTANTS[103]*( ( ALGEBRAIC[224]*ALGEBRAIC[239])*ALGEBRAIC[183]))/( ( ALGEBRAIC[236]*ALGEBRAIC[230])*CONSTANTS[102]);
RATES[52] = (( - ((ALGEBRAIC[202]+ALGEBRAIC[242])+ALGEBRAIC[224])*STATES[52]+ ALGEBRAIC[233]*STATES[51])+ CONSTANTS[103]*STATES[53])+ ALGEBRAIC[205]*STATES[56];
RATES[53] = (( - ((ALGEBRAIC[202]+CONSTANTS[103])+ALGEBRAIC[227])*STATES[53]+ ALGEBRAIC[239]*STATES[54])+ ALGEBRAIC[242]*STATES[52])+ ALGEBRAIC[205]*STATES[57];
RATES[56] = (( - ((ALGEBRAIC[205]+ALGEBRAIC[242])+ALGEBRAIC[224])*STATES[56]+ ALGEBRAIC[233]*STATES[55])+ CONSTANTS[103]*STATES[57])+ ALGEBRAIC[202]*STATES[52];
RATES[57] = (( - ((ALGEBRAIC[205]+CONSTANTS[103])+ALGEBRAIC[227])*STATES[57]+ ALGEBRAIC[239]*STATES[58])+ ALGEBRAIC[242]*STATES[56])+ ALGEBRAIC[202]*STATES[53];
ALGEBRAIC[62] = CONSTANTS[274] - STATES[33];
ALGEBRAIC[74] = CONSTANTS[262] -  STATES[33]*CONSTANTS[261];
ALGEBRAIC[90] =  - CONSTANTS[230]*STATES[33];
ALGEBRAIC[102] = - ALGEBRAIC[62]/3.00000+ ( (2.00000/3.00000)* pow(( ALGEBRAIC[62]*ALGEBRAIC[62] -  3.00000*ALGEBRAIC[74]), 1.0 / 2))*cos(acos((( ( 9.00000*ALGEBRAIC[62])*ALGEBRAIC[74] -  ( ( 2.00000*ALGEBRAIC[62])*ALGEBRAIC[62])*ALGEBRAIC[62]) -  27.0000*ALGEBRAIC[90])/( 2.00000*pow( ALGEBRAIC[62]*ALGEBRAIC[62] -  3.00000*ALGEBRAIC[74], 1.50000)))/3.00000);
ALGEBRAIC[209] = (ALGEBRAIC[149] - ALGEBRAIC[102])/CONSTANTS[95];
ALGEBRAIC[10] = (STATES[4]+CONSTANTS[392])/CONSTANTS[17];
ALGEBRAIC[220] = (ALGEBRAIC[10] - CONSTANTS[397])/(0.927300 - CONSTANTS[397]);
ALGEBRAIC[223] = (ALGEBRAIC[220]<0.00000 ? 0.00000 : ALGEBRAIC[220]);
ALGEBRAIC[226] =  0.000257900*(1.00000+ 0.100000*STATES[36]);
ALGEBRAIC[229] = exp( ( 2.00000*STATES[50])*CONSTANTS[263]);
ALGEBRAIC[232] = ( ( ( ( ALGEBRAIC[226]*4.00000)*STATES[50])*CONSTANTS[275])*( ALGEBRAIC[149]*ALGEBRAIC[229] -  0.341000*CONSTANTS[97]))/(ALGEBRAIC[229] - 1.00000);
ALGEBRAIC[235] =  ALGEBRAIC[232]*(STATES[55]+STATES[58]);
ALGEBRAIC[238] =  0.000155200*(1.00000+ 0.400000*STATES[36]);
ALGEBRAIC[241] = exp( ( 2.00000*STATES[50])*CONSTANTS[263]);
ALGEBRAIC[244] = ( ( ( ( ALGEBRAIC[238]*4.00000)*STATES[50])*CONSTANTS[275])*( ALGEBRAIC[149]*ALGEBRAIC[241] -  0.341000*CONSTANTS[97]))/(ALGEBRAIC[241] - 1.00000);
ALGEBRAIC[246] =  ALGEBRAIC[244]*(STATES[63]+STATES[66]);
ALGEBRAIC[248] =  (1.00000 - ALGEBRAIC[223])*ALGEBRAIC[246]+ ALGEBRAIC[223]*ALGEBRAIC[235];
RATES[33] =  - CONSTANTS[305]*ALGEBRAIC[248]+ CONSTANTS[315]*ALGEBRAIC[209];
ALGEBRAIC[191] = 1.00000/( (1.00000+exp((13.5600 - STATES[50])/9.45000))*(1.00000+exp((25.0000+STATES[50])/- 5.00000)));
ALGEBRAIC[208] = ALGEBRAIC[191]/ALGEBRAIC[195];
ALGEBRAIC[210] = (1.00000 - ALGEBRAIC[191])/ALGEBRAIC[195];
ALGEBRAIC[234] = 1.00000+pow(0.00110000/ALGEBRAIC[149], 4.00000);
ALGEBRAIC[237] = 14.9186/ALGEBRAIC[234];
ALGEBRAIC[219] = 1.00000/(1.00000+exp((17.5000+STATES[50])/3.00000));
ALGEBRAIC[225] = (0.247400+ALGEBRAIC[219])/1.24740;
ALGEBRAIC[228] = 1.00000/(ALGEBRAIC[214]+ALGEBRAIC[216]/26.5530);
ALGEBRAIC[245] = ALGEBRAIC[225]/ALGEBRAIC[228];
ALGEBRAIC[251] = (1.00000 - ALGEBRAIC[225])/ALGEBRAIC[228];
RATES[59] = (( - ((ALGEBRAIC[208]+ALGEBRAIC[237])+ALGEBRAIC[251])*STATES[59]+ ALGEBRAIC[210]*STATES[63])+ CONSTANTS[104]*STATES[62])+ ALGEBRAIC[245]*STATES[60];
RATES[63] = (( - ((ALGEBRAIC[210]+ALGEBRAIC[237])+ALGEBRAIC[251])*STATES[63]+ ALGEBRAIC[208]*STATES[59])+ CONSTANTS[104]*STATES[66])+ ALGEBRAIC[245]*STATES[64];
ALGEBRAIC[222] = (0.00100000+ALGEBRAIC[219])/1.00100;
ALGEBRAIC[212] =  5.00000*STATES[36];
ALGEBRAIC[231] = 1.00000+pow(0.0120000/ALGEBRAIC[149], 10.0000);
ALGEBRAIC[240] = (13.8250 - (6.38360 - ALGEBRAIC[212])/ALGEBRAIC[234]) - 3.36960/ALGEBRAIC[231];
ALGEBRAIC[243] = 1.00000/(ALGEBRAIC[214]+ALGEBRAIC[216]/ALGEBRAIC[240]);
ALGEBRAIC[247] = ALGEBRAIC[222]/ALGEBRAIC[243];
ALGEBRAIC[257] = (1.00000 - ALGEBRAIC[222])/ALGEBRAIC[243];
RATES[62] = (( - ((ALGEBRAIC[208]+CONSTANTS[104])+ALGEBRAIC[257])*STATES[62]+ ALGEBRAIC[237]*STATES[59])+ ALGEBRAIC[210]*STATES[66])+ ALGEBRAIC[247]*STATES[61];
RATES[66] = (( - ((ALGEBRAIC[210]+CONSTANTS[104])+ALGEBRAIC[257])*STATES[66]+ ALGEBRAIC[237]*STATES[63])+ ALGEBRAIC[208]*STATES[62])+ ALGEBRAIC[247]*STATES[65];
ALGEBRAIC[249] = (fabs(ALGEBRAIC[247])<1.00000e-12 ? 1.00000e-12 : ALGEBRAIC[247]);
ALGEBRAIC[254] = (fabs(ALGEBRAIC[251])<1.00000e-12 ? 1.00000e-12 : ALGEBRAIC[251]);
ALGEBRAIC[260] = ( CONSTANTS[105]*( ( ALGEBRAIC[245]*ALGEBRAIC[257])*ALGEBRAIC[237]))/( ( ALGEBRAIC[254]*ALGEBRAIC[249])*CONSTANTS[104]);
RATES[60] = (( - ((ALGEBRAIC[208]+ALGEBRAIC[260])+ALGEBRAIC[245])*STATES[60]+ ALGEBRAIC[251]*STATES[59])+ CONSTANTS[105]*STATES[61])+ ALGEBRAIC[210]*STATES[64];
RATES[61] = (( - ((ALGEBRAIC[208]+CONSTANTS[105])+ALGEBRAIC[247])*STATES[61]+ ALGEBRAIC[257]*STATES[62])+ ALGEBRAIC[260]*STATES[60])+ ALGEBRAIC[210]*STATES[65];
RATES[64] = (( - ((ALGEBRAIC[210]+ALGEBRAIC[260])+ALGEBRAIC[245])*STATES[64]+ ALGEBRAIC[251]*STATES[63])+ CONSTANTS[105]*STATES[65])+ ALGEBRAIC[208]*STATES[60];
RATES[65] = (( - ((ALGEBRAIC[210]+CONSTANTS[105])+ALGEBRAIC[247])*STATES[65]+ ALGEBRAIC[257]*STATES[66])+ ALGEBRAIC[260]*STATES[64])+ ALGEBRAIC[208]*STATES[61];
ALGEBRAIC[252] =  CONSTANTS[243]*(1.00000+ 2.00000*STATES[41]);
ALGEBRAIC[255] =  0.112500*ALGEBRAIC[252];
ALGEBRAIC[113] = (CONSTANTS[72]+CONSTANTS[73]) - STATES[34];
ALGEBRAIC[121] =  STATES[34]*CONSTANTS[73];
ALGEBRAIC[127] = ( pow(( ALGEBRAIC[113]*ALGEBRAIC[113]+ 4.00000*ALGEBRAIC[121]), 1.0 / 2) - ALGEBRAIC[113])/2.00000;
ALGEBRAIC[269] = ( ALGEBRAIC[248]*1.00000)/(1.00000+pow(1.00000/ALGEBRAIC[127], 8.00000));
ALGEBRAIC[271] =  ALGEBRAIC[255]*ALGEBRAIC[269];
ALGEBRAIC[263] = 1.00000+0.0123000/ALGEBRAIC[127];
ALGEBRAIC[265] = ALGEBRAIC[252]/ALGEBRAIC[263];
RATES[118] = - (ALGEBRAIC[271]+STATES[118])/ALGEBRAIC[265];
ALGEBRAIC[258] =  CONSTANTS[243]*(1.00000+ 0.00000*STATES[41]);
ALGEBRAIC[261] =  0.112500*ALGEBRAIC[258];
ALGEBRAIC[272] =  ( 1.99250*ALGEBRAIC[261])*ALGEBRAIC[269];
ALGEBRAIC[267] = ( 0.535700*ALGEBRAIC[258])/ALGEBRAIC[263];
RATES[119] = - (ALGEBRAIC[272]+STATES[119])/ALGEBRAIC[267];
ALGEBRAIC[286] = 1.00000+pow(CONSTANTS[134]/ALGEBRAIC[149], 2.00000);
ALGEBRAIC[285] = exp( ( (CONSTANTS[139] - 1.00000)*STATES[50])*CONSTANTS[263]);
ALGEBRAIC[287] = 1.00000+ CONSTANTS[140]*ALGEBRAIC[285];
ALGEBRAIC[283] = pow(STATES[49], 3.00000);
ALGEBRAIC[288] = ( CONSTANTS[136]*ALGEBRAIC[283]+ CONSTANTS[364]*ALGEBRAIC[149])+ ( CONSTANTS[362]*CONSTANTS[97])*(1.00000+ALGEBRAIC[149]/CONSTANTS[135]);
ALGEBRAIC[289] = ( ( CONSTANTS[135]*CONSTANTS[366])*(1.00000+ALGEBRAIC[283]/CONSTANTS[362])+ ALGEBRAIC[283]*CONSTANTS[97])+ CONSTANTS[366]*ALGEBRAIC[149];
ALGEBRAIC[284] = exp( ( CONSTANTS[139]*STATES[50])*CONSTANTS[263]);
ALGEBRAIC[290] =  ( 0.200000*CONSTANTS[141])*( ( ALGEBRAIC[283]*CONSTANTS[97])*ALGEBRAIC[284] -  ( CONSTANTS[366]*ALGEBRAIC[149])*ALGEBRAIC[285]);
ALGEBRAIC[291] = ALGEBRAIC[290]/( ( ALGEBRAIC[286]*ALGEBRAIC[287])*(ALGEBRAIC[288]+ALGEBRAIC[289]));
ALGEBRAIC[207] = (STATES[49] - STATES[48])/CONSTANTS[94];
RATES[49] = - ( CONSTANTS[409]*ALGEBRAIC[291]+ALGEBRAIC[207]);
ALGEBRAIC[38] = (STATES[5]+CONSTANTS[395])/CONSTANTS[30];
ALGEBRAIC[311] = (ALGEBRAIC[38] - CONSTANTS[398])/(0.958600 - CONSTANTS[398]);
ALGEBRAIC[313] = (ALGEBRAIC[311]<0.00000 ? 0.00000 : ALGEBRAIC[311]);
ALGEBRAIC[317] =  (1.00000 - ALGEBRAIC[313])*STATES[118]+ ALGEBRAIC[313]*STATES[119];
ALGEBRAIC[307] =  ( CONSTANTS[155]*exp(ALGEBRAIC[127]/CONSTANTS[153]))*(ALGEBRAIC[127] - ALGEBRAIC[149]);
ALGEBRAIC[309] =  ( CONSTANTS[156]*exp(ALGEBRAIC[127]/CONSTANTS[154]))*(ALGEBRAIC[127] - ALGEBRAIC[149]);
ALGEBRAIC[315] =  (1.00000 - ALGEBRAIC[313])*ALGEBRAIC[307]+ ALGEBRAIC[313]*ALGEBRAIC[309];
ALGEBRAIC[319] = ALGEBRAIC[315]+ALGEBRAIC[317];
ALGEBRAIC[211] = (STATES[30] - ALGEBRAIC[127])/CONSTANTS[96];
RATES[34] = ALGEBRAIC[211] - ALGEBRAIC[319];
ALGEBRAIC[153] = (STATES[31] - 0.673519)/(0.999180 - 0.673519);
ALGEBRAIC[158] = (ALGEBRAIC[153]<0.00000 ? 0.00000 : ALGEBRAIC[153]);
ALGEBRAIC[162] =  (1.00000 - ALGEBRAIC[158])*CONSTANTS[77]+ ALGEBRAIC[158]*CONSTANTS[229];
ALGEBRAIC[174] = ALGEBRAIC[162]+CONSTANTS[75];
ALGEBRAIC[178] = ((ALGEBRAIC[174] - STATES[32])+CONSTANTS[71])+CONSTANTS[78];
ALGEBRAIC[166] =  ALGEBRAIC[162]*CONSTANTS[75];
ALGEBRAIC[182] = ((ALGEBRAIC[166] -  STATES[32]*ALGEBRAIC[174])+ CONSTANTS[78]*CONSTANTS[75])+ CONSTANTS[71]*ALGEBRAIC[162];
ALGEBRAIC[170] =  - ALGEBRAIC[166]*STATES[32];
ALGEBRAIC[186] = - ALGEBRAIC[178]/3.00000+ ( (2.00000/3.00000)* pow(( ALGEBRAIC[178]*ALGEBRAIC[178] -  3.00000*ALGEBRAIC[182]), 1.0 / 2))*cos(acos((( ( 9.00000*ALGEBRAIC[178])*ALGEBRAIC[182] -  ( ( 2.00000*ALGEBRAIC[178])*ALGEBRAIC[178])*ALGEBRAIC[178]) -  27.0000*ALGEBRAIC[170])/( 2.00000*pow( ALGEBRAIC[178]*ALGEBRAIC[178] -  3.00000*ALGEBRAIC[182], 1.50000)))/3.00000);
ALGEBRAIC[201] = (ALGEBRAIC[149] - ALGEBRAIC[186])/CONSTANTS[94];
RATES[35] = - ((( CONSTANTS[316]*ALGEBRAIC[291]+ CONSTANTS[317]*ALGEBRAIC[319])+ALGEBRAIC[201])+ALGEBRAIC[209]);
ALGEBRAIC[250] = exp( STATES[50]*CONSTANTS[263]);
ALGEBRAIC[253] = ( ( ( CONSTANTS[107]*STATES[50])*CONSTANTS[275])*(STATES[46] -  CONSTANTS[98]*ALGEBRAIC[250]))/(1.00000 - ALGEBRAIC[250]);
ALGEBRAIC[320] = 1.00000 - 1.00000/(1.00000+pow(ALGEBRAIC[317]/CONSTANTS[108], 2.00000));
ALGEBRAIC[323] =  ( ALGEBRAIC[253]*ALGEBRAIC[320])*STATES[67];
ALGEBRAIC[204] = (STATES[47] - STATES[46])/CONSTANTS[94];
RATES[47] =  CONSTANTS[341]*ALGEBRAIC[323] - ALGEBRAIC[204];
ALGEBRAIC[306] = 1.00000/(1.00000+pow(0.0300000/ALGEBRAIC[194], 2.00000));
ALGEBRAIC[308] =  (1.00000 - ALGEBRAIC[306])*CONSTANTS[161]+ ALGEBRAIC[306]*CONSTANTS[379];
ALGEBRAIC[324] = ( ALGEBRAIC[308]*STATES[30])/CONSTANTS[164];
ALGEBRAIC[310] = (STATES[125] - 0.659100)/(0.994500 - 0.659100);
ALGEBRAIC[312] = (ALGEBRAIC[310]<0.00000 ? 0.00000 : ALGEBRAIC[310]);
ALGEBRAIC[314] =  ALGEBRAIC[312]*STATES[40];
ALGEBRAIC[316] = STATES[40] - ALGEBRAIC[314];
ALGEBRAIC[318] = ALGEBRAIC[312] - ALGEBRAIC[314];
ALGEBRAIC[321] = ((1.00000 - ALGEBRAIC[318]) - ALGEBRAIC[316]) - ALGEBRAIC[314];
ALGEBRAIC[322] = (( ALGEBRAIC[321]*CONSTANTS[159]+ ALGEBRAIC[318]*CONSTANTS[374])+ ALGEBRAIC[316]*CONSTANTS[369])+ ALGEBRAIC[314]*CONSTANTS[376];
ALGEBRAIC[326] = ( ALGEBRAIC[308]*ALGEBRAIC[186])/(ALGEBRAIC[186]+ALGEBRAIC[322]);
ALGEBRAIC[328] = ALGEBRAIC[326] - ALGEBRAIC[324];
RATES[30] = ALGEBRAIC[328] -  CONSTANTS[312]*ALGEBRAIC[211];
ALGEBRAIC[213] =  ( 2.00000*STATES[50])*CONSTANTS[263];
ALGEBRAIC[215] = exp(ALGEBRAIC[213]);
ALGEBRAIC[217] = ( ( ( ( CONSTANTS[101]*2.00000)*CONSTANTS[87])*ALGEBRAIC[213])*( ALGEBRAIC[186]*ALGEBRAIC[215] -  0.341000*CONSTANTS[97]))/(ALGEBRAIC[215] - 1.00000);
ALGEBRAIC[292] = 1.00000+pow(CONSTANTS[134]/ALGEBRAIC[186], 2.00000);
ALGEBRAIC[293] = 1.00000+ CONSTANTS[140]*ALGEBRAIC[285];
ALGEBRAIC[282] = pow(STATES[48], 3.00000);
ALGEBRAIC[294] = ( CONSTANTS[136]*ALGEBRAIC[282]+ CONSTANTS[364]*ALGEBRAIC[186])+ ( CONSTANTS[362]*CONSTANTS[97])*(1.00000+ALGEBRAIC[186]/CONSTANTS[135]);
ALGEBRAIC[295] = ( ( CONSTANTS[135]*CONSTANTS[366])*(1.00000+ALGEBRAIC[282]/CONSTANTS[362])+ ALGEBRAIC[282]*CONSTANTS[97])+ CONSTANTS[366]*ALGEBRAIC[186];
ALGEBRAIC[296] =  ( 0.800000*CONSTANTS[141])*( ( ALGEBRAIC[282]*CONSTANTS[97])*ALGEBRAIC[284] -  ( CONSTANTS[366]*ALGEBRAIC[186])*ALGEBRAIC[285]);
ALGEBRAIC[297] = ALGEBRAIC[296]/( ( ALGEBRAIC[292]*ALGEBRAIC[293])*(ALGEBRAIC[294]+ALGEBRAIC[295]));
ALGEBRAIC[304] = ( CONSTANTS[151]*ALGEBRAIC[186])/(CONSTANTS[152]+ALGEBRAIC[186]);
RATES[32] = ( - CONSTANTS[308]*((ALGEBRAIC[217]+ALGEBRAIC[304]) -  2.00000*ALGEBRAIC[297]) -  CONSTANTS[313]*ALGEBRAIC[328])+ CONSTANTS[318]*ALGEBRAIC[201];
ALGEBRAIC[327] =  - CONSTANTS[238]*log(CONSTANTS[98]/STATES[46]);
ALGEBRAIC[331] =  CONSTANTS[238]*log(CONSTANTS[99]/STATES[126]);
ALGEBRAIC[332] = ALGEBRAIC[331] - ALGEBRAIC[327];
ALGEBRAIC[333] = ( CONSTANTS[91]*ALGEBRAIC[332])/(ALGEBRAIC[332]+CONSTANTS[92]);
ALGEBRAIC[352] =  CONSTANTS[238]*log(CONSTANTS[100]/STATES[48]);
ALGEBRAIC[353] = pow(ALGEBRAIC[352] - ALGEBRAIC[327], 4.00000);
ALGEBRAIC[354] = ( CONSTANTS[93]*ALGEBRAIC[353])/(ALGEBRAIC[353]+CONSTANTS[346]);
ALGEBRAIC[329] =  CONSTANTS[106]*(STATES[50] - ALGEBRAIC[327]);
RATES[46] = (( CONSTANTS[332]*ALGEBRAIC[329]+ALGEBRAIC[354])+ALGEBRAIC[333])+ CONSTANTS[337]*ALGEBRAIC[204];
ALGEBRAIC[355] =  ( ( ( CONSTANTS[241]*pow(STATES[114], 3.00000))*STATES[106])*STATES[107])*(STATES[50] - ALGEBRAIC[352]);
ALGEBRAIC[356] =  ( ( ( CONSTANTS[241]*pow(STATES[108], 3.00000))*STATES[106])*STATES[107])*(STATES[50] - ALGEBRAIC[352]);
ALGEBRAIC[357] =  ( ( ( CONSTANTS[241]*pow(STATES[111], 3.00000))*STATES[109])*STATES[110])*(STATES[50] - ALGEBRAIC[352]);
ALGEBRAIC[358] =  ( ( ( ( CONSTANTS[241]*pow(STATES[114], 3.00000))*STATES[112])*STATES[113])*(STATES[50] - ALGEBRAIC[352]))*1.25000;
ALGEBRAIC[273] = (STATES[105] - 0.239480)/(0.950143 - 0.239480);
ALGEBRAIC[274] = (ALGEBRAIC[273]<0.00000 ? 0.00000 : ALGEBRAIC[273]);
ALGEBRAIC[275] =  ALGEBRAIC[274]*STATES[38];
ALGEBRAIC[276] = STATES[38] - ALGEBRAIC[275];
ALGEBRAIC[277] = ALGEBRAIC[274] - ALGEBRAIC[275];
ALGEBRAIC[278] = ((1.00000 - ALGEBRAIC[277]) - ALGEBRAIC[276]) - ALGEBRAIC[275];
ALGEBRAIC[359] = (( ALGEBRAIC[278]*ALGEBRAIC[357]+ ALGEBRAIC[277]*ALGEBRAIC[358])+ ALGEBRAIC[276]*ALGEBRAIC[356])+ ALGEBRAIC[275]*ALGEBRAIC[355];
ALGEBRAIC[279] =  STATES[50]*CONSTANTS[263];
ALGEBRAIC[280] = exp(ALGEBRAIC[279]);
ALGEBRAIC[281] = ( ( ( CONSTANTS[133]*CONSTANTS[87])*ALGEBRAIC[279])*( STATES[48]*ALGEBRAIC[280] - CONSTANTS[100]))/(ALGEBRAIC[280] - 1.00000);
ALGEBRAIC[300] = ( CONSTANTS[144]*CONSTANTS[242])/(1.00000+exp( - (STATES[50]+92.0000)*CONSTANTS[263]));
ALGEBRAIC[301] =  ALGEBRAIC[300]*pow(STATES[48]/(STATES[48]+CONSTANTS[147]), 3.00000);
ALGEBRAIC[302] =  ALGEBRAIC[300]*pow(STATES[48]/(STATES[48]+CONSTANTS[148]), 3.00000);
ALGEBRAIC[298] = (STATES[115] - 0.126345)/(0.998014 - 0.126345);
ALGEBRAIC[299] = (ALGEBRAIC[298]<0.00000 ? 0.00000 : ALGEBRAIC[298]);
ALGEBRAIC[303] =  (1.00000 - ALGEBRAIC[299])*ALGEBRAIC[301]+ ALGEBRAIC[299]*ALGEBRAIC[302];
ALGEBRAIC[360] =  ( pow(STATES[117], 3.00000)*STATES[116])*(STATES[50] - ALGEBRAIC[352]);
ALGEBRAIC[361] =  0.0160000*ALGEBRAIC[360];
ALGEBRAIC[362] =  0.00650000*ALGEBRAIC[360];
ALGEBRAIC[363] =  (1.00000 - STATES[38])*ALGEBRAIC[362]+ STATES[38]*ALGEBRAIC[361];
ALGEBRAIC[365] = (((ALGEBRAIC[359]+ALGEBRAIC[281])+ALGEBRAIC[363])+ ALGEBRAIC[303]*3.00000)+ ALGEBRAIC[297]*3.00000;
RATES[48] = ( CONSTANTS[407]*ALGEBRAIC[365]+ CONSTANTS[408]*ALGEBRAIC[207])+ALGEBRAIC[354];
ALGEBRAIC[305] = (((ALGEBRAIC[248]+ALGEBRAIC[217])+ALGEBRAIC[304]) -  ALGEBRAIC[297]*2.00000) -  ALGEBRAIC[291]*2.00000;
ALGEBRAIC[330] = ALGEBRAIC[329]+ALGEBRAIC[323];
ALGEBRAIC[334] = STATES[50] - ALGEBRAIC[331];
ALGEBRAIC[335] = 1.02000/(1.00000+exp( 0.238500*(ALGEBRAIC[334] - 59.2150)));
ALGEBRAIC[336] = ( 0.491240*exp( 0.0803200*(ALGEBRAIC[334]+5.47600))+exp( 0.0617500*(ALGEBRAIC[334] - 594.310)))/(1.00000+exp( - 0.514300*(ALGEBRAIC[334]+4.75300)));
ALGEBRAIC[337] =  ( CONSTANTS[239]*(ALGEBRAIC[335]/(ALGEBRAIC[335]+ALGEBRAIC[336])))*ALGEBRAIC[334];
ALGEBRAIC[338] =  ALGEBRAIC[337]*1.20000;
ALGEBRAIC[339] =  (1.00000 - STATES[37])*ALGEBRAIC[337]+ STATES[37]*ALGEBRAIC[338];
ALGEBRAIC[256] = 1.00000/(1.00000+exp((STATES[50]+10.0000)/15.4000));
ALGEBRAIC[340] =  ( ( CONSTANTS[240]*STATES[68])*ALGEBRAIC[256])*(STATES[50] - ALGEBRAIC[331]);
ALGEBRAIC[348] =  CONSTANTS[238]*log((CONSTANTS[99]+ CONSTANTS[165]*CONSTANTS[100])/(STATES[126]+ CONSTANTS[165]*STATES[48]));
ALGEBRAIC[259] =  0.195610*(1.00000+0.600000/(1.00000+pow(3.80000e-05/ALGEBRAIC[186], 1.40000)));
ALGEBRAIC[349] =  ( ALGEBRAIC[259]*(STATES[69]+STATES[70]))*(STATES[50] - ALGEBRAIC[348]);
ALGEBRAIC[350] =  ( ALGEBRAIC[259]*(STATES[71]+STATES[72]))*(STATES[50] - ALGEBRAIC[348]);
ALGEBRAIC[262] = (STATES[103]+CONSTANTS[403])/CONSTANTS[110];
ALGEBRAIC[264] = (ALGEBRAIC[262] - CONSTANTS[404])/(0.785000 - CONSTANTS[404]);
ALGEBRAIC[266] = (ALGEBRAIC[264]<0.00000 ? 0.00000 : ALGEBRAIC[264]);
ALGEBRAIC[351] =  ALGEBRAIC[266]*ALGEBRAIC[350]+ (1.00000 - ALGEBRAIC[266])*ALGEBRAIC[349];
ALGEBRAIC[341] = ( CONSTANTS[123]*(STATES[50] - ALGEBRAIC[331]))/(1.00000+exp((15.0000 - STATES[50])/17.0000));
ALGEBRAIC[342] =  (( CONSTANTS[123]*(STATES[50] - ALGEBRAIC[331]))/(1.00000+exp((36.0000 - STATES[50])/17.0000)))*3.62000;
ALGEBRAIC[268] = (STATES[104] - 0.0589380)/(0.393747 - 0.0589380);
ALGEBRAIC[270] = (ALGEBRAIC[268]<0.00000 ? 0.00000 : ALGEBRAIC[268]);
ALGEBRAIC[343] =  (1.00000 - ALGEBRAIC[270])*ALGEBRAIC[341]+ ALGEBRAIC[270]*ALGEBRAIC[342];
ALGEBRAIC[325] = exp(STATES[50]/550.000);
ALGEBRAIC[344] =  ( ( CONSTANTS[157]*pow(STATES[120], 3.00000))*ALGEBRAIC[325])*(STATES[50] - ALGEBRAIC[331]);
ALGEBRAIC[345] =  ALGEBRAIC[344]*( 0.735600*STATES[121]+ 0.264400*STATES[123]);
ALGEBRAIC[346] =  ALGEBRAIC[344]*( 0.735600*STATES[122]+ 0.264400*STATES[124]);
ALGEBRAIC[347] =  (1.00000 - STATES[39])*ALGEBRAIC[346]+ STATES[39]*ALGEBRAIC[345];
ALGEBRAIC[364] = ((((ALGEBRAIC[339]+ALGEBRAIC[340])+ALGEBRAIC[351])+ALGEBRAIC[343])+ALGEBRAIC[347]) -  2.00000*ALGEBRAIC[303];
ALGEBRAIC[366] = ALGEBRAIC[365]+ ALGEBRAIC[291]*3.00000;
ALGEBRAIC[367] = ((ALGEBRAIC[366]+ALGEBRAIC[364])+ALGEBRAIC[305])+ALGEBRAIC[330];
ALGEBRAIC[368] =  ((VOI - CONSTANTS[213]) -  CONSTANTS[214]*floor((VOI - CONSTANTS[213])/CONSTANTS[214])<CONSTANTS[212] ? 1.00000 : 0.00000)*CONSTANTS[256];
RATES[50] = - (ALGEBRAIC[367]+ALGEBRAIC[368])/1.00000;
RATES[126] =  CONSTANTS[406]*(ALGEBRAIC[364]+ALGEBRAIC[368])+ALGEBRAIC[333];
}
void
computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[3] = CONSTANTS[393] - STATES[4];
ALGEBRAIC[4] = CONSTANTS[396] - STATES[5];
ALGEBRAIC[15] = CONSTANTS[405] - STATES[103];
ALGEBRAIC[25] = 1.00000/(1.00000+exp((STATES[50]+91.0000)/6.10000));
ALGEBRAIC[29] = CONSTANTS[255] - STATES[144];
ALGEBRAIC[33] = (CONSTANTS[322] - STATES[12]) - STATES[11];
ALGEBRAIC[35] = (CONSTANTS[325] - STATES[18]) - STATES[17];
ALGEBRAIC[36] = (CONSTANTS[330] - STATES[26]) - STATES[25];
ALGEBRAIC[11] = 0.0250000/(1.00000+exp((STATES[50]+58.0000)/5.00000));
ALGEBRAIC[39] = 0.200000/(1.00000+exp((STATES[50]+19.0000)/- 9.00000));
ALGEBRAIC[12] = 1.00000/(( 0.000600000*(STATES[50] - 1.73840))/(1.00000 - exp( - 0.136000*(STATES[50] - 1.73840))) - ( 0.000300000*(STATES[50]+38.3608))/(1.00000 - exp( 0.152200*(STATES[50]+38.3608))));
ALGEBRAIC[40] = 1.00000/(1.00000+exp((STATES[50]+10.0850)/- 4.25000));
ALGEBRAIC[13] = 0.00739900/(1.00000+exp(( CONSTANTS[263]*(STATES[50] - 0.0311960))/- 0.800190));
ALGEBRAIC[41] = 0.00569920/(1.00000+exp(( CONSTANTS[263]*(STATES[50] - 0.0415200))/1.34890));
ALGEBRAIC[14] = 0.00994150/(1.00000+exp(( CONSTANTS[263]*(STATES[50] - 0.0448090))/- 0.581720));
ALGEBRAIC[42] = 0.00332010/(1.00000+exp(( CONSTANTS[263]*(STATES[50] - 0.0942170))/0.953640));
ALGEBRAIC[16] = (STATES[50]+CONSTANTS[130]>=- 40.0000 ? 0.00000 :  0.135000*exp(((87.0000+STATES[50])+CONSTANTS[130])/- 6.80000));
ALGEBRAIC[43] = (STATES[50]+CONSTANTS[130]>=- 40.0000 ? 1.00000/( 0.130000*(1.00000+exp(((STATES[50]+CONSTANTS[130])+27.4034)/- 11.1000))) :  3.56000*exp( 0.0790000*((STATES[50]+CONSTANTS[130])+7.00000))+ 310000.*exp( 0.350000*((STATES[50]+CONSTANTS[130])+7.00000)));
ALGEBRAIC[17] = (STATES[50]+CONSTANTS[130]>=- 40.0000 ? 0.00000 : ( ( - 127140.*exp( 0.244400*(STATES[50]+CONSTANTS[130]))+ - 6.94800e-05*exp( - 0.0439100*(STATES[50]+CONSTANTS[130])))*((STATES[50]+CONSTANTS[130])+37.7800))/(1.00000+exp( 0.311000*((STATES[50]+CONSTANTS[130])+79.2300))));
ALGEBRAIC[44] = (STATES[50]+CONSTANTS[130]>=- 40.0000 ? ( 0.300000*exp( - 2.53500e-07*(STATES[50]+CONSTANTS[130])))/(1.00000+exp( - 0.100000*((STATES[50]+CONSTANTS[130])+32.0000))) : ( 0.121200*exp( - 0.0105200*(STATES[50]+CONSTANTS[130])))/(1.00000+exp( - 0.137800*((STATES[50]+CONSTANTS[130])+40.1400))));
ALGEBRAIC[18] = ( 0.320000*(STATES[50]+58.4729))/(1.00000 - exp( - 0.100000*(STATES[50]+58.4729)));
ALGEBRAIC[45] =  0.0800000*exp((13.7299 - STATES[50])/11.0000);
ALGEBRAIC[19] = (STATES[50]>=- 40.0000 ? 0.00000 :  0.135000*exp((87.0000+STATES[50])/- 6.80000));
ALGEBRAIC[46] = (STATES[50]>=- 40.0000 ? 1.00000/( 0.130000*(1.00000+exp((STATES[50]+27.4034)/- 11.1000))) :  3.56000*exp( 0.0790000*(STATES[50]+7.00000))+ 310000.*exp( 0.350000*(STATES[50]+7.00000)));
ALGEBRAIC[20] = (STATES[50]>=- 40.0000 ? 0.00000 : ( ( - 127140.*exp( 0.244400*STATES[50]) -  6.94800e-05*exp( - 0.0439100*STATES[50]))*(STATES[50]+37.7800))/(1.00000+exp( 0.311000*(STATES[50]+79.2300))));
ALGEBRAIC[47] = (STATES[50]>=- 40.0000 ? ( 0.300000*exp( - 2.53500e-07*STATES[50]))/(1.00000+exp( - 0.100000*(STATES[50]+32.0000))) : ( 0.121200*exp( - 0.0105200*STATES[50]))/(1.00000+exp( - 0.137800*(STATES[50]+40.1400))));
ALGEBRAIC[21] = ( 0.320000*(STATES[50]+58.4729))/(1.00000 - exp( - 0.100000*(STATES[50]+58.4729)));
ALGEBRAIC[48] =  0.0800000*exp((13.7299 - STATES[50])/11.0000);
ALGEBRAIC[22] = (STATES[50]>=- 40.0000 ? 0.00000 :  0.135000*exp(((87.0000+STATES[50])+CONSTANTS[132])/- 6.80000));
ALGEBRAIC[49] = (STATES[50]>=- 40.0000 ? (1.00000/0.130000)/(1.00000+exp(((STATES[50]+CONSTANTS[132])+27.4034)/- 11.1000)) :  3.56000*exp( 0.0790000*((STATES[50]+CONSTANTS[132])+7.00000))+ 310000.*exp( 0.350000*((STATES[50]+CONSTANTS[132])+7.00000)));
ALGEBRAIC[23] = (STATES[50]>=- 40.0000 ? 0.00000 : ( ( - 127140.*exp( 0.244400*(STATES[50]+CONSTANTS[132])) -  6.94800e-05*exp( - 0.0439100*(STATES[50]+CONSTANTS[132])))*((STATES[50]+CONSTANTS[132])+37.7800))/(1.00000+exp( 0.311000*((STATES[50]+CONSTANTS[132])+79.2300))));
ALGEBRAIC[50] = (STATES[50]>=- 40.0000 ? ( 0.300000*exp( - 2.53500e-07*(STATES[50]+CONSTANTS[132])))/(1.00000+exp( - 0.100000*((STATES[50]+CONSTANTS[132])+32.0000))) : ( 0.121200*exp( - 0.0105200*(STATES[50]+CONSTANTS[132])))/(1.00000+exp( - 0.137800*((STATES[50]+CONSTANTS[132])+40.1400))));
ALGEBRAIC[24] = ( 0.320000*((STATES[50]+CONSTANTS[131])+58.4729))/(1.00000 - exp( - 0.100000*((STATES[50]+CONSTANTS[131])+58.4729)));
ALGEBRAIC[51] =  0.0800000*exp(((STATES[50]+CONSTANTS[131]) - 13.7299)/- 11.0000);
ALGEBRAIC[26] = ( 0.320000*(STATES[50]+47.1300))/(1.00000 - exp( - 0.100000*(STATES[50]+47.1300)));
ALGEBRAIC[52] =  0.0800000*exp(STATES[50]/- 11.0000);
ALGEBRAIC[57] = (CONSTANTS[323] - STATES[14]) - STATES[13];
ALGEBRAIC[60] = (CONSTANTS[331] - STATES[28]) - STATES[27];
ALGEBRAIC[27] = 1.00000/(1.00000+exp((STATES[50]+9.43700)/- 7.13300));
ALGEBRAIC[53] = 1.00000/(1.00000+exp((STATES[50] - 18.4099)/- 29.3814));
ALGEBRAIC[65] = 1.00000/(1.00000+exp((STATES[50]+100.000)/29.3814));
ALGEBRAIC[77] = 1.00000/(ALGEBRAIC[53]/1.20890+ 3.50000*ALGEBRAIC[65]);
ALGEBRAIC[66] = ((1.00000/(1.00000+exp((STATES[50]+19.0000)/- 9.00000)))/0.500000)/9.79530;
ALGEBRAIC[28] = 1.00000/(1.00000+exp((STATES[50]+58.0000)/5.00000));
ALGEBRAIC[78] =  0.0479600*ALGEBRAIC[28];
ALGEBRAIC[79] =  0.0214400*ALGEBRAIC[28];
ALGEBRAIC[54] = (1.00000/(1.00000+exp((STATES[50]+60.0000)/5.00000)))/250.000;
ALGEBRAIC[80] =  2.46000*ALGEBRAIC[54];
ALGEBRAIC[81] =  0.560340*ALGEBRAIC[54];
ALGEBRAIC[63] =  0.0906540*exp( ( - 0.111570*STATES[50])*CONSTANTS[263]);
ALGEBRAIC[91] = 0.388390/(1.00000+exp(( CONSTANTS[263]*(STATES[50]+0.150190))/- 0.606930));
ALGEBRAIC[75] = 0.00311240+(0.0283300 - 0.00311240)/(1.00000+exp(( CONSTANTS[263]*(STATES[50]+0.0516600))/1.55220));
ALGEBRAIC[64] =  0.0657000*exp( ( - 0.118990*STATES[50])*CONSTANTS[263]);
ALGEBRAIC[93] = 0.563560/(1.00000+exp(( CONSTANTS[263]*(STATES[50]+0.179860))/- 0.583810));
ALGEBRAIC[76] = 0.000385250+(0.0124060 - 0.000385250)/(1.00000+exp(( CONSTANTS[263]*(STATES[50]+0.0641180))/0.779920));
ALGEBRAIC[92] =  0.000441980*exp( ( - 1.20220*STATES[50])*CONSTANTS[263]);
ALGEBRAIC[103] =  0.000401730*exp( ( 0.000208730*STATES[50])*CONSTANTS[263]);
ALGEBRAIC[94] =  0.000237300*exp( ( - 1.97420*STATES[50])*CONSTANTS[263]);
ALGEBRAIC[104] =  0.000226520*exp( ( 0.000246900*STATES[50])*CONSTANTS[263]);
ALGEBRAIC[5] = ( ( CONSTANTS[36]*CONSTANTS[35])*CONSTANTS[319] - STATES[8]) - STATES[7];
ALGEBRAIC[34] = ( ALGEBRAIC[5]*(CONSTANTS[59]+CONSTANTS[51]) -  STATES[14]*(CONSTANTS[51]+CONSTANTS[59]))+ ( CONSTANTS[49]*CONSTANTS[51])*(1.00000+CONSTANTS[59]/CONSTANTS[54]);
ALGEBRAIC[58] =  ( - STATES[14]*CONSTANTS[49])*CONSTANTS[51];
ALGEBRAIC[70] = (- ALGEBRAIC[34]+ pow(( ALGEBRAIC[34]*ALGEBRAIC[34] -  ( 4.00000*CONSTANTS[222])*ALGEBRAIC[58]), 1.0 / 2))/( 2.00000*CONSTANTS[222]);
ALGEBRAIC[86] = ALGEBRAIC[5]/(1.00000+ (ALGEBRAIC[70]/CONSTANTS[49])*(1.00000+CONSTANTS[59]/CONSTANTS[51]));
ALGEBRAIC[98] = ( ALGEBRAIC[70]*ALGEBRAIC[86])/CONSTANTS[49];
ALGEBRAIC[108] = ( ALGEBRAIC[98]*CONSTANTS[59])/CONSTANTS[51];
ALGEBRAIC[8] = ( ( CONSTANTS[215]*CONSTANTS[35])*CONSTANTS[326] - STATES[21]) - STATES[20];
ALGEBRAIC[37] = ( ALGEBRAIC[8]*(CONSTANTS[59]+CONSTANTS[51]) -  STATES[28]*(CONSTANTS[51]+CONSTANTS[59]))+ ( CONSTANTS[49]*CONSTANTS[51])*(1.00000+CONSTANTS[59]/CONSTANTS[54]);
ALGEBRAIC[61] =  ( - STATES[28]*CONSTANTS[49])*CONSTANTS[51];
ALGEBRAIC[73] = (- ALGEBRAIC[37]+ pow(( ALGEBRAIC[37]*ALGEBRAIC[37] -  ( 4.00000*CONSTANTS[225])*ALGEBRAIC[61]), 1.0 / 2))/( 2.00000*CONSTANTS[225]);
ALGEBRAIC[89] = ALGEBRAIC[8]/(1.00000+ (ALGEBRAIC[73]/CONSTANTS[49])*(1.00000+CONSTANTS[59]/CONSTANTS[51]));
ALGEBRAIC[101] = ( ALGEBRAIC[73]*ALGEBRAIC[89])/CONSTANTS[49];
ALGEBRAIC[111] =  (CONSTANTS[59]/CONSTANTS[51])*ALGEBRAIC[101];
ALGEBRAIC[7] = ( ( CONSTANTS[216]*CONSTANTS[295])*CONSTANTS[321] - STATES[2]) - STATES[15];
ALGEBRAIC[59] = ( ALGEBRAIC[7]*(CONSTANTS[47]+CONSTANTS[59]) -  ALGEBRAIC[35]*(CONSTANTS[47]+CONSTANTS[59]))+ ( CONSTANTS[46]*CONSTANTS[47])*(1.00000+CONSTANTS[59]/CONSTANTS[48]);
ALGEBRAIC[71] =  ( - ALGEBRAIC[35]*CONSTANTS[47])*CONSTANTS[46];
ALGEBRAIC[87] = (- ALGEBRAIC[59]+ pow(( ALGEBRAIC[59]*ALGEBRAIC[59] -  ( 4.00000*CONSTANTS[224])*ALGEBRAIC[71]), 1.0 / 2))/( 2.00000*CONSTANTS[224]);
ALGEBRAIC[99] = ALGEBRAIC[7]/(1.00000+ (ALGEBRAIC[87]/CONSTANTS[46])*(1.00000+CONSTANTS[59]/CONSTANTS[47]));
ALGEBRAIC[110] = ( ( CONSTANTS[59]*ALGEBRAIC[87])*ALGEBRAIC[99])/( CONSTANTS[46]*CONSTANTS[47]);
ALGEBRAIC[119] = ( ALGEBRAIC[99]*ALGEBRAIC[87])/CONSTANTS[46];
ALGEBRAIC[118] = ( CONSTANTS[59]*ALGEBRAIC[87])/CONSTANTS[48];
ALGEBRAIC[130] = ((CONSTANTS[399] - STATES[142]) - STATES[141]) - STATES[140];
ALGEBRAIC[1] = pow( STATES[3]*1.00000, CONSTANTS[12]);
ALGEBRAIC[31] =  CONSTANTS[6]*(CONSTANTS[8]+ALGEBRAIC[1]/(CONSTANTS[3]+ALGEBRAIC[1]));
ALGEBRAIC[67] =  ( ALGEBRAIC[31]*CONSTANTS[329])*CONSTANTS[227];
ALGEBRAIC[83] = ( CONSTANTS[236]*(STATES[43] - STATES[45]))/CONSTANTS[309];
ALGEBRAIC[96] = ( CONSTANTS[237]*(STATES[45] - STATES[44]))/CONSTANTS[309];
ALGEBRAIC[107] = ( CONSTANTS[349]*CONSTANTS[185])/(1.00000+CONSTANTS[170]/STATES[45]);
ALGEBRAIC[116] = ( (CONSTANTS[372]+ (CONSTANTS[174] - 1.00000)*STATES[131])*CONSTANTS[187])/(1.00000+CONSTANTS[172]/STATES[45]);
ALGEBRAIC[124] = ALGEBRAIC[107]+ALGEBRAIC[116];
ALGEBRAIC[134] = (( ( - CONSTANTS[268]*ALGEBRAIC[130])*STATES[45]+ CONSTANTS[276]*STATES[142]) -  ( CONSTANTS[269]*STATES[142])*STATES[45])+ CONSTANTS[277]*STATES[141];
ALGEBRAIC[140] = ((CONSTANTS[380] - STATES[134]) - STATES[133]) - STATES[132];
ALGEBRAIC[2] = pow( STATES[1]*1.00000, CONSTANTS[13]);
ALGEBRAIC[32] = pow( STATES[1]*1.00000, CONSTANTS[14]);
ALGEBRAIC[56] =  ( CONSTANTS[7]*(CONSTANTS[9]+ALGEBRAIC[2]/(CONSTANTS[4]+ALGEBRAIC[2])))*(1.00000 - ( (1.00000 - ( CONSTANTS[15]*ALGEBRAIC[32])/(CONSTANTS[5]+ALGEBRAIC[32]))*STATES[0])/(CONSTANTS[2]+STATES[0]));
ALGEBRAIC[82] =  ( ALGEBRAIC[56]*CONSTANTS[320])*CONSTANTS[227];
ALGEBRAIC[95] = ( CONSTANTS[236]*(STATES[43] - STATES[45]))/CONSTANTS[306];
ALGEBRAIC[105] = ( CONSTANTS[235]*(STATES[43] - STATES[44]))/CONSTANTS[306];
ALGEBRAIC[114] = ( CONSTANTS[347]*CONSTANTS[185])/(1.00000+CONSTANTS[170]/STATES[43]);
ALGEBRAIC[122] = ( (CONSTANTS[377]+ (CONSTANTS[174] - 1.00000)*STATES[127])*CONSTANTS[186])/(1.00000+CONSTANTS[171]/STATES[43]);
ALGEBRAIC[128] = ( (CONSTANTS[370]+ (CONSTANTS[174] - 1.00000)*STATES[129])*CONSTANTS[187])/(1.00000+CONSTANTS[172]/STATES[43]);
ALGEBRAIC[135] = (ALGEBRAIC[114]+ALGEBRAIC[122])+ALGEBRAIC[128];
ALGEBRAIC[145] = (( ( - CONSTANTS[199]*ALGEBRAIC[140])*STATES[43]+ CONSTANTS[246]*STATES[134]) -  ( CONSTANTS[200]*STATES[134])*STATES[43])+ CONSTANTS[247]*STATES[133];
ALGEBRAIC[150] = ((CONSTANTS[335] - STATES[138]) - STATES[137]) - STATES[136];
ALGEBRAIC[0] = pow( STATES[2]*1.00000, CONSTANTS[12]);
ALGEBRAIC[55] =  CONSTANTS[6]*(CONSTANTS[8]+ALGEBRAIC[0]/(CONSTANTS[3]+ALGEBRAIC[0]));
ALGEBRAIC[68] =  ( ALGEBRAIC[55]*CONSTANTS[324])*CONSTANTS[227];
ALGEBRAIC[30] = pow( STATES[2]*1.00000, CONSTANTS[13]);
ALGEBRAIC[84] =  CONSTANTS[7]*(CONSTANTS[9]+ALGEBRAIC[30]/(CONSTANTS[4]+ALGEBRAIC[30]));
ALGEBRAIC[106] =  ( ALGEBRAIC[84]*CONSTANTS[328])*CONSTANTS[227];
ALGEBRAIC[115] = ( CONSTANTS[235]*(STATES[43] - STATES[44]))/CONSTANTS[307];
ALGEBRAIC[123] = ( CONSTANTS[237]*(STATES[45] - STATES[44]))/CONSTANTS[307];
ALGEBRAIC[129] = ( CONSTANTS[348]*CONSTANTS[185])/(1.00000+CONSTANTS[170]/STATES[44]);
ALGEBRAIC[136] = ( (CONSTANTS[378]+ (CONSTANTS[174] - 1.00000)*STATES[128])*CONSTANTS[186])/(1.00000+CONSTANTS[171]/STATES[44]);
ALGEBRAIC[141] = ( (CONSTANTS[371]+ (CONSTANTS[174] - 1.00000)*STATES[130])*CONSTANTS[187])/(1.00000+CONSTANTS[172]/STATES[44]);
ALGEBRAIC[146] = (ALGEBRAIC[129]+ALGEBRAIC[136])+ALGEBRAIC[141];
ALGEBRAIC[154] = (( ( - CONSTANTS[249]*ALGEBRAIC[150])*STATES[44]+ CONSTANTS[265]*STATES[138]) -  ( CONSTANTS[250]*STATES[138])*STATES[44])+ CONSTANTS[266]*STATES[137];
ALGEBRAIC[6] = ( ( CONSTANTS[37]*CONSTANTS[295])*CONSTANTS[319] - STATES[1]) - STATES[9];
ALGEBRAIC[69] = (((CONSTANTS[258]+CONSTANTS[271])/CONSTANTS[223]+ALGEBRAIC[33])+ALGEBRAIC[57]) - ALGEBRAIC[6];
ALGEBRAIC[85] = (( CONSTANTS[271]*(ALGEBRAIC[33] - ALGEBRAIC[6])+ CONSTANTS[258]*(ALGEBRAIC[57] - ALGEBRAIC[6]))+CONSTANTS[279])/CONSTANTS[223];
ALGEBRAIC[97] = ( ALGEBRAIC[6]*CONSTANTS[279])/CONSTANTS[223];
ALGEBRAIC[109] = ((( (- ALGEBRAIC[97]/27.0000)*pow(ALGEBRAIC[69], 3.00000) - ( ( ( ALGEBRAIC[69]*ALGEBRAIC[69])*ALGEBRAIC[85])*ALGEBRAIC[85])/108.000)+( ( ALGEBRAIC[69]*ALGEBRAIC[85])*ALGEBRAIC[97])/6.00000)+pow(ALGEBRAIC[85], 3.00000)/27.0000)+( ALGEBRAIC[97]*ALGEBRAIC[97])/4.00000;
ALGEBRAIC[117] = (ALGEBRAIC[109]<0.00000 ?  pow(- ALGEBRAIC[109], 1.0 / 2) : 0.00000);
ALGEBRAIC[125] = (((ALGEBRAIC[109]>0.00000 ?  pow(ALGEBRAIC[109], 1.0 / 2) : 0.00000)+ALGEBRAIC[97]/2.00000)+( ALGEBRAIC[69]*ALGEBRAIC[85])/6.00000) - pow(ALGEBRAIC[69], 3.00000)/27.0000;
ALGEBRAIC[131] = atan(ALGEBRAIC[117]/ALGEBRAIC[125])/3.00000;
ALGEBRAIC[137] = pow( ALGEBRAIC[125]*ALGEBRAIC[125]+ ALGEBRAIC[117]*ALGEBRAIC[117], 1.00000/6.00000);
ALGEBRAIC[142] = (ALGEBRAIC[85]/3.00000 - ( ALGEBRAIC[69]*ALGEBRAIC[69])/9.00000)/( ALGEBRAIC[137]*ALGEBRAIC[137]);
ALGEBRAIC[147] =  ( ALGEBRAIC[137]* sin(ALGEBRAIC[131]))*(1.00000+ALGEBRAIC[142]);
ALGEBRAIC[151] =  ( ALGEBRAIC[137]*cos(ALGEBRAIC[131]))*(1.00000 - ALGEBRAIC[142]) - ALGEBRAIC[69]/3.00000;
ALGEBRAIC[156] =  pow(( ALGEBRAIC[151]*ALGEBRAIC[151]+ ALGEBRAIC[147]*ALGEBRAIC[147]), 1.0 / 2);
ALGEBRAIC[160] = ALGEBRAIC[33]/((1.00000+CONSTANTS[59]/CONSTANTS[48])+( ALGEBRAIC[156]*(CONSTANTS[47]+CONSTANTS[59]))/( CONSTANTS[46]*CONSTANTS[47]));
ALGEBRAIC[164] = ( CONSTANTS[59]*ALGEBRAIC[160])/CONSTANTS[48];
ALGEBRAIC[168] = ( ( CONSTANTS[59]*ALGEBRAIC[160])*ALGEBRAIC[156])/( CONSTANTS[46]*CONSTANTS[47]);
ALGEBRAIC[9] = ( ( CONSTANTS[38]*CONSTANTS[295])*CONSTANTS[326] - STATES[3]) - STATES[23];
ALGEBRAIC[72] = (((CONSTANTS[259]+CONSTANTS[272])/CONSTANTS[226]+ALGEBRAIC[36])+ALGEBRAIC[60]) - ALGEBRAIC[9];
ALGEBRAIC[88] = (( CONSTANTS[272]*(ALGEBRAIC[36] - ALGEBRAIC[9])+ CONSTANTS[259]*(ALGEBRAIC[60] - ALGEBRAIC[9]))+CONSTANTS[280])/CONSTANTS[226];
ALGEBRAIC[100] = ( ALGEBRAIC[9]*CONSTANTS[280])/CONSTANTS[226];
ALGEBRAIC[112] = ((( (- ALGEBRAIC[100]/27.0000)*pow(ALGEBRAIC[72], 3.00000) - ( ( ( ALGEBRAIC[72]*ALGEBRAIC[72])*ALGEBRAIC[88])*ALGEBRAIC[88])/108.000)+( ( ALGEBRAIC[72]*ALGEBRAIC[88])*ALGEBRAIC[100])/6.00000)+pow(ALGEBRAIC[88], 3.00000)/27.0000)+( ALGEBRAIC[100]*ALGEBRAIC[100])/4.00000;
ALGEBRAIC[120] = (ALGEBRAIC[112]<0.00000 ?  pow(- ALGEBRAIC[112], 1.0 / 2) : 0.00000);
ALGEBRAIC[126] = (((ALGEBRAIC[112]>0.00000 ?  pow(ALGEBRAIC[112], 1.0 / 2) : 0.00000)+ALGEBRAIC[100]/2.00000)+( ALGEBRAIC[72]*ALGEBRAIC[88])/6.00000) - pow(ALGEBRAIC[72], 3.00000)/27.0000;
ALGEBRAIC[132] = atan(ALGEBRAIC[120]/ALGEBRAIC[126])/3.00000;
ALGEBRAIC[138] = pow( ALGEBRAIC[126]*ALGEBRAIC[126]+ ALGEBRAIC[120]*ALGEBRAIC[120], 1.00000/6.00000);
ALGEBRAIC[143] = (ALGEBRAIC[88]/3.00000 - ( ALGEBRAIC[72]*ALGEBRAIC[72])/9.00000)/( ALGEBRAIC[138]*ALGEBRAIC[138]);
ALGEBRAIC[148] =  ( ALGEBRAIC[138]* sin(ALGEBRAIC[132]))*(1.00000+ALGEBRAIC[143]);
ALGEBRAIC[152] =  ( ALGEBRAIC[138]*cos(ALGEBRAIC[132]))*(1.00000 - ALGEBRAIC[143]) - ALGEBRAIC[72]/3.00000;
ALGEBRAIC[157] =  pow(( ALGEBRAIC[152]*ALGEBRAIC[152]+ ALGEBRAIC[148]*ALGEBRAIC[148]), 1.0 / 2);
ALGEBRAIC[161] = ALGEBRAIC[36]/((1.00000+CONSTANTS[59]/CONSTANTS[48])+( ALGEBRAIC[157]*(CONSTANTS[47]+CONSTANTS[59]))/( CONSTANTS[46]*CONSTANTS[47]));
ALGEBRAIC[165] = ( CONSTANTS[59]*ALGEBRAIC[161])/CONSTANTS[48];
ALGEBRAIC[169] = ( ( CONSTANTS[59]*ALGEBRAIC[161])*ALGEBRAIC[157])/( CONSTANTS[46]*CONSTANTS[47]);
ALGEBRAIC[176] = ALGEBRAIC[57]/((1.00000+CONSTANTS[59]/CONSTANTS[53])+( ALGEBRAIC[156]*(CONSTANTS[52]+CONSTANTS[59]))/( CONSTANTS[50]*CONSTANTS[52]));
ALGEBRAIC[180] = ( CONSTANTS[59]*ALGEBRAIC[176])/CONSTANTS[53];
ALGEBRAIC[184] = ( ( CONSTANTS[59]*ALGEBRAIC[176])*ALGEBRAIC[156])/( CONSTANTS[50]*CONSTANTS[52]);
ALGEBRAIC[177] = ALGEBRAIC[60]/((1.00000+CONSTANTS[59]/CONSTANTS[53])+( ALGEBRAIC[157]*(CONSTANTS[52]+CONSTANTS[59]))/( CONSTANTS[50]*CONSTANTS[52]));
ALGEBRAIC[181] = ( CONSTANTS[59]*ALGEBRAIC[177])/CONSTANTS[53];
ALGEBRAIC[185] = ( ( CONSTANTS[59]*ALGEBRAIC[177])*ALGEBRAIC[157])/( CONSTANTS[50]*CONSTANTS[52]);
ALGEBRAIC[188] = ALGEBRAIC[168]+ CONSTANTS[60]*ALGEBRAIC[184];
ALGEBRAIC[172] = ( ALGEBRAIC[160]*ALGEBRAIC[156])/CONSTANTS[46];
ALGEBRAIC[192] = ( ALGEBRAIC[176]*ALGEBRAIC[156])/CONSTANTS[50];
ALGEBRAIC[196] = ALGEBRAIC[172]+ CONSTANTS[60]*ALGEBRAIC[192];
ALGEBRAIC[189] = ALGEBRAIC[169]+ CONSTANTS[63]*ALGEBRAIC[185];
ALGEBRAIC[173] = ( ALGEBRAIC[161]*ALGEBRAIC[157])/CONSTANTS[46];
ALGEBRAIC[193] = ( ALGEBRAIC[177]*ALGEBRAIC[157])/CONSTANTS[50];
ALGEBRAIC[197] = ALGEBRAIC[173]+ CONSTANTS[63]*ALGEBRAIC[193];
ALGEBRAIC[133] = CONSTANTS[274] - STATES[35];
ALGEBRAIC[139] = CONSTANTS[262] -  STATES[35]*CONSTANTS[261];
ALGEBRAIC[144] =  - CONSTANTS[230]*STATES[35];
ALGEBRAIC[149] = - ALGEBRAIC[133]/3.00000+ ( (2.00000/3.00000)* pow(( ALGEBRAIC[133]*ALGEBRAIC[133] -  3.00000*ALGEBRAIC[139]), 1.0 / 2))*cos(acos((( ( 9.00000*ALGEBRAIC[133])*ALGEBRAIC[139] -  ( ( 2.00000*ALGEBRAIC[133])*ALGEBRAIC[133])*ALGEBRAIC[133]) -  27.0000*ALGEBRAIC[144])/( 2.00000*pow( ALGEBRAIC[133]*ALGEBRAIC[133] -  3.00000*ALGEBRAIC[139], 1.50000)))/3.00000);
ALGEBRAIC[190] = ( CONSTANTS[79]*(1.00000 - STATES[42]))/(1.00000+CONSTANTS[81]/ALGEBRAIC[149]);
ALGEBRAIC[194] = ALGEBRAIC[190]+STATES[42];
ALGEBRAIC[199] = ALGEBRAIC[194]/(ALGEBRAIC[194]+CONSTANTS[80]);
ALGEBRAIC[200] = 1.00000/(1.00000+pow(CONSTANTS[80]/ALGEBRAIC[194], 2.00000));
ALGEBRAIC[198] = (CONSTANTS[205] - CONSTANTS[208])+STATES[144];
ALGEBRAIC[203] =  0.500000*( pow((pow(ALGEBRAIC[198], 2.00000)+ ( 4.00000*CONSTANTS[205])*CONSTANTS[208]), 1.0 / 2) - ALGEBRAIC[198]);
ALGEBRAIC[206] = (CONSTANTS[28]/CONSTANTS[319]+CONSTANTS[82]/CONSTANTS[326])+ALGEBRAIC[203]/CONSTANTS[321];
ALGEBRAIC[155] = 1.00000/( (1.00000+exp((4.79800+STATES[50])/- 7.56990))*(1.00000+exp((25.0000+STATES[50])/- 5.00000)));
ALGEBRAIC[195] = 0.590000+( 0.800000*exp( 0.0520000*(STATES[50]+13.0000)))/(1.00000+exp( 0.132000*(STATES[50]+13.0000)));
ALGEBRAIC[202] = ALGEBRAIC[155]/ALGEBRAIC[195];
ALGEBRAIC[205] = (1.00000 - ALGEBRAIC[155])/ALGEBRAIC[195];
ALGEBRAIC[179] = 1.00000+pow(0.00200000/ALGEBRAIC[149], 4.00000);
ALGEBRAIC[183] = 6.00000/ALGEBRAIC[179];
ALGEBRAIC[163] = 1.00000/(1.00000+exp((29.9790+STATES[50])/3.17750));
ALGEBRAIC[171] = (0.100000+ALGEBRAIC[163])/1.10000;
ALGEBRAIC[214] = 1.00000/( ( 70.0000*(1.00000 -  0.500000*STATES[36]))*(1.00000+exp((STATES[50]+49.1000)/10.3490)));
ALGEBRAIC[216] = 1.00000/(1.00000+exp((STATES[50]+0.213000)/- 10.8070));
ALGEBRAIC[221] = 1.00000/(ALGEBRAIC[214]+ALGEBRAIC[216]/38.4940);
ALGEBRAIC[224] = ALGEBRAIC[171]/ALGEBRAIC[221];
ALGEBRAIC[233] = (1.00000 - ALGEBRAIC[171])/ALGEBRAIC[221];
ALGEBRAIC[167] = (0.000100000+ALGEBRAIC[163])/1.00010;
ALGEBRAIC[159] =  0.100000*STATES[36];
ALGEBRAIC[175] = 1.00000+pow(0.0100000/ALGEBRAIC[149], 10.0000);
ALGEBRAIC[187] = (32.5000 - (18.0000 - ALGEBRAIC[159])/ALGEBRAIC[179]) - 10.0000/ALGEBRAIC[175];
ALGEBRAIC[218] = 1.00000/(ALGEBRAIC[214]+ALGEBRAIC[216]/ALGEBRAIC[187]);
ALGEBRAIC[227] = ALGEBRAIC[167]/ALGEBRAIC[218];
ALGEBRAIC[239] = (1.00000 - ALGEBRAIC[167])/ALGEBRAIC[218];
ALGEBRAIC[230] = (fabs(ALGEBRAIC[227])<1.00000e-12 ? 1.00000e-12 : ALGEBRAIC[227]);
ALGEBRAIC[236] = (fabs(ALGEBRAIC[233])<1.00000e-12 ? 1.00000e-12 : ALGEBRAIC[233]);
ALGEBRAIC[242] = ( CONSTANTS[103]*( ( ALGEBRAIC[224]*ALGEBRAIC[239])*ALGEBRAIC[183]))/( ( ALGEBRAIC[236]*ALGEBRAIC[230])*CONSTANTS[102]);
ALGEBRAIC[62] = CONSTANTS[274] - STATES[33];
ALGEBRAIC[74] = CONSTANTS[262] -  STATES[33]*CONSTANTS[261];
ALGEBRAIC[90] =  - CONSTANTS[230]*STATES[33];
ALGEBRAIC[102] = - ALGEBRAIC[62]/3.00000+ ( (2.00000/3.00000)* pow(( ALGEBRAIC[62]*ALGEBRAIC[62] -  3.00000*ALGEBRAIC[74]), 1.0 / 2))*cos(acos((( ( 9.00000*ALGEBRAIC[62])*ALGEBRAIC[74] -  ( ( 2.00000*ALGEBRAIC[62])*ALGEBRAIC[62])*ALGEBRAIC[62]) -  27.0000*ALGEBRAIC[90])/( 2.00000*pow( ALGEBRAIC[62]*ALGEBRAIC[62] -  3.00000*ALGEBRAIC[74], 1.50000)))/3.00000);
ALGEBRAIC[209] = (ALGEBRAIC[149] - ALGEBRAIC[102])/CONSTANTS[95];
ALGEBRAIC[10] = (STATES[4]+CONSTANTS[392])/CONSTANTS[17];
ALGEBRAIC[220] = (ALGEBRAIC[10] - CONSTANTS[397])/(0.927300 - CONSTANTS[397]);
ALGEBRAIC[223] = (ALGEBRAIC[220]<0.00000 ? 0.00000 : ALGEBRAIC[220]);
ALGEBRAIC[226] =  0.000257900*(1.00000+ 0.100000*STATES[36]);
ALGEBRAIC[229] = exp( ( 2.00000*STATES[50])*CONSTANTS[263]);
ALGEBRAIC[232] = ( ( ( ( ALGEBRAIC[226]*4.00000)*STATES[50])*CONSTANTS[275])*( ALGEBRAIC[149]*ALGEBRAIC[229] -  0.341000*CONSTANTS[97]))/(ALGEBRAIC[229] - 1.00000);
ALGEBRAIC[235] =  ALGEBRAIC[232]*(STATES[55]+STATES[58]);
ALGEBRAIC[238] =  0.000155200*(1.00000+ 0.400000*STATES[36]);
ALGEBRAIC[241] = exp( ( 2.00000*STATES[50])*CONSTANTS[263]);
ALGEBRAIC[244] = ( ( ( ( ALGEBRAIC[238]*4.00000)*STATES[50])*CONSTANTS[275])*( ALGEBRAIC[149]*ALGEBRAIC[241] -  0.341000*CONSTANTS[97]))/(ALGEBRAIC[241] - 1.00000);
ALGEBRAIC[246] =  ALGEBRAIC[244]*(STATES[63]+STATES[66]);
ALGEBRAIC[248] =  (1.00000 - ALGEBRAIC[223])*ALGEBRAIC[246]+ ALGEBRAIC[223]*ALGEBRAIC[235];
ALGEBRAIC[191] = 1.00000/( (1.00000+exp((13.5600 - STATES[50])/9.45000))*(1.00000+exp((25.0000+STATES[50])/- 5.00000)));
ALGEBRAIC[208] = ALGEBRAIC[191]/ALGEBRAIC[195];
ALGEBRAIC[210] = (1.00000 - ALGEBRAIC[191])/ALGEBRAIC[195];
ALGEBRAIC[234] = 1.00000+pow(0.00110000/ALGEBRAIC[149], 4.00000);
ALGEBRAIC[237] = 14.9186/ALGEBRAIC[234];
ALGEBRAIC[219] = 1.00000/(1.00000+exp((17.5000+STATES[50])/3.00000));
ALGEBRAIC[225] = (0.247400+ALGEBRAIC[219])/1.24740;
ALGEBRAIC[228] = 1.00000/(ALGEBRAIC[214]+ALGEBRAIC[216]/26.5530);
ALGEBRAIC[245] = ALGEBRAIC[225]/ALGEBRAIC[228];
ALGEBRAIC[251] = (1.00000 - ALGEBRAIC[225])/ALGEBRAIC[228];
ALGEBRAIC[222] = (0.00100000+ALGEBRAIC[219])/1.00100;
ALGEBRAIC[212] =  5.00000*STATES[36];
ALGEBRAIC[231] = 1.00000+pow(0.0120000/ALGEBRAIC[149], 10.0000);
ALGEBRAIC[240] = (13.8250 - (6.38360 - ALGEBRAIC[212])/ALGEBRAIC[234]) - 3.36960/ALGEBRAIC[231];
ALGEBRAIC[243] = 1.00000/(ALGEBRAIC[214]+ALGEBRAIC[216]/ALGEBRAIC[240]);
ALGEBRAIC[247] = ALGEBRAIC[222]/ALGEBRAIC[243];
ALGEBRAIC[257] = (1.00000 - ALGEBRAIC[222])/ALGEBRAIC[243];
ALGEBRAIC[249] = (fabs(ALGEBRAIC[247])<1.00000e-12 ? 1.00000e-12 : ALGEBRAIC[247]);
ALGEBRAIC[254] = (fabs(ALGEBRAIC[251])<1.00000e-12 ? 1.00000e-12 : ALGEBRAIC[251]);
ALGEBRAIC[260] = ( CONSTANTS[105]*( ( ALGEBRAIC[245]*ALGEBRAIC[257])*ALGEBRAIC[237]))/( ( ALGEBRAIC[254]*ALGEBRAIC[249])*CONSTANTS[104]);
ALGEBRAIC[252] =  CONSTANTS[243]*(1.00000+ 2.00000*STATES[41]);
ALGEBRAIC[255] =  0.112500*ALGEBRAIC[252];
ALGEBRAIC[113] = (CONSTANTS[72]+CONSTANTS[73]) - STATES[34];
ALGEBRAIC[121] =  STATES[34]*CONSTANTS[73];
ALGEBRAIC[127] = ( pow(( ALGEBRAIC[113]*ALGEBRAIC[113]+ 4.00000*ALGEBRAIC[121]), 1.0 / 2) - ALGEBRAIC[113])/2.00000;
ALGEBRAIC[269] = ( ALGEBRAIC[248]*1.00000)/(1.00000+pow(1.00000/ALGEBRAIC[127], 8.00000));
ALGEBRAIC[271] =  ALGEBRAIC[255]*ALGEBRAIC[269];
ALGEBRAIC[263] = 1.00000+0.0123000/ALGEBRAIC[127];
ALGEBRAIC[265] = ALGEBRAIC[252]/ALGEBRAIC[263];
ALGEBRAIC[258] =  CONSTANTS[243]*(1.00000+ 0.00000*STATES[41]);
ALGEBRAIC[261] =  0.112500*ALGEBRAIC[258];
ALGEBRAIC[272] =  ( 1.99250*ALGEBRAIC[261])*ALGEBRAIC[269];
ALGEBRAIC[267] = ( 0.535700*ALGEBRAIC[258])/ALGEBRAIC[263];
ALGEBRAIC[286] = 1.00000+pow(CONSTANTS[134]/ALGEBRAIC[149], 2.00000);
ALGEBRAIC[285] = exp( ( (CONSTANTS[139] - 1.00000)*STATES[50])*CONSTANTS[263]);
ALGEBRAIC[287] = 1.00000+ CONSTANTS[140]*ALGEBRAIC[285];
ALGEBRAIC[283] = pow(STATES[49], 3.00000);
ALGEBRAIC[288] = ( CONSTANTS[136]*ALGEBRAIC[283]+ CONSTANTS[364]*ALGEBRAIC[149])+ ( CONSTANTS[362]*CONSTANTS[97])*(1.00000+ALGEBRAIC[149]/CONSTANTS[135]);
ALGEBRAIC[289] = ( ( CONSTANTS[135]*CONSTANTS[366])*(1.00000+ALGEBRAIC[283]/CONSTANTS[362])+ ALGEBRAIC[283]*CONSTANTS[97])+ CONSTANTS[366]*ALGEBRAIC[149];
ALGEBRAIC[284] = exp( ( CONSTANTS[139]*STATES[50])*CONSTANTS[263]);
ALGEBRAIC[290] =  ( 0.200000*CONSTANTS[141])*( ( ALGEBRAIC[283]*CONSTANTS[97])*ALGEBRAIC[284] -  ( CONSTANTS[366]*ALGEBRAIC[149])*ALGEBRAIC[285]);
ALGEBRAIC[291] = ALGEBRAIC[290]/( ( ALGEBRAIC[286]*ALGEBRAIC[287])*(ALGEBRAIC[288]+ALGEBRAIC[289]));
ALGEBRAIC[207] = (STATES[49] - STATES[48])/CONSTANTS[94];
ALGEBRAIC[38] = (STATES[5]+CONSTANTS[395])/CONSTANTS[30];
ALGEBRAIC[311] = (ALGEBRAIC[38] - CONSTANTS[398])/(0.958600 - CONSTANTS[398]);
ALGEBRAIC[313] = (ALGEBRAIC[311]<0.00000 ? 0.00000 : ALGEBRAIC[311]);
ALGEBRAIC[317] =  (1.00000 - ALGEBRAIC[313])*STATES[118]+ ALGEBRAIC[313]*STATES[119];
ALGEBRAIC[307] =  ( CONSTANTS[155]*exp(ALGEBRAIC[127]/CONSTANTS[153]))*(ALGEBRAIC[127] - ALGEBRAIC[149]);
ALGEBRAIC[309] =  ( CONSTANTS[156]*exp(ALGEBRAIC[127]/CONSTANTS[154]))*(ALGEBRAIC[127] - ALGEBRAIC[149]);
ALGEBRAIC[315] =  (1.00000 - ALGEBRAIC[313])*ALGEBRAIC[307]+ ALGEBRAIC[313]*ALGEBRAIC[309];
ALGEBRAIC[319] = ALGEBRAIC[315]+ALGEBRAIC[317];
ALGEBRAIC[211] = (STATES[30] - ALGEBRAIC[127])/CONSTANTS[96];
ALGEBRAIC[153] = (STATES[31] - 0.673519)/(0.999180 - 0.673519);
ALGEBRAIC[158] = (ALGEBRAIC[153]<0.00000 ? 0.00000 : ALGEBRAIC[153]);
ALGEBRAIC[162] =  (1.00000 - ALGEBRAIC[158])*CONSTANTS[77]+ ALGEBRAIC[158]*CONSTANTS[229];
ALGEBRAIC[174] = ALGEBRAIC[162]+CONSTANTS[75];
ALGEBRAIC[178] = ((ALGEBRAIC[174] - STATES[32])+CONSTANTS[71])+CONSTANTS[78];
ALGEBRAIC[166] =  ALGEBRAIC[162]*CONSTANTS[75];
ALGEBRAIC[182] = ((ALGEBRAIC[166] -  STATES[32]*ALGEBRAIC[174])+ CONSTANTS[78]*CONSTANTS[75])+ CONSTANTS[71]*ALGEBRAIC[162];
ALGEBRAIC[170] =  - ALGEBRAIC[166]*STATES[32];
ALGEBRAIC[186] = - ALGEBRAIC[178]/3.00000+ ( (2.00000/3.00000)* pow(( ALGEBRAIC[178]*ALGEBRAIC[178] -  3.00000*ALGEBRAIC[182]), 1.0 / 2))*cos(acos((( ( 9.00000*ALGEBRAIC[178])*ALGEBRAIC[182] -  ( ( 2.00000*ALGEBRAIC[178])*ALGEBRAIC[178])*ALGEBRAIC[178]) -  27.0000*ALGEBRAIC[170])/( 2.00000*pow( ALGEBRAIC[178]*ALGEBRAIC[178] -  3.00000*ALGEBRAIC[182], 1.50000)))/3.00000);
ALGEBRAIC[201] = (ALGEBRAIC[149] - ALGEBRAIC[186])/CONSTANTS[94];
ALGEBRAIC[250] = exp( STATES[50]*CONSTANTS[263]);
ALGEBRAIC[253] = ( ( ( CONSTANTS[107]*STATES[50])*CONSTANTS[275])*(STATES[46] -  CONSTANTS[98]*ALGEBRAIC[250]))/(1.00000 - ALGEBRAIC[250]);
ALGEBRAIC[320] = 1.00000 - 1.00000/(1.00000+pow(ALGEBRAIC[317]/CONSTANTS[108], 2.00000));
ALGEBRAIC[323] =  ( ALGEBRAIC[253]*ALGEBRAIC[320])*STATES[67];
ALGEBRAIC[204] = (STATES[47] - STATES[46])/CONSTANTS[94];
ALGEBRAIC[306] = 1.00000/(1.00000+pow(0.0300000/ALGEBRAIC[194], 2.00000));
ALGEBRAIC[308] =  (1.00000 - ALGEBRAIC[306])*CONSTANTS[161]+ ALGEBRAIC[306]*CONSTANTS[379];
ALGEBRAIC[324] = ( ALGEBRAIC[308]*STATES[30])/CONSTANTS[164];
ALGEBRAIC[310] = (STATES[125] - 0.659100)/(0.994500 - 0.659100);
ALGEBRAIC[312] = (ALGEBRAIC[310]<0.00000 ? 0.00000 : ALGEBRAIC[310]);
ALGEBRAIC[314] =  ALGEBRAIC[312]*STATES[40];
ALGEBRAIC[316] = STATES[40] - ALGEBRAIC[314];
ALGEBRAIC[318] = ALGEBRAIC[312] - ALGEBRAIC[314];
ALGEBRAIC[321] = ((1.00000 - ALGEBRAIC[318]) - ALGEBRAIC[316]) - ALGEBRAIC[314];
ALGEBRAIC[322] = (( ALGEBRAIC[321]*CONSTANTS[159]+ ALGEBRAIC[318]*CONSTANTS[374])+ ALGEBRAIC[316]*CONSTANTS[369])+ ALGEBRAIC[314]*CONSTANTS[376];
ALGEBRAIC[326] = ( ALGEBRAIC[308]*ALGEBRAIC[186])/(ALGEBRAIC[186]+ALGEBRAIC[322]);
ALGEBRAIC[328] = ALGEBRAIC[326] - ALGEBRAIC[324];
ALGEBRAIC[213] =  ( 2.00000*STATES[50])*CONSTANTS[263];
ALGEBRAIC[215] = exp(ALGEBRAIC[213]);
ALGEBRAIC[217] = ( ( ( ( CONSTANTS[101]*2.00000)*CONSTANTS[87])*ALGEBRAIC[213])*( ALGEBRAIC[186]*ALGEBRAIC[215] -  0.341000*CONSTANTS[97]))/(ALGEBRAIC[215] - 1.00000);
ALGEBRAIC[292] = 1.00000+pow(CONSTANTS[134]/ALGEBRAIC[186], 2.00000);
ALGEBRAIC[293] = 1.00000+ CONSTANTS[140]*ALGEBRAIC[285];
ALGEBRAIC[282] = pow(STATES[48], 3.00000);
ALGEBRAIC[294] = ( CONSTANTS[136]*ALGEBRAIC[282]+ CONSTANTS[364]*ALGEBRAIC[186])+ ( CONSTANTS[362]*CONSTANTS[97])*(1.00000+ALGEBRAIC[186]/CONSTANTS[135]);
ALGEBRAIC[295] = ( ( CONSTANTS[135]*CONSTANTS[366])*(1.00000+ALGEBRAIC[282]/CONSTANTS[362])+ ALGEBRAIC[282]*CONSTANTS[97])+ CONSTANTS[366]*ALGEBRAIC[186];
ALGEBRAIC[296] =  ( 0.800000*CONSTANTS[141])*( ( ALGEBRAIC[282]*CONSTANTS[97])*ALGEBRAIC[284] -  ( CONSTANTS[366]*ALGEBRAIC[186])*ALGEBRAIC[285]);
ALGEBRAIC[297] = ALGEBRAIC[296]/( ( ALGEBRAIC[292]*ALGEBRAIC[293])*(ALGEBRAIC[294]+ALGEBRAIC[295]));
ALGEBRAIC[304] = ( CONSTANTS[151]*ALGEBRAIC[186])/(CONSTANTS[152]+ALGEBRAIC[186]);
ALGEBRAIC[327] =  - CONSTANTS[238]*log(CONSTANTS[98]/STATES[46]);
ALGEBRAIC[331] =  CONSTANTS[238]*log(CONSTANTS[99]/STATES[126]);
ALGEBRAIC[332] = ALGEBRAIC[331] - ALGEBRAIC[327];
ALGEBRAIC[333] = ( CONSTANTS[91]*ALGEBRAIC[332])/(ALGEBRAIC[332]+CONSTANTS[92]);
ALGEBRAIC[352] =  CONSTANTS[238]*log(CONSTANTS[100]/STATES[48]);
ALGEBRAIC[353] = pow(ALGEBRAIC[352] - ALGEBRAIC[327], 4.00000);
ALGEBRAIC[354] = ( CONSTANTS[93]*ALGEBRAIC[353])/(ALGEBRAIC[353]+CONSTANTS[346]);
ALGEBRAIC[329] =  CONSTANTS[106]*(STATES[50] - ALGEBRAIC[327]);
ALGEBRAIC[355] =  ( ( ( CONSTANTS[241]*pow(STATES[114], 3.00000))*STATES[106])*STATES[107])*(STATES[50] - ALGEBRAIC[352]);
ALGEBRAIC[356] =  ( ( ( CONSTANTS[241]*pow(STATES[108], 3.00000))*STATES[106])*STATES[107])*(STATES[50] - ALGEBRAIC[352]);
ALGEBRAIC[357] =  ( ( ( CONSTANTS[241]*pow(STATES[111], 3.00000))*STATES[109])*STATES[110])*(STATES[50] - ALGEBRAIC[352]);
ALGEBRAIC[358] =  ( ( ( ( CONSTANTS[241]*pow(STATES[114], 3.00000))*STATES[112])*STATES[113])*(STATES[50] - ALGEBRAIC[352]))*1.25000;
ALGEBRAIC[273] = (STATES[105] - 0.239480)/(0.950143 - 0.239480);
ALGEBRAIC[274] = (ALGEBRAIC[273]<0.00000 ? 0.00000 : ALGEBRAIC[273]);
ALGEBRAIC[275] =  ALGEBRAIC[274]*STATES[38];
ALGEBRAIC[276] = STATES[38] - ALGEBRAIC[275];
ALGEBRAIC[277] = ALGEBRAIC[274] - ALGEBRAIC[275];
ALGEBRAIC[278] = ((1.00000 - ALGEBRAIC[277]) - ALGEBRAIC[276]) - ALGEBRAIC[275];
ALGEBRAIC[359] = (( ALGEBRAIC[278]*ALGEBRAIC[357]+ ALGEBRAIC[277]*ALGEBRAIC[358])+ ALGEBRAIC[276]*ALGEBRAIC[356])+ ALGEBRAIC[275]*ALGEBRAIC[355];
ALGEBRAIC[279] =  STATES[50]*CONSTANTS[263];
ALGEBRAIC[280] = exp(ALGEBRAIC[279]);
ALGEBRAIC[281] = ( ( ( CONSTANTS[133]*CONSTANTS[87])*ALGEBRAIC[279])*( STATES[48]*ALGEBRAIC[280] - CONSTANTS[100]))/(ALGEBRAIC[280] - 1.00000);
ALGEBRAIC[300] = ( CONSTANTS[144]*CONSTANTS[242])/(1.00000+exp( - (STATES[50]+92.0000)*CONSTANTS[263]));
ALGEBRAIC[301] =  ALGEBRAIC[300]*pow(STATES[48]/(STATES[48]+CONSTANTS[147]), 3.00000);
ALGEBRAIC[302] =  ALGEBRAIC[300]*pow(STATES[48]/(STATES[48]+CONSTANTS[148]), 3.00000);
ALGEBRAIC[298] = (STATES[115] - 0.126345)/(0.998014 - 0.126345);
ALGEBRAIC[299] = (ALGEBRAIC[298]<0.00000 ? 0.00000 : ALGEBRAIC[298]);
ALGEBRAIC[303] =  (1.00000 - ALGEBRAIC[299])*ALGEBRAIC[301]+ ALGEBRAIC[299]*ALGEBRAIC[302];
ALGEBRAIC[360] =  ( pow(STATES[117], 3.00000)*STATES[116])*(STATES[50] - ALGEBRAIC[352]);
ALGEBRAIC[361] =  0.0160000*ALGEBRAIC[360];
ALGEBRAIC[362] =  0.00650000*ALGEBRAIC[360];
ALGEBRAIC[363] =  (1.00000 - STATES[38])*ALGEBRAIC[362]+ STATES[38]*ALGEBRAIC[361];
ALGEBRAIC[365] = (((ALGEBRAIC[359]+ALGEBRAIC[281])+ALGEBRAIC[363])+ ALGEBRAIC[303]*3.00000)+ ALGEBRAIC[297]*3.00000;
ALGEBRAIC[305] = (((ALGEBRAIC[248]+ALGEBRAIC[217])+ALGEBRAIC[304]) -  ALGEBRAIC[297]*2.00000) -  ALGEBRAIC[291]*2.00000;
ALGEBRAIC[330] = ALGEBRAIC[329]+ALGEBRAIC[323];
ALGEBRAIC[334] = STATES[50] - ALGEBRAIC[331];
ALGEBRAIC[335] = 1.02000/(1.00000+exp( 0.238500*(ALGEBRAIC[334] - 59.2150)));
ALGEBRAIC[336] = ( 0.491240*exp( 0.0803200*(ALGEBRAIC[334]+5.47600))+exp( 0.0617500*(ALGEBRAIC[334] - 594.310)))/(1.00000+exp( - 0.514300*(ALGEBRAIC[334]+4.75300)));
ALGEBRAIC[337] =  ( CONSTANTS[239]*(ALGEBRAIC[335]/(ALGEBRAIC[335]+ALGEBRAIC[336])))*ALGEBRAIC[334];
ALGEBRAIC[338] =  ALGEBRAIC[337]*1.20000;
ALGEBRAIC[339] =  (1.00000 - STATES[37])*ALGEBRAIC[337]+ STATES[37]*ALGEBRAIC[338];
ALGEBRAIC[256] = 1.00000/(1.00000+exp((STATES[50]+10.0000)/15.4000));
ALGEBRAIC[340] =  ( ( CONSTANTS[240]*STATES[68])*ALGEBRAIC[256])*(STATES[50] - ALGEBRAIC[331]);
ALGEBRAIC[348] =  CONSTANTS[238]*log((CONSTANTS[99]+ CONSTANTS[165]*CONSTANTS[100])/(STATES[126]+ CONSTANTS[165]*STATES[48]));
ALGEBRAIC[259] =  0.195610*(1.00000+0.600000/(1.00000+pow(3.80000e-05/ALGEBRAIC[186], 1.40000)));
ALGEBRAIC[349] =  ( ALGEBRAIC[259]*(STATES[69]+STATES[70]))*(STATES[50] - ALGEBRAIC[348]);
ALGEBRAIC[350] =  ( ALGEBRAIC[259]*(STATES[71]+STATES[72]))*(STATES[50] - ALGEBRAIC[348]);
ALGEBRAIC[262] = (STATES[103]+CONSTANTS[403])/CONSTANTS[110];
ALGEBRAIC[264] = (ALGEBRAIC[262] - CONSTANTS[404])/(0.785000 - CONSTANTS[404]);
ALGEBRAIC[266] = (ALGEBRAIC[264]<0.00000 ? 0.00000 : ALGEBRAIC[264]);
ALGEBRAIC[351] =  ALGEBRAIC[266]*ALGEBRAIC[350]+ (1.00000 - ALGEBRAIC[266])*ALGEBRAIC[349];
ALGEBRAIC[341] = ( CONSTANTS[123]*(STATES[50] - ALGEBRAIC[331]))/(1.00000+exp((15.0000 - STATES[50])/17.0000));
ALGEBRAIC[342] =  (( CONSTANTS[123]*(STATES[50] - ALGEBRAIC[331]))/(1.00000+exp((36.0000 - STATES[50])/17.0000)))*3.62000;
ALGEBRAIC[268] = (STATES[104] - 0.0589380)/(0.393747 - 0.0589380);
ALGEBRAIC[270] = (ALGEBRAIC[268]<0.00000 ? 0.00000 : ALGEBRAIC[268]);
ALGEBRAIC[343] =  (1.00000 - ALGEBRAIC[270])*ALGEBRAIC[341]+ ALGEBRAIC[270]*ALGEBRAIC[342];
ALGEBRAIC[325] = exp(STATES[50]/550.000);
ALGEBRAIC[344] =  ( ( CONSTANTS[157]*pow(STATES[120], 3.00000))*ALGEBRAIC[325])*(STATES[50] - ALGEBRAIC[331]);
ALGEBRAIC[345] =  ALGEBRAIC[344]*( 0.735600*STATES[121]+ 0.264400*STATES[123]);
ALGEBRAIC[346] =  ALGEBRAIC[344]*( 0.735600*STATES[122]+ 0.264400*STATES[124]);
ALGEBRAIC[347] =  (1.00000 - STATES[39])*ALGEBRAIC[346]+ STATES[39]*ALGEBRAIC[345];
ALGEBRAIC[364] = ((((ALGEBRAIC[339]+ALGEBRAIC[340])+ALGEBRAIC[351])+ALGEBRAIC[343])+ALGEBRAIC[347]) -  2.00000*ALGEBRAIC[303];
ALGEBRAIC[366] = ALGEBRAIC[365]+ ALGEBRAIC[291]*3.00000;
ALGEBRAIC[367] = ((ALGEBRAIC[366]+ALGEBRAIC[364])+ALGEBRAIC[305])+ALGEBRAIC[330];
ALGEBRAIC[368] =  ((VOI - CONSTANTS[213]) -  CONSTANTS[214]*floor((VOI - CONSTANTS[213])/CONSTANTS[214])<CONSTANTS[212] ? 1.00000 : 0.00000)*CONSTANTS[256];
}