Generated Code
The following is c code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
/* There are a total of 198 entries in the algebraic variable array. There are a total of 41 entries in each of the rate and state variable arrays. There are a total of 140 entries in the constant variable array. */ /* * VOI is time in component environment (millisecond). * CONSTANTS[0] is celltype in component environment (dimensionless). * CONSTANTS[1] is nao in component extracellular (millimolar). * CONSTANTS[2] is cao in component extracellular (millimolar). * CONSTANTS[3] is ko in component extracellular (millimolar). * CONSTANTS[4] is R in component physical_constants (joule_per_kilomole_kelvin). * CONSTANTS[5] is T in component physical_constants (kelvin). * CONSTANTS[6] is F in component physical_constants (coulomb_per_mole). * CONSTANTS[7] is zna in component physical_constants (dimensionless). * CONSTANTS[8] is zca in component physical_constants (dimensionless). * CONSTANTS[9] is zk in component physical_constants (dimensionless). * CONSTANTS[10] is L in component cell_geometry (centimeter). * CONSTANTS[11] is rad in component cell_geometry (centimeter). * CONSTANTS[105] is vcell in component cell_geometry (microliter). * CONSTANTS[114] is Ageo in component cell_geometry (centimeter_squared). * CONSTANTS[118] is Acap in component cell_geometry (centimeter_squared). * CONSTANTS[119] is vmyo in component cell_geometry (microliter). * CONSTANTS[120] is vnsr in component cell_geometry (microliter). * CONSTANTS[121] is vjsr in component cell_geometry (microliter). * CONSTANTS[122] is vss in component cell_geometry (microliter). * STATES[0] is v in component membrane (millivolt). * ALGEBRAIC[29] is vffrt in component membrane (coulomb_per_mole). * ALGEBRAIC[39] is vfrt in component membrane (dimensionless). * ALGEBRAIC[62] is INa in component INa (microA_per_microF). * ALGEBRAIC[64] is INaL in component INaL (microA_per_microF). * ALGEBRAIC[70] is Ito in component Ito (microA_per_microF). * ALGEBRAIC[81] is ICaL in component ICaL (microA_per_microF). * ALGEBRAIC[82] is ICaNa in component ICaL (microA_per_microF). * ALGEBRAIC[85] is ICaK in component ICaL (microA_per_microF). * ALGEBRAIC[96] is IKr in component IKr (microA_per_microF). * ALGEBRAIC[98] is IKs in component IKs (microA_per_microF). * ALGEBRAIC[100] is IK1 in component IK1 (microA_per_microF). * ALGEBRAIC[132] is INaCa_i in component INaCa_i (microA_per_microF). * ALGEBRAIC[162] is INaCa_ss in component INaCa_i (microA_per_microF). * ALGEBRAIC[181] is INaK in component INaK (microA_per_microF). * ALGEBRAIC[184] is INab in component INab (microA_per_microF). * ALGEBRAIC[183] is IKb in component IKb (microA_per_microF). * ALGEBRAIC[188] is IpCa in component IpCa (microA_per_microF). * ALGEBRAIC[186] is ICab in component ICab (microA_per_microF). * ALGEBRAIC[12] is Istim in component membrane (microA_per_microF). * CONSTANTS[12] is amp in component membrane (microA_per_microF). * CONSTANTS[13] is duration in component membrane (millisecond). * CONSTANTS[14] is stimStart in component membrane (millisecond). * CONSTANTS[15] is KmCaMK in component CaMK (millimolar). * CONSTANTS[16] is aCaMK in component CaMK (per_millimolar_per_millisecond). * CONSTANTS[17] is bCaMK in component CaMK (per_millisecond). * CONSTANTS[18] is CaMKo in component CaMK (dimensionless). * CONSTANTS[19] is KmCaM in component CaMK (millimolar). * ALGEBRAIC[45] is CaMKb in component CaMK (millimolar). * ALGEBRAIC[47] is CaMKa in component CaMK (millimolar). * STATES[1] is CaMKt in component CaMK (millimolar). * STATES[2] is cass in component intracellular_ions (millimolar). * CONSTANTS[20] is cmdnmax_b in component intracellular_ions (millimolar). * CONSTANTS[94] is cmdnmax in component intracellular_ions (millimolar). * CONSTANTS[21] is kmcmdn in component intracellular_ions (millimolar). * CONSTANTS[22] is trpnmax in component intracellular_ions (millimolar). * CONSTANTS[23] is kmtrpn in component intracellular_ions (millimolar). * CONSTANTS[24] is BSRmax in component intracellular_ions (millimolar). * CONSTANTS[25] is KmBSR in component intracellular_ions (millimolar). * CONSTANTS[26] is BSLmax in component intracellular_ions (millimolar). * CONSTANTS[27] is KmBSL in component intracellular_ions (millimolar). * CONSTANTS[28] is csqnmax in component intracellular_ions (millimolar). * CONSTANTS[29] is kmcsqn in component intracellular_ions (millimolar). * STATES[3] is nai in component intracellular_ions (millimolar). * STATES[4] is nass in component intracellular_ions (millimolar). * STATES[5] is ki in component intracellular_ions (millimolar). * STATES[6] is kss in component intracellular_ions (millimolar). * STATES[7] is cansr in component intracellular_ions (millimolar). * STATES[8] is cajsr in component intracellular_ions (millimolar). * STATES[9] is cai in component intracellular_ions (millimolar). * ALGEBRAIC[187] is JdiffNa in component diff (millimolar_per_millisecond). * ALGEBRAIC[189] is Jdiff in component diff (millimolar_per_millisecond). * ALGEBRAIC[196] is Jup in component SERCA (millimolar_per_millisecond). * ALGEBRAIC[185] is JdiffK in component diff (millimolar_per_millisecond). * ALGEBRAIC[191] is Jrel in component ryr (millimolar_per_millisecond). * ALGEBRAIC[197] is Jtr in component trans_flux (millimolar_per_millisecond). * ALGEBRAIC[49] is Bcai in component intracellular_ions (dimensionless). * ALGEBRAIC[53] is Bcajsr in component intracellular_ions (dimensionless). * ALGEBRAIC[51] is Bcass in component intracellular_ions (dimensionless). * CONSTANTS[30] is cm in component intracellular_ions (microF_per_centimeter_squared). * CONSTANTS[31] is PKNa in component reversal_potentials (dimensionless). * ALGEBRAIC[56] is ENa in component reversal_potentials (millivolt). * ALGEBRAIC[57] is EK in component reversal_potentials (millivolt). * ALGEBRAIC[58] is EKs in component reversal_potentials (millivolt). * ALGEBRAIC[0] is mss in component INa (dimensionless). * ALGEBRAIC[13] is tm in component INa (millisecond). * CONSTANTS[32] is mssV1 in component INa (millivolt). * CONSTANTS[33] is mssV2 in component INa (millivolt). * CONSTANTS[34] is mtV1 in component INa (millivolt). * CONSTANTS[35] is mtV2 in component INa (millivolt). * CONSTANTS[36] is mtD1 in component INa (dimensionless). * CONSTANTS[37] is mtD2 in component INa (dimensionless). * CONSTANTS[38] is mtV3 in component INa (millivolt). * CONSTANTS[39] is mtV4 in component INa (millivolt). * STATES[10] is m in component INa (dimensionless). * ALGEBRAIC[1] is hss in component INa (dimensionless). * ALGEBRAIC[14] is thf in component INa (millisecond). * ALGEBRAIC[15] is ths in component INa (millisecond). * CONSTANTS[40] is hssV1 in component INa (millivolt). * CONSTANTS[41] is hssV2 in component INa (millivolt). * CONSTANTS[95] is Ahs in component INa (dimensionless). * CONSTANTS[42] is Ahf in component INa (dimensionless). * STATES[11] is hf in component INa (dimensionless). * STATES[12] is hs in component INa (dimensionless). * ALGEBRAIC[59] is h in component INa (dimensionless). * CONSTANTS[43] is GNa in component INa (milliS_per_microF). * ALGEBRAIC[16] is jss in component INa (dimensionless). * ALGEBRAIC[30] is tj in component INa (millisecond). * STATES[13] is j in component INa (dimensionless). * ALGEBRAIC[31] is hssp in component INa (dimensionless). * ALGEBRAIC[40] is thsp in component INa (millisecond). * STATES[14] is hsp in component INa (dimensionless). * ALGEBRAIC[60] is hp in component INa (dimensionless). * ALGEBRAIC[41] is tjp in component INa (millisecond). * STATES[15] is jp in component INa (dimensionless). * ALGEBRAIC[61] is fINap in component INa (dimensionless). * ALGEBRAIC[32] is mLss in component INaL (dimensionless). * ALGEBRAIC[42] is tmL in component INaL (millisecond). * STATES[16] is mL in component INaL (dimensionless). * CONSTANTS[44] is thL in component INaL (millisecond). * ALGEBRAIC[2] is hLss in component INaL (dimensionless). * STATES[17] is hL in component INaL (dimensionless). * ALGEBRAIC[3] is hLssp in component INaL (dimensionless). * CONSTANTS[96] is thLp in component INaL (millisecond). * STATES[18] is hLp in component INaL (dimensionless). * CONSTANTS[45] is GNaL_b in component INaL (milliS_per_microF). * CONSTANTS[97] is GNaL in component INaL (milliS_per_microF). * ALGEBRAIC[63] is fINaLp in component INaL (dimensionless). * CONSTANTS[46] is Gto_b in component Ito (milliS_per_microF). * ALGEBRAIC[4] is ass in component Ito (dimensionless). * ALGEBRAIC[17] is ta in component Ito (millisecond). * STATES[19] is a in component Ito (dimensionless). * ALGEBRAIC[5] is iss in component Ito (dimensionless). * ALGEBRAIC[18] is delta_epi in component Ito (dimensionless). * ALGEBRAIC[33] is tiF_b in component Ito (millisecond). * ALGEBRAIC[43] is tiS_b in component Ito (millisecond). * ALGEBRAIC[46] is tiF in component Ito (millisecond). * ALGEBRAIC[48] is tiS in component Ito (millisecond). * ALGEBRAIC[65] is AiF in component Ito (dimensionless). * ALGEBRAIC[66] is AiS in component Ito (dimensionless). * STATES[20] is iF in component Ito (dimensionless). * STATES[21] is iS in component Ito (dimensionless). * ALGEBRAIC[67] is i in component Ito (dimensionless). * ALGEBRAIC[34] is assp in component Ito (dimensionless). * STATES[22] is ap in component Ito (dimensionless). * ALGEBRAIC[50] is dti_develop in component Ito (dimensionless). * ALGEBRAIC[52] is dti_recover in component Ito (dimensionless). * ALGEBRAIC[54] is tiFp in component Ito (millisecond). * ALGEBRAIC[55] is tiSp in component Ito (millisecond). * STATES[23] is iFp in component Ito (dimensionless). * STATES[24] is iSp in component Ito (dimensionless). * ALGEBRAIC[68] is ip in component Ito (dimensionless). * CONSTANTS[98] is Gto in component Ito (milliS_per_microF). * ALGEBRAIC[69] is fItop in component Ito (dimensionless). * CONSTANTS[47] is Kmn in component ICaL (millimolar). * CONSTANTS[48] is k2n in component ICaL (per_millisecond). * CONSTANTS[49] is PCa_b in component ICaL (dimensionless). * ALGEBRAIC[6] is dss in component ICaL (dimensionless). * STATES[25] is d in component ICaL (dimensionless). * ALGEBRAIC[7] is fss in component ICaL (dimensionless). * CONSTANTS[99] is Aff in component ICaL (dimensionless). * CONSTANTS[110] is Afs in component ICaL (dimensionless). * STATES[26] is ff in component ICaL (dimensionless). * STATES[27] is fs in component ICaL (dimensionless). * ALGEBRAIC[71] is f in component ICaL (dimensionless). * ALGEBRAIC[19] is fcass in component ICaL (dimensionless). * ALGEBRAIC[72] is Afcaf in component ICaL (dimensionless). * ALGEBRAIC[73] is Afcas in component ICaL (dimensionless). * STATES[28] is fcaf in component ICaL (dimensionless). * STATES[29] is fcas in component ICaL (dimensionless). * ALGEBRAIC[74] is fca in component ICaL (dimensionless). * STATES[30] is jca in component ICaL (dimensionless). * STATES[31] is ffp in component ICaL (dimensionless). * ALGEBRAIC[75] is fp in component ICaL (dimensionless). * STATES[32] is fcafp in component ICaL (dimensionless). * ALGEBRAIC[76] is fcap in component ICaL (dimensionless). * ALGEBRAIC[8] is km2n in component ICaL (per_millisecond). * ALGEBRAIC[20] is anca in component ICaL (dimensionless). * STATES[33] is nca in component ICaL (dimensionless). * ALGEBRAIC[77] is PhiCaL in component ICaL (dimensionless). * ALGEBRAIC[78] is PhiCaNa in component ICaL (dimensionless). * ALGEBRAIC[79] is PhiCaK in component ICaL (dimensionless). * CONSTANTS[100] is PCa in component ICaL (dimensionless). * CONSTANTS[111] is PCap in component ICaL (dimensionless). * CONSTANTS[112] is PCaNa in component ICaL (dimensionless). * CONSTANTS[113] is PCaK in component ICaL (dimensionless). * CONSTANTS[116] is PCaNap in component ICaL (dimensionless). * CONSTANTS[117] is PCaKp in component ICaL (dimensionless). * ALGEBRAIC[80] is fICaLp in component ICaL (dimensionless). * ALGEBRAIC[21] is td in component ICaL (millisecond). * ALGEBRAIC[22] is tff in component ICaL (millisecond). * ALGEBRAIC[23] is tfs in component ICaL (millisecond). * ALGEBRAIC[35] is tfcaf in component ICaL (millisecond). * ALGEBRAIC[36] is tfcas in component ICaL (millisecond). * CONSTANTS[101] is tjca in component ICaL (millisecond). * ALGEBRAIC[37] is tffp in component ICaL (millisecond). * ALGEBRAIC[44] is tfcafp in component ICaL (millisecond). * CONSTANTS[50] is GKr_b in component IKr (milliS_per_microF). * CONSTANTS[102] is GKr in component IKr (milliS_per_microF). * ALGEBRAIC[9] is xrss in component IKr (dimensionless). * ALGEBRAIC[24] is txrf in component IKr (millisecond). * ALGEBRAIC[25] is txrs in component IKr (millisecond). * ALGEBRAIC[88] is Axrf in component IKr (dimensionless). * ALGEBRAIC[91] is Axrs in component IKr (dimensionless). * STATES[34] is xrf in component IKr (dimensionless). * STATES[35] is xrs in component IKr (dimensionless). * ALGEBRAIC[94] is xr in component IKr (dimensionless). * ALGEBRAIC[95] is rkr in component IKr (dimensionless). * CONSTANTS[51] is GKs_b in component IKs (milliS_per_microF). * CONSTANTS[103] is GKs in component IKs (milliS_per_microF). * ALGEBRAIC[10] is xs1ss in component IKs (dimensionless). * ALGEBRAIC[26] is xs2ss in component IKs (dimensionless). * ALGEBRAIC[27] is txs1 in component IKs (millisecond). * STATES[36] is xs1 in component IKs (dimensionless). * STATES[37] is xs2 in component IKs (dimensionless). * ALGEBRAIC[97] is KsCa in component IKs (dimensionless). * ALGEBRAIC[38] is txs2 in component IKs (millisecond). * CONSTANTS[104] is GK1 in component IK1 (milliS_per_microF). * CONSTANTS[52] is GK1_b in component IK1 (milliS_per_microF). * ALGEBRAIC[11] is xk1ss in component IK1 (dimensionless). * ALGEBRAIC[28] is txk1 in component IK1 (millisecond). * STATES[38] is xk1 in component IK1 (dimensionless). * ALGEBRAIC[99] is rk1 in component IK1 (millisecond). * CONSTANTS[53] is kna1 in component INaCa_i (per_millisecond). * CONSTANTS[54] is kna2 in component INaCa_i (per_millisecond). * CONSTANTS[55] is kna3 in component INaCa_i (per_millisecond). * CONSTANTS[56] is kasymm in component INaCa_i (dimensionless). * CONSTANTS[57] is wna in component INaCa_i (dimensionless). * CONSTANTS[58] is wca in component INaCa_i (dimensionless). * CONSTANTS[59] is wnaca in component INaCa_i (dimensionless). * CONSTANTS[60] is kcaon in component INaCa_i (per_millisecond). * CONSTANTS[61] is kcaoff in component INaCa_i (per_millisecond). * CONSTANTS[62] is qna in component INaCa_i (dimensionless). * CONSTANTS[63] is qca in component INaCa_i (dimensionless). * ALGEBRAIC[102] is hna in component INaCa_i (dimensionless). * ALGEBRAIC[101] is hca in component INaCa_i (dimensionless). * CONSTANTS[64] is KmCaAct in component INaCa_i (millimolar). * CONSTANTS[65] is Gncx_b in component INaCa_i (milliS_per_microF). * CONSTANTS[129] is Gncx in component INaCa_i (milliS_per_microF). * ALGEBRAIC[103] is h1_i in component INaCa_i (dimensionless). * ALGEBRAIC[104] is h2_i in component INaCa_i (dimensionless). * ALGEBRAIC[105] is h3_i in component INaCa_i (dimensionless). * ALGEBRAIC[106] is h4_i in component INaCa_i (dimensionless). * ALGEBRAIC[107] is h5_i in component INaCa_i (dimensionless). * ALGEBRAIC[108] is h6_i in component INaCa_i (dimensionless). * ALGEBRAIC[109] is h7_i in component INaCa_i (dimensionless). * ALGEBRAIC[110] is h8_i in component INaCa_i (dimensionless). * ALGEBRAIC[111] is h9_i in component INaCa_i (dimensionless). * CONSTANTS[123] is h10_i in component INaCa_i (dimensionless). * CONSTANTS[124] is h11_i in component INaCa_i (dimensionless). * CONSTANTS[125] is h12_i in component INaCa_i (dimensionless). * CONSTANTS[126] is k1_i in component INaCa_i (dimensionless). * CONSTANTS[127] is k2_i in component INaCa_i (dimensionless). * ALGEBRAIC[112] is k3p_i in component INaCa_i (dimensionless). * ALGEBRAIC[113] is k3pp_i in component INaCa_i (dimensionless). * ALGEBRAIC[114] is k3_i in component INaCa_i (dimensionless). * ALGEBRAIC[117] is k4_i in component INaCa_i (dimensionless). * ALGEBRAIC[115] is k4p_i in component INaCa_i (dimensionless). * ALGEBRAIC[116] is k4pp_i in component INaCa_i (dimensionless). * CONSTANTS[128] is k5_i in component INaCa_i (dimensionless). * ALGEBRAIC[118] is k6_i in component INaCa_i (dimensionless). * ALGEBRAIC[119] is k7_i in component INaCa_i (dimensionless). * ALGEBRAIC[120] is k8_i in component INaCa_i (dimensionless). * ALGEBRAIC[121] is x1_i in component INaCa_i (dimensionless). * ALGEBRAIC[122] is x2_i in component INaCa_i (dimensionless). * ALGEBRAIC[123] is x3_i in component INaCa_i (dimensionless). * ALGEBRAIC[124] is x4_i in component INaCa_i (dimensionless). * ALGEBRAIC[125] is E1_i in component INaCa_i (dimensionless). * ALGEBRAIC[126] is E2_i in component INaCa_i (dimensionless). * ALGEBRAIC[127] is E3_i in component INaCa_i (dimensionless). * ALGEBRAIC[128] is E4_i in component INaCa_i (dimensionless). * ALGEBRAIC[129] is allo_i in component INaCa_i (dimensionless). * ALGEBRAIC[130] is JncxNa_i in component INaCa_i (millimolar_per_millisecond). * ALGEBRAIC[131] is JncxCa_i in component INaCa_i (millimolar_per_millisecond). * ALGEBRAIC[133] is h1_ss in component INaCa_i (dimensionless). * ALGEBRAIC[134] is h2_ss in component INaCa_i (dimensionless). * ALGEBRAIC[135] is h3_ss in component INaCa_i (dimensionless). * ALGEBRAIC[136] is h4_ss in component INaCa_i (dimensionless). * ALGEBRAIC[137] is h5_ss in component INaCa_i (dimensionless). * ALGEBRAIC[138] is h6_ss in component INaCa_i (dimensionless). * ALGEBRAIC[139] is h7_ss in component INaCa_i (dimensionless). * ALGEBRAIC[140] is h8_ss in component INaCa_i (dimensionless). * ALGEBRAIC[141] is h9_ss in component INaCa_i (dimensionless). * CONSTANTS[130] is h10_ss in component INaCa_i (dimensionless). * CONSTANTS[131] is h11_ss in component INaCa_i (dimensionless). * CONSTANTS[132] is h12_ss in component INaCa_i (dimensionless). * CONSTANTS[133] is k1_ss in component INaCa_i (dimensionless). * CONSTANTS[134] is k2_ss in component INaCa_i (dimensionless). * ALGEBRAIC[142] is k3p_ss in component INaCa_i (dimensionless). * ALGEBRAIC[143] is k3pp_ss in component INaCa_i (dimensionless). * ALGEBRAIC[144] is k3_ss in component INaCa_i (dimensionless). * ALGEBRAIC[147] is k4_ss in component INaCa_i (dimensionless). * ALGEBRAIC[145] is k4p_ss in component INaCa_i (dimensionless). * ALGEBRAIC[146] is k4pp_ss in component INaCa_i (dimensionless). * CONSTANTS[135] is k5_ss in component INaCa_i (dimensionless). * ALGEBRAIC[148] is k6_ss in component INaCa_i (dimensionless). * ALGEBRAIC[149] is k7_ss in component INaCa_i (dimensionless). * ALGEBRAIC[150] is k8_ss in component INaCa_i (dimensionless). * ALGEBRAIC[151] is x1_ss in component INaCa_i (dimensionless). * ALGEBRAIC[152] is x2_ss in component INaCa_i (dimensionless). * ALGEBRAIC[153] is x3_ss in component INaCa_i (dimensionless). * ALGEBRAIC[154] is x4_ss in component INaCa_i (dimensionless). * ALGEBRAIC[155] is E1_ss in component INaCa_i (dimensionless). * ALGEBRAIC[156] is E2_ss in component INaCa_i (dimensionless). * ALGEBRAIC[157] is E3_ss in component INaCa_i (dimensionless). * ALGEBRAIC[158] is E4_ss in component INaCa_i (dimensionless). * ALGEBRAIC[159] is allo_ss in component INaCa_i (dimensionless). * ALGEBRAIC[160] is JncxNa_ss in component INaCa_i (millimolar_per_millisecond). * ALGEBRAIC[161] is JncxCa_ss in component INaCa_i (millimolar_per_millisecond). * CONSTANTS[66] is k1p in component INaK (per_millisecond). * CONSTANTS[67] is k1m in component INaK (per_millisecond). * CONSTANTS[68] is k2p in component INaK (per_millisecond). * CONSTANTS[69] is k2m in component INaK (per_millisecond). * CONSTANTS[70] is k3p in component INaK (per_millisecond). * CONSTANTS[71] is k3m in component INaK (per_millisecond). * CONSTANTS[72] is k4p in component INaK (per_millisecond). * CONSTANTS[73] is k4m in component INaK (per_millisecond). * CONSTANTS[74] is Knai0 in component INaK (millimolar). * CONSTANTS[75] is Knao0 in component INaK (millimolar). * CONSTANTS[76] is delta in component INaK (millivolt). * CONSTANTS[77] is Kki in component INaK (per_millisecond). * CONSTANTS[78] is Kko in component INaK (per_millisecond). * CONSTANTS[79] is MgADP in component INaK (millimolar). * CONSTANTS[80] is MgATP in component INaK (millimolar). * CONSTANTS[81] is Kmgatp in component INaK (millimolar). * CONSTANTS[82] is H in component INaK (millimolar). * CONSTANTS[83] is eP in component INaK (dimensionless). * CONSTANTS[84] is Khp in component INaK (millimolar). * CONSTANTS[85] is Knap in component INaK (millimolar). * CONSTANTS[86] is Kxkur in component INaK (millimolar). * CONSTANTS[87] is Pnak_b in component INaK (milliS_per_microF). * CONSTANTS[139] is Pnak in component INaK (milliS_per_microF). * ALGEBRAIC[163] is Knai in component INaK (millimolar). * ALGEBRAIC[164] is Knao in component INaK (millimolar). * ALGEBRAIC[165] is P in component INaK (dimensionless). * ALGEBRAIC[166] is a1 in component INaK (dimensionless). * CONSTANTS[136] is b1 in component INaK (dimensionless). * CONSTANTS[137] is a2 in component INaK (dimensionless). * ALGEBRAIC[167] is b2 in component INaK (dimensionless). * ALGEBRAIC[168] is a3 in component INaK (dimensionless). * ALGEBRAIC[169] is b3 in component INaK (dimensionless). * CONSTANTS[138] is a4 in component INaK (dimensionless). * ALGEBRAIC[170] is b4 in component INaK (dimensionless). * ALGEBRAIC[171] is x1 in component INaK (dimensionless). * ALGEBRAIC[172] is x2 in component INaK (dimensionless). * ALGEBRAIC[173] is x3 in component INaK (dimensionless). * ALGEBRAIC[174] is x4 in component INaK (dimensionless). * ALGEBRAIC[175] is E1 in component INaK (dimensionless). * ALGEBRAIC[176] is E2 in component INaK (dimensionless). * ALGEBRAIC[177] is E3 in component INaK (dimensionless). * ALGEBRAIC[178] is E4 in component INaK (dimensionless). * ALGEBRAIC[179] is JnakNa in component INaK (millimolar_per_millisecond). * ALGEBRAIC[180] is JnakK in component INaK (millimolar_per_millisecond). * ALGEBRAIC[182] is xkb in component IKb (dimensionless). * CONSTANTS[88] is GKb_b in component IKb (milliS_per_microF). * CONSTANTS[106] is GKb in component IKb (milliS_per_microF). * CONSTANTS[89] is PNab in component INab (milliS_per_microF). * CONSTANTS[90] is PCab in component ICab (milliS_per_microF). * CONSTANTS[91] is GpCa in component IpCa (milliS_per_microF). * CONSTANTS[92] is KmCap in component IpCa (millimolar). * CONSTANTS[93] is bt in component ryr (millisecond). * CONSTANTS[107] is a_rel in component ryr (millisecond). * ALGEBRAIC[86] is Jrel_inf in component ryr (dimensionless). * ALGEBRAIC[92] is tau_rel in component ryr (millisecond). * ALGEBRAIC[87] is Jrel_infp in component ryr (dimensionless). * ALGEBRAIC[84] is Jrel_temp in component ryr (dimensionless). * ALGEBRAIC[93] is tau_relp in component ryr (millisecond). * STATES[39] is Jrelnp in component ryr (dimensionless). * STATES[40] is Jrelp in component ryr (dimensionless). * CONSTANTS[108] is btp in component ryr (millisecond). * CONSTANTS[115] is a_relp in component ryr (millisecond). * ALGEBRAIC[83] is Jrel_inf_temp in component ryr (dimensionless). * ALGEBRAIC[190] is fJrelp in component ryr (dimensionless). * ALGEBRAIC[89] is tau_rel_temp in component ryr (millisecond). * ALGEBRAIC[90] is tau_relp_temp in component ryr (millisecond). * CONSTANTS[109] is upScale in component SERCA (dimensionless). * ALGEBRAIC[192] is Jupnp in component SERCA (millimolar_per_millisecond). * ALGEBRAIC[193] is Jupp in component SERCA (millimolar_per_millisecond). * ALGEBRAIC[194] is fJupp in component SERCA (dimensionless). * ALGEBRAIC[195] is Jleak in component SERCA (millimolar_per_millisecond). * RATES[0] is d/dt v in component membrane (millivolt). * RATES[1] is d/dt CaMKt in component CaMK (millimolar). * RATES[3] is d/dt nai in component intracellular_ions (millimolar). * RATES[4] is d/dt nass in component intracellular_ions (millimolar). * RATES[5] is d/dt ki in component intracellular_ions (millimolar). * RATES[6] is d/dt kss in component intracellular_ions (millimolar). * RATES[9] is d/dt cai in component intracellular_ions (millimolar). * RATES[2] is d/dt cass in component intracellular_ions (millimolar). * RATES[7] is d/dt cansr in component intracellular_ions (millimolar). * RATES[8] is d/dt cajsr in component intracellular_ions (millimolar). * RATES[10] is d/dt m in component INa (dimensionless). * RATES[11] is d/dt hf in component INa (dimensionless). * RATES[12] is d/dt hs in component INa (dimensionless). * RATES[13] is d/dt j in component INa (dimensionless). * RATES[14] is d/dt hsp in component INa (dimensionless). * RATES[15] is d/dt jp in component INa (dimensionless). * RATES[16] is d/dt mL in component INaL (dimensionless). * RATES[17] is d/dt hL in component INaL (dimensionless). * RATES[18] is d/dt hLp in component INaL (dimensionless). * RATES[19] is d/dt a in component Ito (dimensionless). * RATES[20] is d/dt iF in component Ito (dimensionless). * RATES[21] is d/dt iS in component Ito (dimensionless). * RATES[22] is d/dt ap in component Ito (dimensionless). * RATES[23] is d/dt iFp in component Ito (dimensionless). * RATES[24] is d/dt iSp in component Ito (dimensionless). * RATES[25] is d/dt d in component ICaL (dimensionless). * RATES[26] is d/dt ff in component ICaL (dimensionless). * RATES[27] is d/dt fs in component ICaL (dimensionless). * RATES[28] is d/dt fcaf in component ICaL (dimensionless). * RATES[29] is d/dt fcas in component ICaL (dimensionless). * RATES[30] is d/dt jca in component ICaL (dimensionless). * RATES[31] is d/dt ffp in component ICaL (dimensionless). * RATES[32] is d/dt fcafp in component ICaL (dimensionless). * RATES[33] is d/dt nca in component ICaL (dimensionless). * RATES[34] is d/dt xrf in component IKr (dimensionless). * RATES[35] is d/dt xrs in component IKr (dimensionless). * RATES[36] is d/dt xs1 in component IKs (dimensionless). * RATES[37] is d/dt xs2 in component IKs (dimensionless). * RATES[38] is d/dt xk1 in component IK1 (dimensionless). * RATES[39] is d/dt Jrelnp in component ryr (dimensionless). * RATES[40] is d/dt Jrelp in component ryr (dimensionless). */ void initConsts(double* CONSTANTS, double* RATES, double *STATES) { CONSTANTS[0] = 0; CONSTANTS[1] = 140; CONSTANTS[2] = 1.8; CONSTANTS[3] = 5.4; CONSTANTS[4] = 8314; CONSTANTS[5] = 310; CONSTANTS[6] = 96485; CONSTANTS[7] = 1; CONSTANTS[8] = 2; CONSTANTS[9] = 1; CONSTANTS[10] = 0.01; CONSTANTS[11] = 0.0011; STATES[0] = -87; CONSTANTS[12] = -80; CONSTANTS[13] = 0.5; CONSTANTS[14] = 50.0; CONSTANTS[15] = 0.15; CONSTANTS[16] = 0.05; CONSTANTS[17] = 0.00068; CONSTANTS[18] = 0.05; CONSTANTS[19] = 0.0015; STATES[1] = 0; STATES[2] = 1e-4; CONSTANTS[20] = 0.05; CONSTANTS[21] = 0.00238; CONSTANTS[22] = 0.07; CONSTANTS[23] = 0.0005; CONSTANTS[24] = 0.047; CONSTANTS[25] = 0.00087; CONSTANTS[26] = 1.124; CONSTANTS[27] = 0.0087; CONSTANTS[28] = 10; CONSTANTS[29] = 0.8; STATES[3] = 7; STATES[4] = 7; STATES[5] = 145; STATES[6] = 145; STATES[7] = 1.2; STATES[8] = 1.2; STATES[9] = 1e-4; CONSTANTS[30] = 1; CONSTANTS[31] = 0.01833; CONSTANTS[32] = 39.57; CONSTANTS[33] = 9.871; CONSTANTS[34] = 11.64; CONSTANTS[35] = 34.77; CONSTANTS[36] = 6.765; CONSTANTS[37] = 8.552; CONSTANTS[38] = 77.42; CONSTANTS[39] = 5.955; STATES[10] = 0; CONSTANTS[40] = 82.9; CONSTANTS[41] = 6.086; CONSTANTS[42] = 0.99; STATES[11] = 1; STATES[12] = 1; CONSTANTS[43] = 75; STATES[13] = 1; STATES[14] = 1; STATES[15] = 1; STATES[16] = 0; CONSTANTS[44] = 200; STATES[17] = 1; STATES[18] = 1; CONSTANTS[45] = 0.0075; CONSTANTS[46] = 0.02; STATES[19] = 0; STATES[20] = 1; STATES[21] = 1; STATES[22] = 0; STATES[23] = 1; STATES[24] = 1; CONSTANTS[47] = 0.002; CONSTANTS[48] = 1000; CONSTANTS[49] = 0.0001; STATES[25] = 0; STATES[26] = 1; STATES[27] = 1; STATES[28] = 1; STATES[29] = 1; STATES[30] = 1; STATES[31] = 1; STATES[32] = 1; STATES[33] = 0; CONSTANTS[50] = 0.046; STATES[34] = 0; STATES[35] = 0; CONSTANTS[51] = 0.0034; STATES[36] = 0; STATES[37] = 0; CONSTANTS[52] = 0.1908; STATES[38] = 1; CONSTANTS[53] = 15; CONSTANTS[54] = 5; CONSTANTS[55] = 88.12; CONSTANTS[56] = 12.5; CONSTANTS[57] = 6e4; CONSTANTS[58] = 6e4; CONSTANTS[59] = 5e3; CONSTANTS[60] = 1.5e6; CONSTANTS[61] = 5e3; CONSTANTS[62] = 0.5224; CONSTANTS[63] = 0.167; CONSTANTS[64] = 150e-6; CONSTANTS[65] = 0.0008; CONSTANTS[66] = 949.5; CONSTANTS[67] = 182.4; CONSTANTS[68] = 687.2; CONSTANTS[69] = 39.4; CONSTANTS[70] = 1899; CONSTANTS[71] = 79300; CONSTANTS[72] = 639; CONSTANTS[73] = 40; CONSTANTS[74] = 9.073; CONSTANTS[75] = 27.78; CONSTANTS[76] = -0.155; CONSTANTS[77] = 0.5; CONSTANTS[78] = 0.3582; CONSTANTS[79] = 0.05; CONSTANTS[80] = 9.8; CONSTANTS[81] = 1.698e-7; CONSTANTS[82] = 1e-7; CONSTANTS[83] = 4.2; CONSTANTS[84] = 1.698e-7; CONSTANTS[85] = 224; CONSTANTS[86] = 292; CONSTANTS[87] = 30; CONSTANTS[88] = 0.003; CONSTANTS[89] = 3.75e-10; CONSTANTS[90] = 2.5e-8; CONSTANTS[91] = 0.0005; CONSTANTS[92] = 0.0005; CONSTANTS[93] = 4.75; STATES[39] = 0; STATES[40] = 0; CONSTANTS[94] = (CONSTANTS[0]==1.00000 ? CONSTANTS[20]*1.30000 : CONSTANTS[20]); CONSTANTS[95] = 1.00000 - CONSTANTS[42]; CONSTANTS[96] = 3.00000*CONSTANTS[44]; CONSTANTS[97] = (CONSTANTS[0]==1.00000 ? CONSTANTS[45]*0.600000 : CONSTANTS[45]); CONSTANTS[98] = (CONSTANTS[0]==1.00000 ? CONSTANTS[46]*4.00000 : CONSTANTS[0]==2.00000 ? CONSTANTS[46]*4.00000 : CONSTANTS[46]); CONSTANTS[99] = 0.600000; CONSTANTS[100] = (CONSTANTS[0]==1.00000 ? CONSTANTS[49]*1.20000 : CONSTANTS[0]==2.00000 ? CONSTANTS[49]*2.50000 : CONSTANTS[49]); CONSTANTS[101] = 75.0000; CONSTANTS[102] = (CONSTANTS[0]==1.00000 ? CONSTANTS[50]*1.30000 : CONSTANTS[0]==2.00000 ? CONSTANTS[50]*0.800000 : CONSTANTS[50]); CONSTANTS[103] = (CONSTANTS[0]==1.00000 ? CONSTANTS[51]*1.40000 : CONSTANTS[51]); CONSTANTS[104] = (CONSTANTS[0]==1.00000 ? CONSTANTS[52]*1.20000 : CONSTANTS[0]==2.00000 ? CONSTANTS[52]*1.30000 : CONSTANTS[52]); CONSTANTS[105] = 1000.00*3.14000*CONSTANTS[11]*CONSTANTS[11]*CONSTANTS[10]; CONSTANTS[106] = (CONSTANTS[0]==1.00000 ? CONSTANTS[88]*0.600000 : CONSTANTS[88]); CONSTANTS[107] = 0.500000*CONSTANTS[93]; CONSTANTS[108] = 1.25000*CONSTANTS[93]; CONSTANTS[109] = (CONSTANTS[0]==1.00000 ? 1.30000 : 1.00000); CONSTANTS[110] = 1.00000 - CONSTANTS[99]; CONSTANTS[111] = 1.10000*CONSTANTS[100]; CONSTANTS[112] = 0.00125000*CONSTANTS[100]; CONSTANTS[113] = 0.000357400*CONSTANTS[100]; CONSTANTS[114] = 2.00000*3.14000*CONSTANTS[11]*CONSTANTS[11]+ 2.00000*3.14000*CONSTANTS[11]*CONSTANTS[10]; CONSTANTS[115] = 0.500000*CONSTANTS[108]; CONSTANTS[116] = 0.00125000*CONSTANTS[111]; CONSTANTS[117] = 0.000357400*CONSTANTS[111]; CONSTANTS[118] = 2.00000*CONSTANTS[114]; CONSTANTS[119] = 0.680000*CONSTANTS[105]; CONSTANTS[120] = 0.0552000*CONSTANTS[105]; CONSTANTS[121] = 0.00480000*CONSTANTS[105]; CONSTANTS[122] = 0.0200000*CONSTANTS[105]; CONSTANTS[123] = CONSTANTS[56]+1.00000+ (CONSTANTS[1]/CONSTANTS[53])*(1.00000+CONSTANTS[1]/CONSTANTS[54]); CONSTANTS[124] = ( CONSTANTS[1]*CONSTANTS[1])/( CONSTANTS[123]*CONSTANTS[53]*CONSTANTS[54]); CONSTANTS[125] = 1.00000/CONSTANTS[123]; CONSTANTS[126] = CONSTANTS[125]*CONSTANTS[2]*CONSTANTS[60]; CONSTANTS[127] = CONSTANTS[61]; CONSTANTS[128] = CONSTANTS[61]; CONSTANTS[129] = (CONSTANTS[0]==1.00000 ? CONSTANTS[65]*1.10000 : CONSTANTS[0]==2.00000 ? CONSTANTS[65]*1.40000 : CONSTANTS[65]); CONSTANTS[130] = CONSTANTS[56]+1.00000+ (CONSTANTS[1]/CONSTANTS[53])*(1.00000+CONSTANTS[1]/CONSTANTS[54]); CONSTANTS[131] = ( CONSTANTS[1]*CONSTANTS[1])/( CONSTANTS[130]*CONSTANTS[53]*CONSTANTS[54]); CONSTANTS[132] = 1.00000/CONSTANTS[130]; CONSTANTS[133] = CONSTANTS[132]*CONSTANTS[2]*CONSTANTS[60]; CONSTANTS[134] = CONSTANTS[61]; CONSTANTS[135] = CONSTANTS[61]; CONSTANTS[136] = CONSTANTS[67]*CONSTANTS[79]; CONSTANTS[137] = CONSTANTS[68]; CONSTANTS[138] = (( CONSTANTS[72]*CONSTANTS[80])/CONSTANTS[81])/(1.00000+CONSTANTS[80]/CONSTANTS[81]); CONSTANTS[139] = (CONSTANTS[0]==1.00000 ? CONSTANTS[87]*0.900000 : CONSTANTS[0]==2.00000 ? CONSTANTS[87]*0.700000 : CONSTANTS[87]); } void computeRates(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[2] = 1.00000/(1.00000+exp((STATES[0]+87.6100)/7.48800)); RATES[17] = (ALGEBRAIC[2] - STATES[17])/CONSTANTS[44]; ALGEBRAIC[3] = 1.00000/(1.00000+exp((STATES[0]+93.8100)/7.48800)); RATES[18] = (ALGEBRAIC[3] - STATES[18])/CONSTANTS[96]; ALGEBRAIC[0] = 1.00000/(1.00000+exp(- (STATES[0]+CONSTANTS[32])/CONSTANTS[33])); ALGEBRAIC[13] = 1.00000/( CONSTANTS[36]*exp((STATES[0]+CONSTANTS[34])/CONSTANTS[35])+ CONSTANTS[37]*exp(- (STATES[0]+CONSTANTS[38])/CONSTANTS[39])); RATES[10] = (ALGEBRAIC[0] - STATES[10])/ALGEBRAIC[13]; ALGEBRAIC[1] = 1.00000/(1.00000+exp((STATES[0]+CONSTANTS[40])/CONSTANTS[41])); ALGEBRAIC[14] = 1.00000/( 1.43200e-05*exp(- (STATES[0]+1.19600)/6.28500)+ 6.14900*exp((STATES[0]+0.509600)/20.2700)); RATES[11] = (ALGEBRAIC[1] - STATES[11])/ALGEBRAIC[14]; ALGEBRAIC[15] = 1.00000/( 0.00979400*exp(- (STATES[0]+17.9500)/28.0500)+ 0.334300*exp((STATES[0]+5.73000)/56.6600)); RATES[12] = (ALGEBRAIC[1] - STATES[12])/ALGEBRAIC[15]; ALGEBRAIC[4] = 1.00000/(1.00000+exp(- (STATES[0] - 14.3400)/14.8200)); ALGEBRAIC[17] = 1.05150/(1.00000/( 1.20890*(1.00000+exp(- (STATES[0] - 18.4099)/29.3814)))+3.50000/(1.00000+exp((STATES[0]+100.000)/29.3814))); RATES[19] = (ALGEBRAIC[4] - STATES[19])/ALGEBRAIC[17]; ALGEBRAIC[6] = 1.00000/(1.00000+exp(- (STATES[0]+3.94000)/4.23000)); ALGEBRAIC[21] = 0.600000+1.00000/(exp( - 0.0500000*(STATES[0]+6.00000))+exp( 0.0900000*(STATES[0]+14.0000))); RATES[25] = (ALGEBRAIC[6] - STATES[25])/ALGEBRAIC[21]; ALGEBRAIC[7] = 1.00000/(1.00000+exp((STATES[0]+19.5800)/3.69600)); ALGEBRAIC[22] = 7.00000+1.00000/( 0.00450000*exp(- (STATES[0]+20.0000)/10.0000)+ 0.00450000*exp((STATES[0]+20.0000)/10.0000)); RATES[26] = (ALGEBRAIC[7] - STATES[26])/ALGEBRAIC[22]; ALGEBRAIC[23] = 1000.00+1.00000/( 3.50000e-05*exp(- (STATES[0]+5.00000)/4.00000)+ 3.50000e-05*exp((STATES[0]+5.00000)/6.00000)); RATES[27] = (ALGEBRAIC[7] - STATES[27])/ALGEBRAIC[23]; ALGEBRAIC[19] = ALGEBRAIC[7]; RATES[30] = (ALGEBRAIC[19] - STATES[30])/CONSTANTS[101]; ALGEBRAIC[8] = STATES[30]*1.00000; ALGEBRAIC[20] = 1.00000/(CONSTANTS[48]/ALGEBRAIC[8]+pow(1.00000+CONSTANTS[47]/STATES[2], 4.00000)); RATES[33] = ALGEBRAIC[20]*CONSTANTS[48] - STATES[33]*ALGEBRAIC[8]; ALGEBRAIC[9] = 1.00000/(1.00000+exp(- (STATES[0]+8.33700)/6.78900)); ALGEBRAIC[24] = 12.9800+1.00000/( 0.365200*exp((STATES[0] - 31.6600)/3.86900)+ 4.12300e-05*exp(- (STATES[0] - 47.7800)/20.3800)); RATES[34] = (ALGEBRAIC[9] - STATES[34])/ALGEBRAIC[24]; ALGEBRAIC[25] = 1.86500+1.00000/( 0.0662900*exp((STATES[0] - 34.7000)/7.35500)+ 1.12800e-05*exp(- (STATES[0] - 29.7400)/25.9400)); RATES[35] = (ALGEBRAIC[9] - STATES[35])/ALGEBRAIC[25]; ALGEBRAIC[10] = 1.00000/(1.00000+exp(- (STATES[0]+11.6000)/8.93200)); ALGEBRAIC[27] = 817.300+1.00000/( 0.000232600*exp((STATES[0]+48.2800)/17.8000)+ 0.00129200*exp(- (STATES[0]+210.000)/230.000)); RATES[36] = (ALGEBRAIC[10] - STATES[36])/ALGEBRAIC[27]; ALGEBRAIC[11] = 1.00000/(1.00000+exp(- (STATES[0]+ 2.55380*CONSTANTS[3]+144.590)/( 1.56920*CONSTANTS[3]+3.81150))); ALGEBRAIC[28] = 122.200/(exp(- (STATES[0]+127.200)/20.3600)+exp((STATES[0]+236.800)/69.3300)); RATES[38] = (ALGEBRAIC[11] - STATES[38])/ALGEBRAIC[28]; ALGEBRAIC[16] = ALGEBRAIC[1]; ALGEBRAIC[30] = 2.03800+1.00000/( 0.0213600*exp(- (STATES[0]+100.600)/8.28100)+ 0.305200*exp((STATES[0]+0.994100)/38.4500)); RATES[13] = (ALGEBRAIC[16] - STATES[13])/ALGEBRAIC[30]; ALGEBRAIC[34] = 1.00000/(1.00000+exp(- (STATES[0] - 24.3400)/14.8200)); RATES[22] = (ALGEBRAIC[34] - STATES[22])/ALGEBRAIC[17]; ALGEBRAIC[35] = 7.00000+1.00000/( 0.0400000*exp(- (STATES[0] - 4.00000)/7.00000)+ 0.0400000*exp((STATES[0] - 4.00000)/7.00000)); RATES[28] = (ALGEBRAIC[19] - STATES[28])/ALGEBRAIC[35]; ALGEBRAIC[36] = 100.000+1.00000/( 0.000120000*exp(- STATES[0]/3.00000)+ 0.000120000*exp(STATES[0]/7.00000)); RATES[29] = (ALGEBRAIC[19] - STATES[29])/ALGEBRAIC[36]; ALGEBRAIC[37] = 2.50000*ALGEBRAIC[22]; RATES[31] = (ALGEBRAIC[7] - STATES[31])/ALGEBRAIC[37]; ALGEBRAIC[26] = ALGEBRAIC[10]; ALGEBRAIC[38] = 1.00000/( 0.0100000*exp((STATES[0] - 50.0000)/20.0000)+ 0.0193000*exp(- (STATES[0]+66.5400)/31.0000)); RATES[37] = (ALGEBRAIC[26] - STATES[37])/ALGEBRAIC[38]; ALGEBRAIC[45] = ( CONSTANTS[18]*(1.00000 - STATES[1]))/(1.00000+CONSTANTS[19]/STATES[2]); RATES[1] = CONSTANTS[16]*ALGEBRAIC[45]*(ALGEBRAIC[45]+STATES[1]) - CONSTANTS[17]*STATES[1]; ALGEBRAIC[31] = 1.00000/(1.00000+exp((STATES[0]+89.1000)/6.08600)); ALGEBRAIC[40] = 3.00000*ALGEBRAIC[15]; RATES[14] = (ALGEBRAIC[31] - STATES[14])/ALGEBRAIC[40]; ALGEBRAIC[41] = 1.46000*ALGEBRAIC[30]; RATES[15] = (ALGEBRAIC[16] - STATES[15])/ALGEBRAIC[41]; ALGEBRAIC[32] = 1.00000/(1.00000+exp(- (STATES[0]+42.8500)/5.26400)); ALGEBRAIC[42] = ALGEBRAIC[13]; RATES[16] = (ALGEBRAIC[32] - STATES[16])/ALGEBRAIC[42]; ALGEBRAIC[44] = 2.50000*ALGEBRAIC[35]; RATES[32] = (ALGEBRAIC[19] - STATES[32])/ALGEBRAIC[44]; ALGEBRAIC[5] = 1.00000/(1.00000+exp((STATES[0]+43.9400)/5.71100)); ALGEBRAIC[18] = (CONSTANTS[0]==1.00000 ? 1.00000 - 0.950000/(1.00000+exp((STATES[0]+70.0000)/5.00000)) : 1.00000); ALGEBRAIC[33] = 4.56200+1.00000/( 0.393300*exp(- (STATES[0]+100.000)/100.000)+ 0.0800400*exp((STATES[0]+50.0000)/16.5900)); ALGEBRAIC[46] = ALGEBRAIC[33]*ALGEBRAIC[18]; RATES[20] = (ALGEBRAIC[5] - STATES[20])/ALGEBRAIC[46]; ALGEBRAIC[43] = 23.6200+1.00000/( 0.00141600*exp(- (STATES[0]+96.5200)/59.0500)+ 1.78000e-08*exp((STATES[0]+114.100)/8.07900)); ALGEBRAIC[48] = ALGEBRAIC[43]*ALGEBRAIC[18]; RATES[21] = (ALGEBRAIC[5] - STATES[21])/ALGEBRAIC[48]; ALGEBRAIC[50] = 1.35400+0.000100000/(exp((STATES[0] - 167.400)/15.8900)+exp(- (STATES[0] - 12.2300)/0.215400)); ALGEBRAIC[52] = 1.00000 - 0.500000/(1.00000+exp((STATES[0]+70.0000)/20.0000)); ALGEBRAIC[54] = ALGEBRAIC[50]*ALGEBRAIC[52]*ALGEBRAIC[46]; RATES[23] = (ALGEBRAIC[5] - STATES[23])/ALGEBRAIC[54]; ALGEBRAIC[55] = ALGEBRAIC[50]*ALGEBRAIC[52]*ALGEBRAIC[48]; RATES[24] = (ALGEBRAIC[5] - STATES[24])/ALGEBRAIC[55]; ALGEBRAIC[71] = CONSTANTS[99]*STATES[26]+ CONSTANTS[110]*STATES[27]; ALGEBRAIC[72] = 0.300000+0.600000/(1.00000+exp((STATES[0] - 10.0000)/10.0000)); ALGEBRAIC[73] = 1.00000 - ALGEBRAIC[72]; ALGEBRAIC[74] = ALGEBRAIC[72]*STATES[28]+ ALGEBRAIC[73]*STATES[29]; ALGEBRAIC[75] = CONSTANTS[99]*STATES[31]+ CONSTANTS[110]*STATES[27]; ALGEBRAIC[76] = ALGEBRAIC[72]*STATES[32]+ ALGEBRAIC[73]*STATES[29]; ALGEBRAIC[29] = ( STATES[0]*CONSTANTS[6]*CONSTANTS[6])/( CONSTANTS[4]*CONSTANTS[5]); ALGEBRAIC[39] = ( STATES[0]*CONSTANTS[6])/( CONSTANTS[4]*CONSTANTS[5]); ALGEBRAIC[77] = ( 4.00000*ALGEBRAIC[29]*( STATES[2]*exp( 2.00000*ALGEBRAIC[39]) - 0.341000*CONSTANTS[2]))/(exp( 2.00000*ALGEBRAIC[39]) - 1.00000); ALGEBRAIC[47] = ALGEBRAIC[45]+STATES[1]; ALGEBRAIC[80] = 1.00000/(1.00000+CONSTANTS[15]/ALGEBRAIC[47]); ALGEBRAIC[81] = (1.00000 - ALGEBRAIC[80])*CONSTANTS[100]*ALGEBRAIC[77]*STATES[25]*( ALGEBRAIC[71]*(1.00000 - STATES[33])+ STATES[30]*ALGEBRAIC[74]*STATES[33])+ ALGEBRAIC[80]*CONSTANTS[111]*ALGEBRAIC[77]*STATES[25]*( ALGEBRAIC[75]*(1.00000 - STATES[33])+ STATES[30]*ALGEBRAIC[76]*STATES[33]); ALGEBRAIC[83] = ( CONSTANTS[107]*- ALGEBRAIC[81])/(1.00000+ 1.00000*pow(1.50000/STATES[8], 8.00000)); ALGEBRAIC[86] = (CONSTANTS[0]==2.00000 ? ALGEBRAIC[83]*1.70000 : ALGEBRAIC[83]); ALGEBRAIC[89] = CONSTANTS[93]/(1.00000+0.0123000/STATES[8]); ALGEBRAIC[92] = (ALGEBRAIC[89]<0.00100000 ? 0.00100000 : ALGEBRAIC[89]); RATES[39] = (ALGEBRAIC[86] - STATES[39])/ALGEBRAIC[92]; ALGEBRAIC[84] = ( CONSTANTS[115]*- ALGEBRAIC[81])/(1.00000+pow(1.50000/STATES[8], 8.00000)); ALGEBRAIC[87] = (CONSTANTS[0]==2.00000 ? ALGEBRAIC[84]*1.70000 : ALGEBRAIC[84]); ALGEBRAIC[90] = CONSTANTS[108]/(1.00000+0.0123000/STATES[8]); ALGEBRAIC[93] = (ALGEBRAIC[90]<0.00100000 ? 0.00100000 : ALGEBRAIC[90]); RATES[40] = (ALGEBRAIC[87] - STATES[40])/ALGEBRAIC[93]; ALGEBRAIC[57] = (( CONSTANTS[4]*CONSTANTS[5])/CONSTANTS[6])*log(CONSTANTS[3]/STATES[5]); ALGEBRAIC[65] = 1.00000/(1.00000+exp((STATES[0] - 213.600)/151.200)); ALGEBRAIC[66] = 1.00000 - ALGEBRAIC[65]; ALGEBRAIC[67] = ALGEBRAIC[65]*STATES[20]+ ALGEBRAIC[66]*STATES[21]; ALGEBRAIC[68] = ALGEBRAIC[65]*STATES[23]+ ALGEBRAIC[66]*STATES[24]; ALGEBRAIC[69] = 1.00000/(1.00000+CONSTANTS[15]/ALGEBRAIC[47]); ALGEBRAIC[70] = CONSTANTS[98]*(STATES[0] - ALGEBRAIC[57])*( (1.00000 - ALGEBRAIC[69])*STATES[19]*ALGEBRAIC[67]+ ALGEBRAIC[69]*STATES[22]*ALGEBRAIC[68]); ALGEBRAIC[88] = 1.00000/(1.00000+exp((STATES[0]+54.8100)/38.2100)); ALGEBRAIC[91] = 1.00000 - ALGEBRAIC[88]; ALGEBRAIC[94] = ALGEBRAIC[88]*STATES[34]+ ALGEBRAIC[91]*STATES[35]; ALGEBRAIC[95] = ( (1.00000/(1.00000+exp((STATES[0]+55.0000)/75.0000)))*1.00000)/(1.00000+exp((STATES[0] - 10.0000)/30.0000)); ALGEBRAIC[96] = CONSTANTS[102]* pow((CONSTANTS[3]/5.40000), 1.0 / 2)*ALGEBRAIC[94]*ALGEBRAIC[95]*(STATES[0] - ALGEBRAIC[57]); ALGEBRAIC[58] = (( CONSTANTS[4]*CONSTANTS[5])/CONSTANTS[6])*log((CONSTANTS[3]+ CONSTANTS[31]*CONSTANTS[1])/(STATES[5]+ CONSTANTS[31]*STATES[3])); ALGEBRAIC[97] = 1.00000+0.600000/(1.00000+pow(3.80000e-05/STATES[9], 1.40000)); ALGEBRAIC[98] = CONSTANTS[103]*ALGEBRAIC[97]*STATES[36]*STATES[37]*(STATES[0] - ALGEBRAIC[58]); ALGEBRAIC[99] = 1.00000/(1.00000+exp(((STATES[0]+105.800) - 2.60000*CONSTANTS[3])/9.49300)); ALGEBRAIC[100] = CONSTANTS[104]* pow(CONSTANTS[3], 1.0 / 2)*ALGEBRAIC[99]*STATES[38]*(STATES[0] - ALGEBRAIC[57]); ALGEBRAIC[164] = CONSTANTS[75]*exp(( (1.00000 - CONSTANTS[76])*STATES[0]*CONSTANTS[6])/( 3.00000*CONSTANTS[4]*CONSTANTS[5])); ALGEBRAIC[168] = ( CONSTANTS[70]*pow(CONSTANTS[3]/CONSTANTS[78], 2.00000))/((pow(1.00000+CONSTANTS[1]/ALGEBRAIC[164], 3.00000)+pow(1.00000+CONSTANTS[3]/CONSTANTS[78], 2.00000)) - 1.00000); ALGEBRAIC[165] = CONSTANTS[83]/(1.00000+CONSTANTS[82]/CONSTANTS[84]+STATES[3]/CONSTANTS[85]+STATES[5]/CONSTANTS[86]); ALGEBRAIC[169] = ( CONSTANTS[71]*ALGEBRAIC[165]*CONSTANTS[82])/(1.00000+CONSTANTS[80]/CONSTANTS[81]); ALGEBRAIC[163] = CONSTANTS[74]*exp(( CONSTANTS[76]*STATES[0]*CONSTANTS[6])/( 3.00000*CONSTANTS[4]*CONSTANTS[5])); ALGEBRAIC[166] = ( CONSTANTS[66]*pow(STATES[3]/ALGEBRAIC[163], 3.00000))/((pow(1.00000+STATES[3]/ALGEBRAIC[163], 3.00000)+pow(1.00000+STATES[5]/CONSTANTS[77], 2.00000)) - 1.00000); ALGEBRAIC[167] = ( CONSTANTS[69]*pow(CONSTANTS[1]/ALGEBRAIC[164], 3.00000))/((pow(1.00000+CONSTANTS[1]/ALGEBRAIC[164], 3.00000)+pow(1.00000+CONSTANTS[3]/CONSTANTS[78], 2.00000)) - 1.00000); ALGEBRAIC[170] = ( CONSTANTS[73]*pow(STATES[5]/CONSTANTS[77], 2.00000))/((pow(1.00000+STATES[3]/ALGEBRAIC[163], 3.00000)+pow(1.00000+STATES[5]/CONSTANTS[77], 2.00000)) - 1.00000); ALGEBRAIC[171] = CONSTANTS[138]*ALGEBRAIC[166]*CONSTANTS[137]+ ALGEBRAIC[167]*ALGEBRAIC[170]*ALGEBRAIC[169]+ CONSTANTS[137]*ALGEBRAIC[170]*ALGEBRAIC[169]+ ALGEBRAIC[169]*ALGEBRAIC[166]*CONSTANTS[137]; ALGEBRAIC[172] = ALGEBRAIC[167]*CONSTANTS[136]*ALGEBRAIC[170]+ ALGEBRAIC[166]*CONSTANTS[137]*ALGEBRAIC[168]+ ALGEBRAIC[168]*CONSTANTS[136]*ALGEBRAIC[170]+ CONSTANTS[137]*ALGEBRAIC[168]*ALGEBRAIC[170]; ALGEBRAIC[173] = CONSTANTS[137]*ALGEBRAIC[168]*CONSTANTS[138]+ ALGEBRAIC[169]*ALGEBRAIC[167]*CONSTANTS[136]+ ALGEBRAIC[167]*CONSTANTS[136]*CONSTANTS[138]+ ALGEBRAIC[168]*CONSTANTS[138]*CONSTANTS[136]; ALGEBRAIC[174] = ALGEBRAIC[170]*ALGEBRAIC[169]*ALGEBRAIC[167]+ ALGEBRAIC[168]*CONSTANTS[138]*ALGEBRAIC[166]+ ALGEBRAIC[167]*CONSTANTS[138]*ALGEBRAIC[166]+ ALGEBRAIC[169]*ALGEBRAIC[167]*ALGEBRAIC[166]; ALGEBRAIC[175] = ALGEBRAIC[171]/(ALGEBRAIC[171]+ALGEBRAIC[172]+ALGEBRAIC[173]+ALGEBRAIC[174]); ALGEBRAIC[176] = ALGEBRAIC[172]/(ALGEBRAIC[171]+ALGEBRAIC[172]+ALGEBRAIC[173]+ALGEBRAIC[174]); ALGEBRAIC[179] = 3.00000*( ALGEBRAIC[175]*ALGEBRAIC[168] - ALGEBRAIC[176]*ALGEBRAIC[169]); ALGEBRAIC[177] = ALGEBRAIC[173]/(ALGEBRAIC[171]+ALGEBRAIC[172]+ALGEBRAIC[173]+ALGEBRAIC[174]); ALGEBRAIC[178] = ALGEBRAIC[174]/(ALGEBRAIC[171]+ALGEBRAIC[172]+ALGEBRAIC[173]+ALGEBRAIC[174]); ALGEBRAIC[180] = 2.00000*( ALGEBRAIC[178]*CONSTANTS[136] - ALGEBRAIC[177]*ALGEBRAIC[166]); ALGEBRAIC[181] = CONSTANTS[139]*( CONSTANTS[7]*ALGEBRAIC[179]+ CONSTANTS[9]*ALGEBRAIC[180]); ALGEBRAIC[182] = 1.00000/(1.00000+exp(- (STATES[0] - 14.4800)/18.3400)); ALGEBRAIC[183] = CONSTANTS[106]*ALGEBRAIC[182]*(STATES[0] - ALGEBRAIC[57]); ALGEBRAIC[12] = (VOI>CONSTANTS[14]&&VOI<=CONSTANTS[14]+CONSTANTS[13] ? CONSTANTS[12] : 0.00000); ALGEBRAIC[185] = (STATES[6] - STATES[5])/2.00000; RATES[5] = ( - ((ALGEBRAIC[70]+ALGEBRAIC[96]+ALGEBRAIC[98]+ALGEBRAIC[100]+ALGEBRAIC[183]+ALGEBRAIC[12]) - 2.00000*ALGEBRAIC[181])*CONSTANTS[30]*CONSTANTS[118])/( CONSTANTS[6]*CONSTANTS[119])+( ALGEBRAIC[185]*CONSTANTS[122])/CONSTANTS[119]; ALGEBRAIC[79] = ( 1.00000*ALGEBRAIC[29]*( 0.750000*STATES[6]*exp( 1.00000*ALGEBRAIC[39]) - 0.750000*CONSTANTS[3]))/(exp( 1.00000*ALGEBRAIC[39]) - 1.00000); ALGEBRAIC[85] = (1.00000 - ALGEBRAIC[80])*CONSTANTS[113]*ALGEBRAIC[79]*STATES[25]*( ALGEBRAIC[71]*(1.00000 - STATES[33])+ STATES[30]*ALGEBRAIC[74]*STATES[33])+ ALGEBRAIC[80]*CONSTANTS[117]*ALGEBRAIC[79]*STATES[25]*( ALGEBRAIC[75]*(1.00000 - STATES[33])+ STATES[30]*ALGEBRAIC[76]*STATES[33]); RATES[6] = ( - ALGEBRAIC[85]*CONSTANTS[30]*CONSTANTS[118])/( CONSTANTS[6]*CONSTANTS[122]) - ALGEBRAIC[185]; ALGEBRAIC[56] = (( CONSTANTS[4]*CONSTANTS[5])/CONSTANTS[6])*log(CONSTANTS[1]/STATES[3]); ALGEBRAIC[59] = CONSTANTS[42]*STATES[11]+ CONSTANTS[95]*STATES[12]; ALGEBRAIC[60] = CONSTANTS[42]*STATES[11]+ CONSTANTS[95]*STATES[14]; ALGEBRAIC[61] = 1.00000/(1.00000+CONSTANTS[15]/ALGEBRAIC[47]); ALGEBRAIC[62] = CONSTANTS[43]*(STATES[0] - ALGEBRAIC[56])*pow(STATES[10], 3.00000)*( (1.00000 - ALGEBRAIC[61])*ALGEBRAIC[59]*STATES[13]+ ALGEBRAIC[61]*ALGEBRAIC[60]*STATES[15]); ALGEBRAIC[63] = 1.00000/(1.00000+CONSTANTS[15]/ALGEBRAIC[47]); ALGEBRAIC[64] = CONSTANTS[97]*(STATES[0] - ALGEBRAIC[56])*STATES[16]*( (1.00000 - ALGEBRAIC[63])*STATES[17]+ ALGEBRAIC[63]*STATES[18]); ALGEBRAIC[129] = 1.00000/(1.00000+pow(CONSTANTS[64]/STATES[9], 2.00000)); ALGEBRAIC[102] = exp(( CONSTANTS[62]*STATES[0]*CONSTANTS[6])/( CONSTANTS[4]*CONSTANTS[5])); ALGEBRAIC[109] = 1.00000+ (CONSTANTS[1]/CONSTANTS[55])*(1.00000+1.00000/ALGEBRAIC[102]); ALGEBRAIC[110] = CONSTANTS[1]/( CONSTANTS[55]*ALGEBRAIC[102]*ALGEBRAIC[109]); ALGEBRAIC[113] = ALGEBRAIC[110]*CONSTANTS[59]; ALGEBRAIC[103] = 1.00000+ (STATES[3]/CONSTANTS[55])*(1.00000+ALGEBRAIC[102]); ALGEBRAIC[104] = ( STATES[3]*ALGEBRAIC[102])/( CONSTANTS[55]*ALGEBRAIC[103]); ALGEBRAIC[116] = ALGEBRAIC[104]*CONSTANTS[59]; ALGEBRAIC[106] = 1.00000+ (STATES[3]/CONSTANTS[53])*(1.00000+STATES[3]/CONSTANTS[54]); ALGEBRAIC[107] = ( STATES[3]*STATES[3])/( ALGEBRAIC[106]*CONSTANTS[53]*CONSTANTS[54]); ALGEBRAIC[119] = ALGEBRAIC[107]*ALGEBRAIC[104]*CONSTANTS[57]; ALGEBRAIC[120] = ALGEBRAIC[110]*CONSTANTS[124]*CONSTANTS[57]; ALGEBRAIC[111] = 1.00000/ALGEBRAIC[109]; ALGEBRAIC[112] = ALGEBRAIC[111]*CONSTANTS[58]; ALGEBRAIC[114] = ALGEBRAIC[112]+ALGEBRAIC[113]; ALGEBRAIC[101] = exp(( CONSTANTS[63]*STATES[0]*CONSTANTS[6])/( CONSTANTS[4]*CONSTANTS[5])); ALGEBRAIC[105] = 1.00000/ALGEBRAIC[103]; ALGEBRAIC[115] = ( ALGEBRAIC[105]*CONSTANTS[58])/ALGEBRAIC[101]; ALGEBRAIC[117] = ALGEBRAIC[115]+ALGEBRAIC[116]; ALGEBRAIC[108] = 1.00000/ALGEBRAIC[106]; ALGEBRAIC[118] = ALGEBRAIC[108]*STATES[9]*CONSTANTS[60]; ALGEBRAIC[121] = CONSTANTS[127]*ALGEBRAIC[117]*(ALGEBRAIC[119]+ALGEBRAIC[118])+ CONSTANTS[128]*ALGEBRAIC[119]*(CONSTANTS[127]+ALGEBRAIC[114]); ALGEBRAIC[122] = CONSTANTS[126]*ALGEBRAIC[119]*(ALGEBRAIC[117]+CONSTANTS[128])+ ALGEBRAIC[117]*ALGEBRAIC[118]*(CONSTANTS[126]+ALGEBRAIC[120]); ALGEBRAIC[123] = CONSTANTS[126]*ALGEBRAIC[114]*(ALGEBRAIC[119]+ALGEBRAIC[118])+ ALGEBRAIC[120]*ALGEBRAIC[118]*(CONSTANTS[127]+ALGEBRAIC[114]); ALGEBRAIC[124] = CONSTANTS[127]*ALGEBRAIC[120]*(ALGEBRAIC[117]+CONSTANTS[128])+ ALGEBRAIC[114]*CONSTANTS[128]*(CONSTANTS[126]+ALGEBRAIC[120]); ALGEBRAIC[125] = ALGEBRAIC[121]/(ALGEBRAIC[121]+ALGEBRAIC[122]+ALGEBRAIC[123]+ALGEBRAIC[124]); ALGEBRAIC[126] = ALGEBRAIC[122]/(ALGEBRAIC[121]+ALGEBRAIC[122]+ALGEBRAIC[123]+ALGEBRAIC[124]); ALGEBRAIC[127] = ALGEBRAIC[123]/(ALGEBRAIC[121]+ALGEBRAIC[122]+ALGEBRAIC[123]+ALGEBRAIC[124]); ALGEBRAIC[128] = ALGEBRAIC[124]/(ALGEBRAIC[121]+ALGEBRAIC[122]+ALGEBRAIC[123]+ALGEBRAIC[124]); ALGEBRAIC[130] = ( 3.00000*( ALGEBRAIC[128]*ALGEBRAIC[119] - ALGEBRAIC[125]*ALGEBRAIC[120])+ ALGEBRAIC[127]*ALGEBRAIC[116]) - ALGEBRAIC[126]*ALGEBRAIC[113]; ALGEBRAIC[131] = ALGEBRAIC[126]*CONSTANTS[127] - ALGEBRAIC[125]*CONSTANTS[126]; ALGEBRAIC[132] = 0.800000*CONSTANTS[129]*ALGEBRAIC[129]*( CONSTANTS[7]*ALGEBRAIC[130]+ CONSTANTS[8]*ALGEBRAIC[131]); ALGEBRAIC[184] = ( CONSTANTS[89]*ALGEBRAIC[29]*( STATES[3]*exp(ALGEBRAIC[39]) - CONSTANTS[1]))/(exp(ALGEBRAIC[39]) - 1.00000); ALGEBRAIC[187] = (STATES[4] - STATES[3])/2.00000; RATES[3] = ( - (ALGEBRAIC[62]+ALGEBRAIC[64]+ 3.00000*ALGEBRAIC[132]+ 3.00000*ALGEBRAIC[181]+ALGEBRAIC[184])*CONSTANTS[118]*CONSTANTS[30])/( CONSTANTS[6]*CONSTANTS[119])+( ALGEBRAIC[187]*CONSTANTS[122])/CONSTANTS[119]; ALGEBRAIC[78] = ( 1.00000*ALGEBRAIC[29]*( 0.750000*STATES[4]*exp( 1.00000*ALGEBRAIC[39]) - 0.750000*CONSTANTS[1]))/(exp( 1.00000*ALGEBRAIC[39]) - 1.00000); ALGEBRAIC[82] = (1.00000 - ALGEBRAIC[80])*CONSTANTS[112]*ALGEBRAIC[78]*STATES[25]*( ALGEBRAIC[71]*(1.00000 - STATES[33])+ STATES[30]*ALGEBRAIC[74]*STATES[33])+ ALGEBRAIC[80]*CONSTANTS[116]*ALGEBRAIC[78]*STATES[25]*( ALGEBRAIC[75]*(1.00000 - STATES[33])+ STATES[30]*ALGEBRAIC[76]*STATES[33]); ALGEBRAIC[159] = 1.00000/(1.00000+pow(CONSTANTS[64]/STATES[2], 2.00000)); ALGEBRAIC[139] = 1.00000+ (CONSTANTS[1]/CONSTANTS[55])*(1.00000+1.00000/ALGEBRAIC[102]); ALGEBRAIC[140] = CONSTANTS[1]/( CONSTANTS[55]*ALGEBRAIC[102]*ALGEBRAIC[139]); ALGEBRAIC[143] = ALGEBRAIC[140]*CONSTANTS[59]; ALGEBRAIC[133] = 1.00000+ (STATES[4]/CONSTANTS[55])*(1.00000+ALGEBRAIC[102]); ALGEBRAIC[134] = ( STATES[4]*ALGEBRAIC[102])/( CONSTANTS[55]*ALGEBRAIC[133]); ALGEBRAIC[146] = ALGEBRAIC[134]*CONSTANTS[59]; ALGEBRAIC[136] = 1.00000+ (STATES[4]/CONSTANTS[53])*(1.00000+STATES[4]/CONSTANTS[54]); ALGEBRAIC[137] = ( STATES[4]*STATES[4])/( ALGEBRAIC[136]*CONSTANTS[53]*CONSTANTS[54]); ALGEBRAIC[149] = ALGEBRAIC[137]*ALGEBRAIC[134]*CONSTANTS[57]; ALGEBRAIC[150] = ALGEBRAIC[140]*CONSTANTS[131]*CONSTANTS[57]; ALGEBRAIC[141] = 1.00000/ALGEBRAIC[139]; ALGEBRAIC[142] = ALGEBRAIC[141]*CONSTANTS[58]; ALGEBRAIC[144] = ALGEBRAIC[142]+ALGEBRAIC[143]; ALGEBRAIC[135] = 1.00000/ALGEBRAIC[133]; ALGEBRAIC[145] = ( ALGEBRAIC[135]*CONSTANTS[58])/ALGEBRAIC[101]; ALGEBRAIC[147] = ALGEBRAIC[145]+ALGEBRAIC[146]; ALGEBRAIC[138] = 1.00000/ALGEBRAIC[136]; ALGEBRAIC[148] = ALGEBRAIC[138]*STATES[2]*CONSTANTS[60]; ALGEBRAIC[151] = CONSTANTS[134]*ALGEBRAIC[147]*(ALGEBRAIC[149]+ALGEBRAIC[148])+ CONSTANTS[135]*ALGEBRAIC[149]*(CONSTANTS[134]+ALGEBRAIC[144]); ALGEBRAIC[152] = CONSTANTS[133]*ALGEBRAIC[149]*(ALGEBRAIC[147]+CONSTANTS[135])+ ALGEBRAIC[147]*ALGEBRAIC[148]*(CONSTANTS[133]+ALGEBRAIC[150]); ALGEBRAIC[153] = CONSTANTS[133]*ALGEBRAIC[144]*(ALGEBRAIC[149]+ALGEBRAIC[148])+ ALGEBRAIC[150]*ALGEBRAIC[148]*(CONSTANTS[134]+ALGEBRAIC[144]); ALGEBRAIC[154] = CONSTANTS[134]*ALGEBRAIC[150]*(ALGEBRAIC[147]+CONSTANTS[135])+ ALGEBRAIC[144]*CONSTANTS[135]*(CONSTANTS[133]+ALGEBRAIC[150]); ALGEBRAIC[155] = ALGEBRAIC[151]/(ALGEBRAIC[151]+ALGEBRAIC[152]+ALGEBRAIC[153]+ALGEBRAIC[154]); ALGEBRAIC[156] = ALGEBRAIC[152]/(ALGEBRAIC[151]+ALGEBRAIC[152]+ALGEBRAIC[153]+ALGEBRAIC[154]); ALGEBRAIC[157] = ALGEBRAIC[153]/(ALGEBRAIC[151]+ALGEBRAIC[152]+ALGEBRAIC[153]+ALGEBRAIC[154]); ALGEBRAIC[158] = ALGEBRAIC[154]/(ALGEBRAIC[151]+ALGEBRAIC[152]+ALGEBRAIC[153]+ALGEBRAIC[154]); ALGEBRAIC[160] = ( 3.00000*( ALGEBRAIC[158]*ALGEBRAIC[149] - ALGEBRAIC[155]*ALGEBRAIC[150])+ ALGEBRAIC[157]*ALGEBRAIC[146]) - ALGEBRAIC[156]*ALGEBRAIC[143]; ALGEBRAIC[161] = ALGEBRAIC[156]*CONSTANTS[134] - ALGEBRAIC[155]*CONSTANTS[133]; ALGEBRAIC[162] = 0.200000*CONSTANTS[129]*ALGEBRAIC[159]*( CONSTANTS[7]*ALGEBRAIC[160]+ CONSTANTS[8]*ALGEBRAIC[161]); RATES[4] = ( - (ALGEBRAIC[82]+ 3.00000*ALGEBRAIC[162])*CONSTANTS[30]*CONSTANTS[118])/( CONSTANTS[6]*CONSTANTS[122]) - ALGEBRAIC[187]; ALGEBRAIC[188] = ( CONSTANTS[91]*STATES[9])/(CONSTANTS[92]+STATES[9]); ALGEBRAIC[186] = ( CONSTANTS[90]*4.00000*ALGEBRAIC[29]*( STATES[9]*exp( 2.00000*ALGEBRAIC[39]) - 0.341000*CONSTANTS[2]))/(exp( 2.00000*ALGEBRAIC[39]) - 1.00000); RATES[0] = - (ALGEBRAIC[62]+ALGEBRAIC[64]+ALGEBRAIC[70]+ALGEBRAIC[81]+ALGEBRAIC[82]+ALGEBRAIC[85]+ALGEBRAIC[96]+ALGEBRAIC[98]+ALGEBRAIC[100]+ALGEBRAIC[132]+ALGEBRAIC[162]+ALGEBRAIC[181]+ALGEBRAIC[184]+ALGEBRAIC[183]+ALGEBRAIC[188]+ALGEBRAIC[186]+ALGEBRAIC[12]); ALGEBRAIC[189] = (STATES[2] - STATES[9])/0.200000; ALGEBRAIC[190] = 1.00000/(1.00000+CONSTANTS[15]/ALGEBRAIC[47]); ALGEBRAIC[191] = (1.00000 - ALGEBRAIC[190])*STATES[39]+ ALGEBRAIC[190]*STATES[40]; ALGEBRAIC[51] = 1.00000/(1.00000+( CONSTANTS[24]*CONSTANTS[25])/pow(CONSTANTS[25]+STATES[2], 2.00000)+( CONSTANTS[26]*CONSTANTS[27])/pow(CONSTANTS[27]+STATES[2], 2.00000)); RATES[2] = ALGEBRAIC[51]*((( - (ALGEBRAIC[81] - 2.00000*ALGEBRAIC[162])*CONSTANTS[30]*CONSTANTS[118])/( 2.00000*CONSTANTS[6]*CONSTANTS[122])+( ALGEBRAIC[191]*CONSTANTS[121])/CONSTANTS[122]) - ALGEBRAIC[189]); ALGEBRAIC[192] = ( CONSTANTS[109]*0.00437500*STATES[9])/(STATES[9]+0.000920000); ALGEBRAIC[193] = ( CONSTANTS[109]*2.75000*0.00437500*STATES[9])/((STATES[9]+0.000920000) - 0.000170000); ALGEBRAIC[194] = 1.00000/(1.00000+CONSTANTS[15]/ALGEBRAIC[47]); ALGEBRAIC[195] = ( 0.00393750*STATES[7])/15.0000; ALGEBRAIC[196] = ( (1.00000 - ALGEBRAIC[194])*ALGEBRAIC[192]+ ALGEBRAIC[194]*ALGEBRAIC[193]) - ALGEBRAIC[195]; ALGEBRAIC[49] = 1.00000/(1.00000+( CONSTANTS[94]*CONSTANTS[21])/pow(CONSTANTS[21]+STATES[9], 2.00000)+( CONSTANTS[22]*CONSTANTS[23])/pow(CONSTANTS[23]+STATES[9], 2.00000)); RATES[9] = ALGEBRAIC[49]*((( - ((ALGEBRAIC[188]+ALGEBRAIC[186]) - 2.00000*ALGEBRAIC[132])*CONSTANTS[30]*CONSTANTS[118])/( 2.00000*CONSTANTS[6]*CONSTANTS[119]) - ( ALGEBRAIC[196]*CONSTANTS[120])/CONSTANTS[119])+( ALGEBRAIC[189]*CONSTANTS[122])/CONSTANTS[119]); ALGEBRAIC[197] = (STATES[7] - STATES[8])/100.000; RATES[7] = ALGEBRAIC[196] - ( ALGEBRAIC[197]*CONSTANTS[121])/CONSTANTS[120]; ALGEBRAIC[53] = 1.00000/(1.00000+( CONSTANTS[28]*CONSTANTS[29])/pow(CONSTANTS[29]+STATES[8], 2.00000)); RATES[8] = ALGEBRAIC[53]*(ALGEBRAIC[197] - ALGEBRAIC[191]); } void computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[2] = 1.00000/(1.00000+exp((STATES[0]+87.6100)/7.48800)); ALGEBRAIC[3] = 1.00000/(1.00000+exp((STATES[0]+93.8100)/7.48800)); ALGEBRAIC[0] = 1.00000/(1.00000+exp(- (STATES[0]+CONSTANTS[32])/CONSTANTS[33])); ALGEBRAIC[13] = 1.00000/( CONSTANTS[36]*exp((STATES[0]+CONSTANTS[34])/CONSTANTS[35])+ CONSTANTS[37]*exp(- (STATES[0]+CONSTANTS[38])/CONSTANTS[39])); ALGEBRAIC[1] = 1.00000/(1.00000+exp((STATES[0]+CONSTANTS[40])/CONSTANTS[41])); ALGEBRAIC[14] = 1.00000/( 1.43200e-05*exp(- (STATES[0]+1.19600)/6.28500)+ 6.14900*exp((STATES[0]+0.509600)/20.2700)); ALGEBRAIC[15] = 1.00000/( 0.00979400*exp(- (STATES[0]+17.9500)/28.0500)+ 0.334300*exp((STATES[0]+5.73000)/56.6600)); ALGEBRAIC[4] = 1.00000/(1.00000+exp(- (STATES[0] - 14.3400)/14.8200)); ALGEBRAIC[17] = 1.05150/(1.00000/( 1.20890*(1.00000+exp(- (STATES[0] - 18.4099)/29.3814)))+3.50000/(1.00000+exp((STATES[0]+100.000)/29.3814))); ALGEBRAIC[6] = 1.00000/(1.00000+exp(- (STATES[0]+3.94000)/4.23000)); ALGEBRAIC[21] = 0.600000+1.00000/(exp( - 0.0500000*(STATES[0]+6.00000))+exp( 0.0900000*(STATES[0]+14.0000))); ALGEBRAIC[7] = 1.00000/(1.00000+exp((STATES[0]+19.5800)/3.69600)); ALGEBRAIC[22] = 7.00000+1.00000/( 0.00450000*exp(- (STATES[0]+20.0000)/10.0000)+ 0.00450000*exp((STATES[0]+20.0000)/10.0000)); ALGEBRAIC[23] = 1000.00+1.00000/( 3.50000e-05*exp(- (STATES[0]+5.00000)/4.00000)+ 3.50000e-05*exp((STATES[0]+5.00000)/6.00000)); ALGEBRAIC[19] = ALGEBRAIC[7]; ALGEBRAIC[8] = STATES[30]*1.00000; ALGEBRAIC[20] = 1.00000/(CONSTANTS[48]/ALGEBRAIC[8]+pow(1.00000+CONSTANTS[47]/STATES[2], 4.00000)); ALGEBRAIC[9] = 1.00000/(1.00000+exp(- (STATES[0]+8.33700)/6.78900)); ALGEBRAIC[24] = 12.9800+1.00000/( 0.365200*exp((STATES[0] - 31.6600)/3.86900)+ 4.12300e-05*exp(- (STATES[0] - 47.7800)/20.3800)); ALGEBRAIC[25] = 1.86500+1.00000/( 0.0662900*exp((STATES[0] - 34.7000)/7.35500)+ 1.12800e-05*exp(- (STATES[0] - 29.7400)/25.9400)); ALGEBRAIC[10] = 1.00000/(1.00000+exp(- (STATES[0]+11.6000)/8.93200)); ALGEBRAIC[27] = 817.300+1.00000/( 0.000232600*exp((STATES[0]+48.2800)/17.8000)+ 0.00129200*exp(- (STATES[0]+210.000)/230.000)); ALGEBRAIC[11] = 1.00000/(1.00000+exp(- (STATES[0]+ 2.55380*CONSTANTS[3]+144.590)/( 1.56920*CONSTANTS[3]+3.81150))); ALGEBRAIC[28] = 122.200/(exp(- (STATES[0]+127.200)/20.3600)+exp((STATES[0]+236.800)/69.3300)); ALGEBRAIC[16] = ALGEBRAIC[1]; ALGEBRAIC[30] = 2.03800+1.00000/( 0.0213600*exp(- (STATES[0]+100.600)/8.28100)+ 0.305200*exp((STATES[0]+0.994100)/38.4500)); ALGEBRAIC[34] = 1.00000/(1.00000+exp(- (STATES[0] - 24.3400)/14.8200)); ALGEBRAIC[35] = 7.00000+1.00000/( 0.0400000*exp(- (STATES[0] - 4.00000)/7.00000)+ 0.0400000*exp((STATES[0] - 4.00000)/7.00000)); ALGEBRAIC[36] = 100.000+1.00000/( 0.000120000*exp(- STATES[0]/3.00000)+ 0.000120000*exp(STATES[0]/7.00000)); ALGEBRAIC[37] = 2.50000*ALGEBRAIC[22]; ALGEBRAIC[26] = ALGEBRAIC[10]; ALGEBRAIC[38] = 1.00000/( 0.0100000*exp((STATES[0] - 50.0000)/20.0000)+ 0.0193000*exp(- (STATES[0]+66.5400)/31.0000)); ALGEBRAIC[45] = ( CONSTANTS[18]*(1.00000 - STATES[1]))/(1.00000+CONSTANTS[19]/STATES[2]); ALGEBRAIC[31] = 1.00000/(1.00000+exp((STATES[0]+89.1000)/6.08600)); ALGEBRAIC[40] = 3.00000*ALGEBRAIC[15]; ALGEBRAIC[41] = 1.46000*ALGEBRAIC[30]; ALGEBRAIC[32] = 1.00000/(1.00000+exp(- (STATES[0]+42.8500)/5.26400)); ALGEBRAIC[42] = ALGEBRAIC[13]; ALGEBRAIC[44] = 2.50000*ALGEBRAIC[35]; ALGEBRAIC[5] = 1.00000/(1.00000+exp((STATES[0]+43.9400)/5.71100)); ALGEBRAIC[18] = (CONSTANTS[0]==1.00000 ? 1.00000 - 0.950000/(1.00000+exp((STATES[0]+70.0000)/5.00000)) : 1.00000); ALGEBRAIC[33] = 4.56200+1.00000/( 0.393300*exp(- (STATES[0]+100.000)/100.000)+ 0.0800400*exp((STATES[0]+50.0000)/16.5900)); ALGEBRAIC[46] = ALGEBRAIC[33]*ALGEBRAIC[18]; ALGEBRAIC[43] = 23.6200+1.00000/( 0.00141600*exp(- (STATES[0]+96.5200)/59.0500)+ 1.78000e-08*exp((STATES[0]+114.100)/8.07900)); ALGEBRAIC[48] = ALGEBRAIC[43]*ALGEBRAIC[18]; ALGEBRAIC[50] = 1.35400+0.000100000/(exp((STATES[0] - 167.400)/15.8900)+exp(- (STATES[0] - 12.2300)/0.215400)); ALGEBRAIC[52] = 1.00000 - 0.500000/(1.00000+exp((STATES[0]+70.0000)/20.0000)); ALGEBRAIC[54] = ALGEBRAIC[50]*ALGEBRAIC[52]*ALGEBRAIC[46]; ALGEBRAIC[55] = ALGEBRAIC[50]*ALGEBRAIC[52]*ALGEBRAIC[48]; ALGEBRAIC[71] = CONSTANTS[99]*STATES[26]+ CONSTANTS[110]*STATES[27]; ALGEBRAIC[72] = 0.300000+0.600000/(1.00000+exp((STATES[0] - 10.0000)/10.0000)); ALGEBRAIC[73] = 1.00000 - ALGEBRAIC[72]; ALGEBRAIC[74] = ALGEBRAIC[72]*STATES[28]+ ALGEBRAIC[73]*STATES[29]; ALGEBRAIC[75] = CONSTANTS[99]*STATES[31]+ CONSTANTS[110]*STATES[27]; ALGEBRAIC[76] = ALGEBRAIC[72]*STATES[32]+ ALGEBRAIC[73]*STATES[29]; ALGEBRAIC[29] = ( STATES[0]*CONSTANTS[6]*CONSTANTS[6])/( CONSTANTS[4]*CONSTANTS[5]); ALGEBRAIC[39] = ( STATES[0]*CONSTANTS[6])/( CONSTANTS[4]*CONSTANTS[5]); ALGEBRAIC[77] = ( 4.00000*ALGEBRAIC[29]*( STATES[2]*exp( 2.00000*ALGEBRAIC[39]) - 0.341000*CONSTANTS[2]))/(exp( 2.00000*ALGEBRAIC[39]) - 1.00000); ALGEBRAIC[47] = ALGEBRAIC[45]+STATES[1]; ALGEBRAIC[80] = 1.00000/(1.00000+CONSTANTS[15]/ALGEBRAIC[47]); ALGEBRAIC[81] = (1.00000 - ALGEBRAIC[80])*CONSTANTS[100]*ALGEBRAIC[77]*STATES[25]*( ALGEBRAIC[71]*(1.00000 - STATES[33])+ STATES[30]*ALGEBRAIC[74]*STATES[33])+ ALGEBRAIC[80]*CONSTANTS[111]*ALGEBRAIC[77]*STATES[25]*( ALGEBRAIC[75]*(1.00000 - STATES[33])+ STATES[30]*ALGEBRAIC[76]*STATES[33]); ALGEBRAIC[83] = ( CONSTANTS[107]*- ALGEBRAIC[81])/(1.00000+ 1.00000*pow(1.50000/STATES[8], 8.00000)); ALGEBRAIC[86] = (CONSTANTS[0]==2.00000 ? ALGEBRAIC[83]*1.70000 : ALGEBRAIC[83]); ALGEBRAIC[89] = CONSTANTS[93]/(1.00000+0.0123000/STATES[8]); ALGEBRAIC[92] = (ALGEBRAIC[89]<0.00100000 ? 0.00100000 : ALGEBRAIC[89]); ALGEBRAIC[84] = ( CONSTANTS[115]*- ALGEBRAIC[81])/(1.00000+pow(1.50000/STATES[8], 8.00000)); ALGEBRAIC[87] = (CONSTANTS[0]==2.00000 ? ALGEBRAIC[84]*1.70000 : ALGEBRAIC[84]); ALGEBRAIC[90] = CONSTANTS[108]/(1.00000+0.0123000/STATES[8]); ALGEBRAIC[93] = (ALGEBRAIC[90]<0.00100000 ? 0.00100000 : ALGEBRAIC[90]); ALGEBRAIC[57] = (( CONSTANTS[4]*CONSTANTS[5])/CONSTANTS[6])*log(CONSTANTS[3]/STATES[5]); ALGEBRAIC[65] = 1.00000/(1.00000+exp((STATES[0] - 213.600)/151.200)); ALGEBRAIC[66] = 1.00000 - ALGEBRAIC[65]; ALGEBRAIC[67] = ALGEBRAIC[65]*STATES[20]+ ALGEBRAIC[66]*STATES[21]; ALGEBRAIC[68] = ALGEBRAIC[65]*STATES[23]+ ALGEBRAIC[66]*STATES[24]; ALGEBRAIC[69] = 1.00000/(1.00000+CONSTANTS[15]/ALGEBRAIC[47]); ALGEBRAIC[70] = CONSTANTS[98]*(STATES[0] - ALGEBRAIC[57])*( (1.00000 - ALGEBRAIC[69])*STATES[19]*ALGEBRAIC[67]+ ALGEBRAIC[69]*STATES[22]*ALGEBRAIC[68]); ALGEBRAIC[88] = 1.00000/(1.00000+exp((STATES[0]+54.8100)/38.2100)); ALGEBRAIC[91] = 1.00000 - ALGEBRAIC[88]; ALGEBRAIC[94] = ALGEBRAIC[88]*STATES[34]+ ALGEBRAIC[91]*STATES[35]; ALGEBRAIC[95] = ( (1.00000/(1.00000+exp((STATES[0]+55.0000)/75.0000)))*1.00000)/(1.00000+exp((STATES[0] - 10.0000)/30.0000)); ALGEBRAIC[96] = CONSTANTS[102]* pow((CONSTANTS[3]/5.40000), 1.0 / 2)*ALGEBRAIC[94]*ALGEBRAIC[95]*(STATES[0] - ALGEBRAIC[57]); ALGEBRAIC[58] = (( CONSTANTS[4]*CONSTANTS[5])/CONSTANTS[6])*log((CONSTANTS[3]+ CONSTANTS[31]*CONSTANTS[1])/(STATES[5]+ CONSTANTS[31]*STATES[3])); ALGEBRAIC[97] = 1.00000+0.600000/(1.00000+pow(3.80000e-05/STATES[9], 1.40000)); ALGEBRAIC[98] = CONSTANTS[103]*ALGEBRAIC[97]*STATES[36]*STATES[37]*(STATES[0] - ALGEBRAIC[58]); ALGEBRAIC[99] = 1.00000/(1.00000+exp(((STATES[0]+105.800) - 2.60000*CONSTANTS[3])/9.49300)); ALGEBRAIC[100] = CONSTANTS[104]* pow(CONSTANTS[3], 1.0 / 2)*ALGEBRAIC[99]*STATES[38]*(STATES[0] - ALGEBRAIC[57]); ALGEBRAIC[164] = CONSTANTS[75]*exp(( (1.00000 - CONSTANTS[76])*STATES[0]*CONSTANTS[6])/( 3.00000*CONSTANTS[4]*CONSTANTS[5])); ALGEBRAIC[168] = ( CONSTANTS[70]*pow(CONSTANTS[3]/CONSTANTS[78], 2.00000))/((pow(1.00000+CONSTANTS[1]/ALGEBRAIC[164], 3.00000)+pow(1.00000+CONSTANTS[3]/CONSTANTS[78], 2.00000)) - 1.00000); ALGEBRAIC[165] = CONSTANTS[83]/(1.00000+CONSTANTS[82]/CONSTANTS[84]+STATES[3]/CONSTANTS[85]+STATES[5]/CONSTANTS[86]); ALGEBRAIC[169] = ( CONSTANTS[71]*ALGEBRAIC[165]*CONSTANTS[82])/(1.00000+CONSTANTS[80]/CONSTANTS[81]); ALGEBRAIC[163] = CONSTANTS[74]*exp(( CONSTANTS[76]*STATES[0]*CONSTANTS[6])/( 3.00000*CONSTANTS[4]*CONSTANTS[5])); ALGEBRAIC[166] = ( CONSTANTS[66]*pow(STATES[3]/ALGEBRAIC[163], 3.00000))/((pow(1.00000+STATES[3]/ALGEBRAIC[163], 3.00000)+pow(1.00000+STATES[5]/CONSTANTS[77], 2.00000)) - 1.00000); ALGEBRAIC[167] = ( CONSTANTS[69]*pow(CONSTANTS[1]/ALGEBRAIC[164], 3.00000))/((pow(1.00000+CONSTANTS[1]/ALGEBRAIC[164], 3.00000)+pow(1.00000+CONSTANTS[3]/CONSTANTS[78], 2.00000)) - 1.00000); ALGEBRAIC[170] = ( CONSTANTS[73]*pow(STATES[5]/CONSTANTS[77], 2.00000))/((pow(1.00000+STATES[3]/ALGEBRAIC[163], 3.00000)+pow(1.00000+STATES[5]/CONSTANTS[77], 2.00000)) - 1.00000); ALGEBRAIC[171] = CONSTANTS[138]*ALGEBRAIC[166]*CONSTANTS[137]+ ALGEBRAIC[167]*ALGEBRAIC[170]*ALGEBRAIC[169]+ CONSTANTS[137]*ALGEBRAIC[170]*ALGEBRAIC[169]+ ALGEBRAIC[169]*ALGEBRAIC[166]*CONSTANTS[137]; ALGEBRAIC[172] = ALGEBRAIC[167]*CONSTANTS[136]*ALGEBRAIC[170]+ ALGEBRAIC[166]*CONSTANTS[137]*ALGEBRAIC[168]+ ALGEBRAIC[168]*CONSTANTS[136]*ALGEBRAIC[170]+ CONSTANTS[137]*ALGEBRAIC[168]*ALGEBRAIC[170]; ALGEBRAIC[173] = CONSTANTS[137]*ALGEBRAIC[168]*CONSTANTS[138]+ ALGEBRAIC[169]*ALGEBRAIC[167]*CONSTANTS[136]+ ALGEBRAIC[167]*CONSTANTS[136]*CONSTANTS[138]+ ALGEBRAIC[168]*CONSTANTS[138]*CONSTANTS[136]; ALGEBRAIC[174] = ALGEBRAIC[170]*ALGEBRAIC[169]*ALGEBRAIC[167]+ ALGEBRAIC[168]*CONSTANTS[138]*ALGEBRAIC[166]+ ALGEBRAIC[167]*CONSTANTS[138]*ALGEBRAIC[166]+ ALGEBRAIC[169]*ALGEBRAIC[167]*ALGEBRAIC[166]; ALGEBRAIC[175] = ALGEBRAIC[171]/(ALGEBRAIC[171]+ALGEBRAIC[172]+ALGEBRAIC[173]+ALGEBRAIC[174]); ALGEBRAIC[176] = ALGEBRAIC[172]/(ALGEBRAIC[171]+ALGEBRAIC[172]+ALGEBRAIC[173]+ALGEBRAIC[174]); ALGEBRAIC[179] = 3.00000*( ALGEBRAIC[175]*ALGEBRAIC[168] - ALGEBRAIC[176]*ALGEBRAIC[169]); ALGEBRAIC[177] = ALGEBRAIC[173]/(ALGEBRAIC[171]+ALGEBRAIC[172]+ALGEBRAIC[173]+ALGEBRAIC[174]); ALGEBRAIC[178] = ALGEBRAIC[174]/(ALGEBRAIC[171]+ALGEBRAIC[172]+ALGEBRAIC[173]+ALGEBRAIC[174]); ALGEBRAIC[180] = 2.00000*( ALGEBRAIC[178]*CONSTANTS[136] - ALGEBRAIC[177]*ALGEBRAIC[166]); ALGEBRAIC[181] = CONSTANTS[139]*( CONSTANTS[7]*ALGEBRAIC[179]+ CONSTANTS[9]*ALGEBRAIC[180]); ALGEBRAIC[182] = 1.00000/(1.00000+exp(- (STATES[0] - 14.4800)/18.3400)); ALGEBRAIC[183] = CONSTANTS[106]*ALGEBRAIC[182]*(STATES[0] - ALGEBRAIC[57]); ALGEBRAIC[12] = (VOI>CONSTANTS[14]&&VOI<=CONSTANTS[14]+CONSTANTS[13] ? CONSTANTS[12] : 0.00000); ALGEBRAIC[185] = (STATES[6] - STATES[5])/2.00000; ALGEBRAIC[79] = ( 1.00000*ALGEBRAIC[29]*( 0.750000*STATES[6]*exp( 1.00000*ALGEBRAIC[39]) - 0.750000*CONSTANTS[3]))/(exp( 1.00000*ALGEBRAIC[39]) - 1.00000); ALGEBRAIC[85] = (1.00000 - ALGEBRAIC[80])*CONSTANTS[113]*ALGEBRAIC[79]*STATES[25]*( ALGEBRAIC[71]*(1.00000 - STATES[33])+ STATES[30]*ALGEBRAIC[74]*STATES[33])+ ALGEBRAIC[80]*CONSTANTS[117]*ALGEBRAIC[79]*STATES[25]*( ALGEBRAIC[75]*(1.00000 - STATES[33])+ STATES[30]*ALGEBRAIC[76]*STATES[33]); ALGEBRAIC[56] = (( CONSTANTS[4]*CONSTANTS[5])/CONSTANTS[6])*log(CONSTANTS[1]/STATES[3]); ALGEBRAIC[59] = CONSTANTS[42]*STATES[11]+ CONSTANTS[95]*STATES[12]; ALGEBRAIC[60] = CONSTANTS[42]*STATES[11]+ CONSTANTS[95]*STATES[14]; ALGEBRAIC[61] = 1.00000/(1.00000+CONSTANTS[15]/ALGEBRAIC[47]); ALGEBRAIC[62] = CONSTANTS[43]*(STATES[0] - ALGEBRAIC[56])*pow(STATES[10], 3.00000)*( (1.00000 - ALGEBRAIC[61])*ALGEBRAIC[59]*STATES[13]+ ALGEBRAIC[61]*ALGEBRAIC[60]*STATES[15]); ALGEBRAIC[63] = 1.00000/(1.00000+CONSTANTS[15]/ALGEBRAIC[47]); ALGEBRAIC[64] = CONSTANTS[97]*(STATES[0] - ALGEBRAIC[56])*STATES[16]*( (1.00000 - ALGEBRAIC[63])*STATES[17]+ ALGEBRAIC[63]*STATES[18]); ALGEBRAIC[129] = 1.00000/(1.00000+pow(CONSTANTS[64]/STATES[9], 2.00000)); ALGEBRAIC[102] = exp(( CONSTANTS[62]*STATES[0]*CONSTANTS[6])/( CONSTANTS[4]*CONSTANTS[5])); ALGEBRAIC[109] = 1.00000+ (CONSTANTS[1]/CONSTANTS[55])*(1.00000+1.00000/ALGEBRAIC[102]); ALGEBRAIC[110] = CONSTANTS[1]/( CONSTANTS[55]*ALGEBRAIC[102]*ALGEBRAIC[109]); ALGEBRAIC[113] = ALGEBRAIC[110]*CONSTANTS[59]; ALGEBRAIC[103] = 1.00000+ (STATES[3]/CONSTANTS[55])*(1.00000+ALGEBRAIC[102]); ALGEBRAIC[104] = ( STATES[3]*ALGEBRAIC[102])/( CONSTANTS[55]*ALGEBRAIC[103]); ALGEBRAIC[116] = ALGEBRAIC[104]*CONSTANTS[59]; ALGEBRAIC[106] = 1.00000+ (STATES[3]/CONSTANTS[53])*(1.00000+STATES[3]/CONSTANTS[54]); ALGEBRAIC[107] = ( STATES[3]*STATES[3])/( ALGEBRAIC[106]*CONSTANTS[53]*CONSTANTS[54]); ALGEBRAIC[119] = ALGEBRAIC[107]*ALGEBRAIC[104]*CONSTANTS[57]; ALGEBRAIC[120] = ALGEBRAIC[110]*CONSTANTS[124]*CONSTANTS[57]; ALGEBRAIC[111] = 1.00000/ALGEBRAIC[109]; ALGEBRAIC[112] = ALGEBRAIC[111]*CONSTANTS[58]; ALGEBRAIC[114] = ALGEBRAIC[112]+ALGEBRAIC[113]; ALGEBRAIC[101] = exp(( CONSTANTS[63]*STATES[0]*CONSTANTS[6])/( CONSTANTS[4]*CONSTANTS[5])); ALGEBRAIC[105] = 1.00000/ALGEBRAIC[103]; ALGEBRAIC[115] = ( ALGEBRAIC[105]*CONSTANTS[58])/ALGEBRAIC[101]; ALGEBRAIC[117] = ALGEBRAIC[115]+ALGEBRAIC[116]; ALGEBRAIC[108] = 1.00000/ALGEBRAIC[106]; ALGEBRAIC[118] = ALGEBRAIC[108]*STATES[9]*CONSTANTS[60]; ALGEBRAIC[121] = CONSTANTS[127]*ALGEBRAIC[117]*(ALGEBRAIC[119]+ALGEBRAIC[118])+ CONSTANTS[128]*ALGEBRAIC[119]*(CONSTANTS[127]+ALGEBRAIC[114]); ALGEBRAIC[122] = CONSTANTS[126]*ALGEBRAIC[119]*(ALGEBRAIC[117]+CONSTANTS[128])+ ALGEBRAIC[117]*ALGEBRAIC[118]*(CONSTANTS[126]+ALGEBRAIC[120]); ALGEBRAIC[123] = CONSTANTS[126]*ALGEBRAIC[114]*(ALGEBRAIC[119]+ALGEBRAIC[118])+ ALGEBRAIC[120]*ALGEBRAIC[118]*(CONSTANTS[127]+ALGEBRAIC[114]); ALGEBRAIC[124] = CONSTANTS[127]*ALGEBRAIC[120]*(ALGEBRAIC[117]+CONSTANTS[128])+ ALGEBRAIC[114]*CONSTANTS[128]*(CONSTANTS[126]+ALGEBRAIC[120]); ALGEBRAIC[125] = ALGEBRAIC[121]/(ALGEBRAIC[121]+ALGEBRAIC[122]+ALGEBRAIC[123]+ALGEBRAIC[124]); ALGEBRAIC[126] = ALGEBRAIC[122]/(ALGEBRAIC[121]+ALGEBRAIC[122]+ALGEBRAIC[123]+ALGEBRAIC[124]); ALGEBRAIC[127] = ALGEBRAIC[123]/(ALGEBRAIC[121]+ALGEBRAIC[122]+ALGEBRAIC[123]+ALGEBRAIC[124]); ALGEBRAIC[128] = ALGEBRAIC[124]/(ALGEBRAIC[121]+ALGEBRAIC[122]+ALGEBRAIC[123]+ALGEBRAIC[124]); ALGEBRAIC[130] = ( 3.00000*( ALGEBRAIC[128]*ALGEBRAIC[119] - ALGEBRAIC[125]*ALGEBRAIC[120])+ ALGEBRAIC[127]*ALGEBRAIC[116]) - ALGEBRAIC[126]*ALGEBRAIC[113]; ALGEBRAIC[131] = ALGEBRAIC[126]*CONSTANTS[127] - ALGEBRAIC[125]*CONSTANTS[126]; ALGEBRAIC[132] = 0.800000*CONSTANTS[129]*ALGEBRAIC[129]*( CONSTANTS[7]*ALGEBRAIC[130]+ CONSTANTS[8]*ALGEBRAIC[131]); ALGEBRAIC[184] = ( CONSTANTS[89]*ALGEBRAIC[29]*( STATES[3]*exp(ALGEBRAIC[39]) - CONSTANTS[1]))/(exp(ALGEBRAIC[39]) - 1.00000); ALGEBRAIC[187] = (STATES[4] - STATES[3])/2.00000; ALGEBRAIC[78] = ( 1.00000*ALGEBRAIC[29]*( 0.750000*STATES[4]*exp( 1.00000*ALGEBRAIC[39]) - 0.750000*CONSTANTS[1]))/(exp( 1.00000*ALGEBRAIC[39]) - 1.00000); ALGEBRAIC[82] = (1.00000 - ALGEBRAIC[80])*CONSTANTS[112]*ALGEBRAIC[78]*STATES[25]*( ALGEBRAIC[71]*(1.00000 - STATES[33])+ STATES[30]*ALGEBRAIC[74]*STATES[33])+ ALGEBRAIC[80]*CONSTANTS[116]*ALGEBRAIC[78]*STATES[25]*( ALGEBRAIC[75]*(1.00000 - STATES[33])+ STATES[30]*ALGEBRAIC[76]*STATES[33]); ALGEBRAIC[159] = 1.00000/(1.00000+pow(CONSTANTS[64]/STATES[2], 2.00000)); ALGEBRAIC[139] = 1.00000+ (CONSTANTS[1]/CONSTANTS[55])*(1.00000+1.00000/ALGEBRAIC[102]); ALGEBRAIC[140] = CONSTANTS[1]/( CONSTANTS[55]*ALGEBRAIC[102]*ALGEBRAIC[139]); ALGEBRAIC[143] = ALGEBRAIC[140]*CONSTANTS[59]; ALGEBRAIC[133] = 1.00000+ (STATES[4]/CONSTANTS[55])*(1.00000+ALGEBRAIC[102]); ALGEBRAIC[134] = ( STATES[4]*ALGEBRAIC[102])/( CONSTANTS[55]*ALGEBRAIC[133]); ALGEBRAIC[146] = ALGEBRAIC[134]*CONSTANTS[59]; ALGEBRAIC[136] = 1.00000+ (STATES[4]/CONSTANTS[53])*(1.00000+STATES[4]/CONSTANTS[54]); ALGEBRAIC[137] = ( STATES[4]*STATES[4])/( ALGEBRAIC[136]*CONSTANTS[53]*CONSTANTS[54]); ALGEBRAIC[149] = ALGEBRAIC[137]*ALGEBRAIC[134]*CONSTANTS[57]; ALGEBRAIC[150] = ALGEBRAIC[140]*CONSTANTS[131]*CONSTANTS[57]; ALGEBRAIC[141] = 1.00000/ALGEBRAIC[139]; ALGEBRAIC[142] = ALGEBRAIC[141]*CONSTANTS[58]; ALGEBRAIC[144] = ALGEBRAIC[142]+ALGEBRAIC[143]; ALGEBRAIC[135] = 1.00000/ALGEBRAIC[133]; ALGEBRAIC[145] = ( ALGEBRAIC[135]*CONSTANTS[58])/ALGEBRAIC[101]; ALGEBRAIC[147] = ALGEBRAIC[145]+ALGEBRAIC[146]; ALGEBRAIC[138] = 1.00000/ALGEBRAIC[136]; ALGEBRAIC[148] = ALGEBRAIC[138]*STATES[2]*CONSTANTS[60]; ALGEBRAIC[151] = CONSTANTS[134]*ALGEBRAIC[147]*(ALGEBRAIC[149]+ALGEBRAIC[148])+ CONSTANTS[135]*ALGEBRAIC[149]*(CONSTANTS[134]+ALGEBRAIC[144]); ALGEBRAIC[152] = CONSTANTS[133]*ALGEBRAIC[149]*(ALGEBRAIC[147]+CONSTANTS[135])+ ALGEBRAIC[147]*ALGEBRAIC[148]*(CONSTANTS[133]+ALGEBRAIC[150]); ALGEBRAIC[153] = CONSTANTS[133]*ALGEBRAIC[144]*(ALGEBRAIC[149]+ALGEBRAIC[148])+ ALGEBRAIC[150]*ALGEBRAIC[148]*(CONSTANTS[134]+ALGEBRAIC[144]); ALGEBRAIC[154] = CONSTANTS[134]*ALGEBRAIC[150]*(ALGEBRAIC[147]+CONSTANTS[135])+ ALGEBRAIC[144]*CONSTANTS[135]*(CONSTANTS[133]+ALGEBRAIC[150]); ALGEBRAIC[155] = ALGEBRAIC[151]/(ALGEBRAIC[151]+ALGEBRAIC[152]+ALGEBRAIC[153]+ALGEBRAIC[154]); ALGEBRAIC[156] = ALGEBRAIC[152]/(ALGEBRAIC[151]+ALGEBRAIC[152]+ALGEBRAIC[153]+ALGEBRAIC[154]); ALGEBRAIC[157] = ALGEBRAIC[153]/(ALGEBRAIC[151]+ALGEBRAIC[152]+ALGEBRAIC[153]+ALGEBRAIC[154]); ALGEBRAIC[158] = ALGEBRAIC[154]/(ALGEBRAIC[151]+ALGEBRAIC[152]+ALGEBRAIC[153]+ALGEBRAIC[154]); ALGEBRAIC[160] = ( 3.00000*( ALGEBRAIC[158]*ALGEBRAIC[149] - ALGEBRAIC[155]*ALGEBRAIC[150])+ ALGEBRAIC[157]*ALGEBRAIC[146]) - ALGEBRAIC[156]*ALGEBRAIC[143]; ALGEBRAIC[161] = ALGEBRAIC[156]*CONSTANTS[134] - ALGEBRAIC[155]*CONSTANTS[133]; ALGEBRAIC[162] = 0.200000*CONSTANTS[129]*ALGEBRAIC[159]*( CONSTANTS[7]*ALGEBRAIC[160]+ CONSTANTS[8]*ALGEBRAIC[161]); ALGEBRAIC[188] = ( CONSTANTS[91]*STATES[9])/(CONSTANTS[92]+STATES[9]); ALGEBRAIC[186] = ( CONSTANTS[90]*4.00000*ALGEBRAIC[29]*( STATES[9]*exp( 2.00000*ALGEBRAIC[39]) - 0.341000*CONSTANTS[2]))/(exp( 2.00000*ALGEBRAIC[39]) - 1.00000); ALGEBRAIC[189] = (STATES[2] - STATES[9])/0.200000; ALGEBRAIC[190] = 1.00000/(1.00000+CONSTANTS[15]/ALGEBRAIC[47]); ALGEBRAIC[191] = (1.00000 - ALGEBRAIC[190])*STATES[39]+ ALGEBRAIC[190]*STATES[40]; ALGEBRAIC[51] = 1.00000/(1.00000+( CONSTANTS[24]*CONSTANTS[25])/pow(CONSTANTS[25]+STATES[2], 2.00000)+( CONSTANTS[26]*CONSTANTS[27])/pow(CONSTANTS[27]+STATES[2], 2.00000)); ALGEBRAIC[192] = ( CONSTANTS[109]*0.00437500*STATES[9])/(STATES[9]+0.000920000); ALGEBRAIC[193] = ( CONSTANTS[109]*2.75000*0.00437500*STATES[9])/((STATES[9]+0.000920000) - 0.000170000); ALGEBRAIC[194] = 1.00000/(1.00000+CONSTANTS[15]/ALGEBRAIC[47]); ALGEBRAIC[195] = ( 0.00393750*STATES[7])/15.0000; ALGEBRAIC[196] = ( (1.00000 - ALGEBRAIC[194])*ALGEBRAIC[192]+ ALGEBRAIC[194]*ALGEBRAIC[193]) - ALGEBRAIC[195]; ALGEBRAIC[49] = 1.00000/(1.00000+( CONSTANTS[94]*CONSTANTS[21])/pow(CONSTANTS[21]+STATES[9], 2.00000)+( CONSTANTS[22]*CONSTANTS[23])/pow(CONSTANTS[23]+STATES[9], 2.00000)); ALGEBRAIC[197] = (STATES[7] - STATES[8])/100.000; ALGEBRAIC[53] = 1.00000/(1.00000+( CONSTANTS[28]*CONSTANTS[29])/pow(CONSTANTS[29]+STATES[8], 2.00000)); }