Generated Code
The following is c code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
/* There are a total of 200 entries in the algebraic variable array. There are a total of 49 entries in each of the rate and state variable arrays. There are a total of 206 entries in the constant variable array. */ /* * VOI is time in component environment (millisecond). * CONSTANTS[0] is celltype in component environment (dimensionless). * CONSTANTS[1] is nao in component extracellular (millimolar). * CONSTANTS[2] is cao in component extracellular (millimolar). * CONSTANTS[3] is ko in component extracellular (millimolar). * CONSTANTS[4] is R in component physical_constants (joule_per_kilomole_kelvin). * CONSTANTS[5] is T in component physical_constants (kelvin). * CONSTANTS[6] is F in component physical_constants (coulomb_per_mole). * CONSTANTS[7] is zna in component physical_constants (dimensionless). * CONSTANTS[8] is zca in component physical_constants (dimensionless). * CONSTANTS[9] is zk in component physical_constants (dimensionless). * CONSTANTS[10] is L in component cell_geometry (centimeter). * CONSTANTS[11] is rad in component cell_geometry (centimeter). * CONSTANTS[162] is vcell in component cell_geometry (microliter). * CONSTANTS[177] is Ageo in component cell_geometry (centimeter_squared). * CONSTANTS[183] is Acap in component cell_geometry (centimeter_squared). * CONSTANTS[184] is vmyo in component cell_geometry (microliter). * CONSTANTS[185] is vnsr in component cell_geometry (microliter). * CONSTANTS[186] is vjsr in component cell_geometry (microliter). * CONSTANTS[187] is vss in component cell_geometry (microliter). * STATES[0] is v in component membrane (millivolt). * ALGEBRAIC[12] is vfrt in component membrane (dimensionless). * CONSTANTS[169] is ffrt in component membrane (coulomb_per_mole_millivolt). * CONSTANTS[149] is frt in component membrane (per_millivolt). * ALGEBRAIC[58] is INa in component INa (microA_per_microF). * ALGEBRAIC[60] is INaL in component INaL (microA_per_microF). * ALGEBRAIC[66] is Ito in component Ito (microA_per_microF). * ALGEBRAIC[83] is ICaL in component ICaL (microA_per_microF). * ALGEBRAIC[84] is ICaNa in component ICaL (microA_per_microF). * ALGEBRAIC[87] is ICaK in component ICaL (microA_per_microF). * ALGEBRAIC[90] is IKr in component IKr (microA_per_microF). * ALGEBRAIC[96] is IKs in component IKs (microA_per_microF). * ALGEBRAIC[98] is IK1 in component IK1 (microA_per_microF). * ALGEBRAIC[130] is INaCa_i in component INaCa_i (microA_per_microF). * ALGEBRAIC[160] is INaCa_ss in component INaCa_i (microA_per_microF). * ALGEBRAIC[179] is INaK in component INaK (microA_per_microF). * ALGEBRAIC[185] is INab in component INab (microA_per_microF). * ALGEBRAIC[181] is IKb in component IKb (microA_per_microF). * ALGEBRAIC[190] is IpCa in component IpCa (microA_per_microF). * ALGEBRAIC[189] is ICab in component ICab (microA_per_microF). * ALGEBRAIC[0] is Istim in component membrane (microA_per_microF). * CONSTANTS[12] is i_Stim_Start in component membrane (millisecond). * CONSTANTS[13] is i_Stim_End in component membrane (millisecond). * CONSTANTS[14] is i_Stim_Amplitude in component membrane (microA_per_microF). * CONSTANTS[15] is i_Stim_Period in component membrane (millisecond). * CONSTANTS[16] is i_Stim_PulseDuration in component membrane (millisecond). * CONSTANTS[17] is KmCaMK in component CaMK (millimolar). * CONSTANTS[18] is aCaMK in component CaMK (per_millimolar_per_millisecond). * CONSTANTS[19] is bCaMK in component CaMK (per_millisecond). * CONSTANTS[20] is CaMKo in component CaMK (dimensionless). * CONSTANTS[21] is KmCaM in component CaMK (millimolar). * ALGEBRAIC[36] is CaMKb in component CaMK (millimolar). * ALGEBRAIC[42] is CaMKa in component CaMK (millimolar). * STATES[1] is CaMKt in component CaMK (millimolar). * STATES[2] is cass in component intracellular_ions (millimolar). * CONSTANTS[22] is cmdnmax_b in component intracellular_ions (millimolar). * CONSTANTS[150] is cmdnmax in component intracellular_ions (millimolar). * CONSTANTS[23] is kmcmdn in component intracellular_ions (millimolar). * CONSTANTS[24] is trpnmax in component intracellular_ions (millimolar). * CONSTANTS[25] is kmtrpn in component intracellular_ions (millimolar). * CONSTANTS[26] is BSRmax in component intracellular_ions (millimolar). * CONSTANTS[27] is KmBSR in component intracellular_ions (millimolar). * CONSTANTS[28] is BSLmax in component intracellular_ions (millimolar). * CONSTANTS[29] is KmBSL in component intracellular_ions (millimolar). * CONSTANTS[30] is csqnmax in component intracellular_ions (millimolar). * CONSTANTS[31] is kmcsqn in component intracellular_ions (millimolar). * STATES[3] is nai in component intracellular_ions (millimolar). * STATES[4] is nass in component intracellular_ions (millimolar). * STATES[5] is ki in component intracellular_ions (millimolar). * STATES[6] is kss in component intracellular_ions (millimolar). * STATES[7] is cansr in component intracellular_ions (millimolar). * STATES[8] is cajsr in component intracellular_ions (millimolar). * STATES[9] is cai in component intracellular_ions (millimolar). * ALGEBRAIC[187] is JdiffNa in component diff (millimolar_per_millisecond). * ALGEBRAIC[191] is Jdiff in component diff (millimolar_per_millisecond). * ALGEBRAIC[198] is Jup in component SERCA (millimolar_per_millisecond). * ALGEBRAIC[183] is JdiffK in component diff (millimolar_per_millisecond). * ALGEBRAIC[193] is Jrel in component ryr (millimolar_per_millisecond). * ALGEBRAIC[199] is Jtr in component trans_flux (millimolar_per_millisecond). * ALGEBRAIC[44] is Bcai in component intracellular_ions (dimensionless). * ALGEBRAIC[48] is Bcajsr in component intracellular_ions (dimensionless). * ALGEBRAIC[46] is Bcass in component intracellular_ions (dimensionless). * CONSTANTS[32] is cm in component intracellular_ions (microF_per_centimeter_squared). * CONSTANTS[33] is PKNa in component reversal_potentials (dimensionless). * ALGEBRAIC[50] is ENa in component reversal_potentials (millivolt). * ALGEBRAIC[53] is EK in component reversal_potentials (millivolt). * ALGEBRAIC[54] is EKs in component reversal_potentials (millivolt). * ALGEBRAIC[1] is mss in component INa (dimensionless). * ALGEBRAIC[13] is tm in component INa (millisecond). * CONSTANTS[34] is mssV1 in component INa (millivolt). * CONSTANTS[35] is mssV2 in component INa (millivolt). * CONSTANTS[36] is mtV1 in component INa (millivolt). * CONSTANTS[37] is mtV2 in component INa (millivolt). * CONSTANTS[38] is mtD1 in component INa (dimensionless). * CONSTANTS[39] is mtD2 in component INa (dimensionless). * CONSTANTS[40] is mtV3 in component INa (millivolt). * CONSTANTS[41] is mtV4 in component INa (millivolt). * STATES[10] is m in component INa (dimensionless). * ALGEBRAIC[2] is hss in component INa (dimensionless). * ALGEBRAIC[14] is thf in component INa (millisecond). * ALGEBRAIC[15] is ths in component INa (millisecond). * CONSTANTS[42] is hssV1 in component INa (millivolt). * CONSTANTS[43] is hssV2 in component INa (millivolt). * CONSTANTS[151] is Ahs in component INa (dimensionless). * CONSTANTS[44] is Ahf in component INa (dimensionless). * STATES[11] is hf in component INa (dimensionless). * STATES[12] is hs in component INa (dimensionless). * ALGEBRAIC[55] is h in component INa (dimensionless). * CONSTANTS[45] is GNa in component INa (milliS_per_microF). * CONSTANTS[46] is shift_INa_inact in component INa (millivolt). * ALGEBRAIC[16] is jss in component INa (dimensionless). * ALGEBRAIC[27] is tj in component INa (millisecond). * STATES[13] is j in component INa (dimensionless). * ALGEBRAIC[28] is hssp in component INa (dimensionless). * ALGEBRAIC[37] is thsp in component INa (millisecond). * STATES[14] is hsp in component INa (dimensionless). * ALGEBRAIC[56] is hp in component INa (dimensionless). * ALGEBRAIC[38] is tjp in component INa (millisecond). * STATES[15] is jp in component INa (dimensionless). * ALGEBRAIC[57] is fINap in component INa (dimensionless). * ALGEBRAIC[29] is mLss in component INaL (dimensionless). * ALGEBRAIC[39] is tmL in component INaL (millisecond). * STATES[16] is mL in component INaL (dimensionless). * CONSTANTS[47] is thL in component INaL (millisecond). * ALGEBRAIC[3] is hLss in component INaL (dimensionless). * STATES[17] is hL in component INaL (dimensionless). * ALGEBRAIC[4] is hLssp in component INaL (dimensionless). * CONSTANTS[152] is thLp in component INaL (millisecond). * STATES[18] is hLp in component INaL (dimensionless). * CONSTANTS[48] is GNaL_b in component INaL (milliS_per_microF). * CONSTANTS[153] is GNaL in component INaL (milliS_per_microF). * ALGEBRAIC[59] is fINaLp in component INaL (dimensionless). * CONSTANTS[49] is Gto_b in component Ito (milliS_per_microF). * ALGEBRAIC[5] is ass in component Ito (dimensionless). * ALGEBRAIC[17] is ta in component Ito (millisecond). * STATES[19] is a in component Ito (dimensionless). * ALGEBRAIC[6] is iss in component Ito (dimensionless). * ALGEBRAIC[18] is delta_epi in component Ito (dimensionless). * ALGEBRAIC[30] is tiF_b in component Ito (millisecond). * ALGEBRAIC[40] is tiS_b in component Ito (millisecond). * ALGEBRAIC[43] is tiF in component Ito (millisecond). * ALGEBRAIC[45] is tiS in component Ito (millisecond). * ALGEBRAIC[61] is AiF in component Ito (dimensionless). * ALGEBRAIC[62] is AiS in component Ito (dimensionless). * STATES[20] is iF in component Ito (dimensionless). * STATES[21] is iS in component Ito (dimensionless). * ALGEBRAIC[63] is i in component Ito (dimensionless). * ALGEBRAIC[31] is assp in component Ito (dimensionless). * STATES[22] is ap in component Ito (dimensionless). * ALGEBRAIC[47] is dti_develop in component Ito (dimensionless). * ALGEBRAIC[49] is dti_recover in component Ito (dimensionless). * ALGEBRAIC[51] is tiFp in component Ito (millisecond). * ALGEBRAIC[52] is tiSp in component Ito (millisecond). * STATES[23] is iFp in component Ito (dimensionless). * STATES[24] is iSp in component Ito (dimensionless). * ALGEBRAIC[64] is ip in component Ito (dimensionless). * CONSTANTS[154] is Gto in component Ito (milliS_per_microF). * ALGEBRAIC[65] is fItop in component Ito (dimensionless). * CONSTANTS[50] is Kmn in component ICaL (millimolar). * CONSTANTS[51] is k2n in component ICaL (per_millisecond). * CONSTANTS[52] is PCa_b in component ICaL (dimensionless). * ALGEBRAIC[7] is dss in component ICaL (dimensionless). * STATES[25] is d in component ICaL (dimensionless). * ALGEBRAIC[8] is fss in component ICaL (dimensionless). * CONSTANTS[155] is Aff in component ICaL (dimensionless). * CONSTANTS[170] is Afs in component ICaL (dimensionless). * STATES[26] is ff in component ICaL (dimensionless). * STATES[27] is fs in component ICaL (dimensionless). * ALGEBRAIC[67] is f in component ICaL (dimensionless). * ALGEBRAIC[19] is fcass in component ICaL (dimensionless). * ALGEBRAIC[68] is Afcaf in component ICaL (dimensionless). * ALGEBRAIC[69] is Afcas in component ICaL (dimensionless). * STATES[28] is fcaf in component ICaL (dimensionless). * STATES[29] is fcas in component ICaL (dimensionless). * ALGEBRAIC[70] is fca in component ICaL (dimensionless). * STATES[30] is jca in component ICaL (dimensionless). * STATES[31] is ffp in component ICaL (dimensionless). * ALGEBRAIC[71] is fp in component ICaL (dimensionless). * STATES[32] is fcafp in component ICaL (dimensionless). * ALGEBRAIC[72] is fcap in component ICaL (dimensionless). * ALGEBRAIC[9] is km2n in component ICaL (per_millisecond). * ALGEBRAIC[20] is anca in component ICaL (dimensionless). * STATES[33] is nca in component ICaL (dimensionless). * ALGEBRAIC[75] is PhiCaL in component ICaL (dimensionless). * ALGEBRAIC[78] is PhiCaNa in component ICaL (dimensionless). * ALGEBRAIC[81] is PhiCaK in component ICaL (dimensionless). * CONSTANTS[156] is PCa in component ICaL (dimensionless). * CONSTANTS[171] is PCap in component ICaL (dimensionless). * CONSTANTS[172] is PCaNa in component ICaL (dimensionless). * CONSTANTS[173] is PCaK in component ICaL (dimensionless). * CONSTANTS[181] is PCaNap in component ICaL (dimensionless). * CONSTANTS[182] is PCaKp in component ICaL (dimensionless). * ALGEBRAIC[82] is fICaLp in component ICaL (dimensionless). * ALGEBRAIC[21] is td in component ICaL (millisecond). * ALGEBRAIC[22] is tff in component ICaL (millisecond). * ALGEBRAIC[23] is tfs in component ICaL (millisecond). * ALGEBRAIC[32] is tfcaf in component ICaL (millisecond). * ALGEBRAIC[33] is tfcas in component ICaL (millisecond). * CONSTANTS[157] is tjca in component ICaL (millisecond). * ALGEBRAIC[34] is tffp in component ICaL (millisecond). * ALGEBRAIC[41] is tfcafp in component ICaL (millisecond). * CONSTANTS[158] is v0 in component ICaL (millivolt). * ALGEBRAIC[73] is A_1 in component ICaL (dimensionless). * CONSTANTS[174] is B_1 in component ICaL (per_millivolt). * ALGEBRAIC[74] is U_1 in component ICaL (dimensionless). * ALGEBRAIC[76] is A_2 in component ICaL (dimensionless). * CONSTANTS[175] is B_2 in component ICaL (per_millivolt). * ALGEBRAIC[77] is U_2 in component ICaL (dimensionless). * ALGEBRAIC[79] is A_3 in component ICaL (dimensionless). * CONSTANTS[176] is B_3 in component ICaL (per_millivolt). * ALGEBRAIC[80] is U_3 in component ICaL (dimensionless). * CONSTANTS[53] is GKr_b in component IKr (milliS_per_microF). * STATES[34] is IC1 in component IKr (dimensionless). * STATES[35] is IC2 in component IKr (dimensionless). * STATES[36] is C1 in component IKr (dimensionless). * STATES[37] is C2 in component IKr (dimensionless). * STATES[38] is O in component IKr (dimensionless). * STATES[39] is IO in component IKr (dimensionless). * STATES[40] is IObound in component IKr (dimensionless). * STATES[41] is Obound in component IKr (dimensionless). * STATES[42] is Cbound in component IKr (dimensionless). * STATES[43] is D in component IKr (dimensionless). * CONSTANTS[159] is GKr in component IKr (milliS_per_microF). * CONSTANTS[54] is A1 in component IKr (per_millisecond). * CONSTANTS[55] is B1 in component IKr (per_millivolt). * CONSTANTS[56] is q1 in component IKr (dimensionless). * CONSTANTS[57] is A2 in component IKr (per_millisecond). * CONSTANTS[58] is B2 in component IKr (per_millivolt). * CONSTANTS[59] is q2 in component IKr (dimensionless). * CONSTANTS[60] is A3 in component IKr (per_millisecond). * CONSTANTS[61] is B3 in component IKr (per_millivolt). * CONSTANTS[62] is q3 in component IKr (dimensionless). * CONSTANTS[63] is A4 in component IKr (per_millisecond). * CONSTANTS[64] is B4 in component IKr (per_millivolt). * CONSTANTS[65] is q4 in component IKr (dimensionless). * CONSTANTS[66] is A11 in component IKr (per_millisecond). * CONSTANTS[67] is B11 in component IKr (per_millivolt). * CONSTANTS[68] is q11 in component IKr (dimensionless). * CONSTANTS[69] is A21 in component IKr (per_millisecond). * CONSTANTS[70] is B21 in component IKr (per_millivolt). * CONSTANTS[71] is q21 in component IKr (dimensionless). * CONSTANTS[72] is A31 in component IKr (per_millisecond). * CONSTANTS[73] is B31 in component IKr (per_millivolt). * CONSTANTS[74] is q31 in component IKr (dimensionless). * CONSTANTS[75] is A41 in component IKr (per_millisecond). * CONSTANTS[76] is B41 in component IKr (per_millivolt). * CONSTANTS[77] is q41 in component IKr (dimensionless). * CONSTANTS[78] is A51 in component IKr (per_millisecond). * CONSTANTS[79] is B51 in component IKr (per_millivolt). * CONSTANTS[80] is q51 in component IKr (dimensionless). * CONSTANTS[81] is A52 in component IKr (per_millisecond). * CONSTANTS[82] is B52 in component IKr (per_millivolt). * CONSTANTS[83] is q52 in component IKr (dimensionless). * CONSTANTS[84] is A53 in component IKr (per_millisecond). * CONSTANTS[85] is B53 in component IKr (per_millivolt). * CONSTANTS[86] is q53 in component IKr (dimensionless). * CONSTANTS[87] is A61 in component IKr (per_millisecond). * CONSTANTS[88] is B61 in component IKr (per_millivolt). * CONSTANTS[89] is q61 in component IKr (dimensionless). * CONSTANTS[90] is A62 in component IKr (per_millisecond). * CONSTANTS[91] is B62 in component IKr (per_millivolt). * CONSTANTS[92] is q62 in component IKr (dimensionless). * CONSTANTS[93] is A63 in component IKr (per_millisecond). * CONSTANTS[94] is B63 in component IKr (per_millivolt). * CONSTANTS[95] is q63 in component IKr (dimensionless). * CONSTANTS[96] is Kmax in component IKr (dimensionless). * CONSTANTS[97] is Ku in component IKr (per_millisecond). * CONSTANTS[98] is n in component IKr (dimensionless). * CONSTANTS[99] is halfmax in component IKr (dimensionless). * CONSTANTS[100] is Kt in component IKr (per_millisecond). * CONSTANTS[101] is Vhalf in component IKr (millivolt). * CONSTANTS[102] is Temp in component IKr (dimensionless). * CONSTANTS[103] is GKs_b in component IKs (milliS_per_microF). * CONSTANTS[160] is GKs in component IKs (milliS_per_microF). * ALGEBRAIC[10] is xs1ss in component IKs (dimensionless). * ALGEBRAIC[24] is xs2ss in component IKs (dimensionless). * ALGEBRAIC[25] is txs1 in component IKs (millisecond). * CONSTANTS[104] is txs1_max in component IKs (millisecond). * STATES[44] is xs1 in component IKs (dimensionless). * STATES[45] is xs2 in component IKs (dimensionless). * ALGEBRAIC[93] is KsCa in component IKs (dimensionless). * ALGEBRAIC[35] is txs2 in component IKs (millisecond). * CONSTANTS[161] is GK1 in component IK1 (milliS_per_microF). * CONSTANTS[105] is GK1_b in component IK1 (milliS_per_microF). * ALGEBRAIC[11] is xk1ss in component IK1 (dimensionless). * ALGEBRAIC[26] is txk1 in component IK1 (millisecond). * STATES[46] is xk1 in component IK1 (dimensionless). * ALGEBRAIC[97] is rk1 in component IK1 (millisecond). * CONSTANTS[106] is kna1 in component INaCa_i (per_millisecond). * CONSTANTS[107] is kna2 in component INaCa_i (per_millisecond). * CONSTANTS[108] is kna3 in component INaCa_i (per_millisecond). * CONSTANTS[109] is kasymm in component INaCa_i (dimensionless). * CONSTANTS[110] is wna in component INaCa_i (dimensionless). * CONSTANTS[111] is wca in component INaCa_i (dimensionless). * CONSTANTS[112] is wnaca in component INaCa_i (dimensionless). * CONSTANTS[113] is kcaon in component INaCa_i (per_millisecond). * CONSTANTS[114] is kcaoff in component INaCa_i (per_millisecond). * CONSTANTS[115] is qna in component INaCa_i (dimensionless). * CONSTANTS[116] is qca in component INaCa_i (dimensionless). * ALGEBRAIC[100] is hna in component INaCa_i (dimensionless). * ALGEBRAIC[99] is hca in component INaCa_i (dimensionless). * CONSTANTS[117] is KmCaAct in component INaCa_i (millimolar). * CONSTANTS[118] is Gncx_b in component INaCa_i (milliS_per_microF). * CONSTANTS[194] is Gncx in component INaCa_i (milliS_per_microF). * ALGEBRAIC[101] is h1_i in component INaCa_i (dimensionless). * ALGEBRAIC[102] is h2_i in component INaCa_i (dimensionless). * ALGEBRAIC[103] is h3_i in component INaCa_i (dimensionless). * ALGEBRAIC[104] is h4_i in component INaCa_i (dimensionless). * ALGEBRAIC[105] is h5_i in component INaCa_i (dimensionless). * ALGEBRAIC[106] is h6_i in component INaCa_i (dimensionless). * ALGEBRAIC[107] is h7_i in component INaCa_i (dimensionless). * ALGEBRAIC[108] is h8_i in component INaCa_i (dimensionless). * ALGEBRAIC[109] is h9_i in component INaCa_i (dimensionless). * CONSTANTS[188] is h10_i in component INaCa_i (dimensionless). * CONSTANTS[189] is h11_i in component INaCa_i (dimensionless). * CONSTANTS[190] is h12_i in component INaCa_i (dimensionless). * CONSTANTS[191] is k1_i in component INaCa_i (dimensionless). * CONSTANTS[192] is k2_i in component INaCa_i (dimensionless). * ALGEBRAIC[110] is k3p_i in component INaCa_i (dimensionless). * ALGEBRAIC[111] is k3pp_i in component INaCa_i (dimensionless). * ALGEBRAIC[112] is k3_i in component INaCa_i (dimensionless). * ALGEBRAIC[115] is k4_i in component INaCa_i (dimensionless). * ALGEBRAIC[113] is k4p_i in component INaCa_i (dimensionless). * ALGEBRAIC[114] is k4pp_i in component INaCa_i (dimensionless). * CONSTANTS[193] is k5_i in component INaCa_i (dimensionless). * ALGEBRAIC[116] is k6_i in component INaCa_i (dimensionless). * ALGEBRAIC[117] is k7_i in component INaCa_i (dimensionless). * ALGEBRAIC[118] is k8_i in component INaCa_i (dimensionless). * ALGEBRAIC[119] is x1_i in component INaCa_i (dimensionless). * ALGEBRAIC[120] is x2_i in component INaCa_i (dimensionless). * ALGEBRAIC[121] is x3_i in component INaCa_i (dimensionless). * ALGEBRAIC[122] is x4_i in component INaCa_i (dimensionless). * ALGEBRAIC[123] is E1_i in component INaCa_i (dimensionless). * ALGEBRAIC[124] is E2_i in component INaCa_i (dimensionless). * ALGEBRAIC[125] is E3_i in component INaCa_i (dimensionless). * ALGEBRAIC[126] is E4_i in component INaCa_i (dimensionless). * ALGEBRAIC[127] is allo_i in component INaCa_i (dimensionless). * ALGEBRAIC[128] is JncxNa_i in component INaCa_i (millimolar_per_millisecond). * ALGEBRAIC[129] is JncxCa_i in component INaCa_i (millimolar_per_millisecond). * ALGEBRAIC[131] is h1_ss in component INaCa_i (dimensionless). * ALGEBRAIC[132] is h2_ss in component INaCa_i (dimensionless). * ALGEBRAIC[133] is h3_ss in component INaCa_i (dimensionless). * ALGEBRAIC[134] is h4_ss in component INaCa_i (dimensionless). * ALGEBRAIC[135] is h5_ss in component INaCa_i (dimensionless). * ALGEBRAIC[136] is h6_ss in component INaCa_i (dimensionless). * ALGEBRAIC[137] is h7_ss in component INaCa_i (dimensionless). * ALGEBRAIC[138] is h8_ss in component INaCa_i (dimensionless). * ALGEBRAIC[139] is h9_ss in component INaCa_i (dimensionless). * CONSTANTS[195] is h10_ss in component INaCa_i (dimensionless). * CONSTANTS[196] is h11_ss in component INaCa_i (dimensionless). * CONSTANTS[197] is h12_ss in component INaCa_i (dimensionless). * CONSTANTS[198] is k1_ss in component INaCa_i (dimensionless). * CONSTANTS[199] is k2_ss in component INaCa_i (dimensionless). * ALGEBRAIC[140] is k3p_ss in component INaCa_i (dimensionless). * ALGEBRAIC[141] is k3pp_ss in component INaCa_i (dimensionless). * ALGEBRAIC[142] is k3_ss in component INaCa_i (dimensionless). * ALGEBRAIC[145] is k4_ss in component INaCa_i (dimensionless). * ALGEBRAIC[143] is k4p_ss in component INaCa_i (dimensionless). * ALGEBRAIC[144] is k4pp_ss in component INaCa_i (dimensionless). * CONSTANTS[200] is k5_ss in component INaCa_i (dimensionless). * ALGEBRAIC[146] is k6_ss in component INaCa_i (dimensionless). * ALGEBRAIC[147] is k7_ss in component INaCa_i (dimensionless). * ALGEBRAIC[148] is k8_ss in component INaCa_i (dimensionless). * ALGEBRAIC[149] is x1_ss in component INaCa_i (dimensionless). * ALGEBRAIC[150] is x2_ss in component INaCa_i (dimensionless). * ALGEBRAIC[151] is x3_ss in component INaCa_i (dimensionless). * ALGEBRAIC[152] is x4_ss in component INaCa_i (dimensionless). * ALGEBRAIC[153] is E1_ss in component INaCa_i (dimensionless). * ALGEBRAIC[154] is E2_ss in component INaCa_i (dimensionless). * ALGEBRAIC[155] is E3_ss in component INaCa_i (dimensionless). * ALGEBRAIC[156] is E4_ss in component INaCa_i (dimensionless). * ALGEBRAIC[157] is allo_ss in component INaCa_i (dimensionless). * ALGEBRAIC[158] is JncxNa_ss in component INaCa_i (millimolar_per_millisecond). * ALGEBRAIC[159] is JncxCa_ss in component INaCa_i (millimolar_per_millisecond). * CONSTANTS[119] is k1p in component INaK (per_millisecond). * CONSTANTS[120] is k1m in component INaK (per_millisecond). * CONSTANTS[121] is k2p in component INaK (per_millisecond). * CONSTANTS[122] is k2m in component INaK (per_millisecond). * CONSTANTS[123] is k3p in component INaK (per_millisecond). * CONSTANTS[124] is k3m in component INaK (per_millisecond). * CONSTANTS[125] is k4p in component INaK (per_millisecond). * CONSTANTS[126] is k4m in component INaK (per_millisecond). * CONSTANTS[127] is Knai0 in component INaK (millimolar). * CONSTANTS[128] is Knao0 in component INaK (millimolar). * CONSTANTS[129] is delta in component INaK (millivolt). * CONSTANTS[130] is Kki in component INaK (per_millisecond). * CONSTANTS[131] is Kko in component INaK (per_millisecond). * CONSTANTS[132] is MgADP in component INaK (millimolar). * CONSTANTS[133] is MgATP in component INaK (millimolar). * CONSTANTS[134] is Kmgatp in component INaK (millimolar). * CONSTANTS[135] is H in component INaK (millimolar). * CONSTANTS[136] is eP in component INaK (dimensionless). * CONSTANTS[137] is Khp in component INaK (millimolar). * CONSTANTS[138] is Knap in component INaK (millimolar). * CONSTANTS[139] is Kxkur in component INaK (millimolar). * CONSTANTS[140] is Pnak_b in component INaK (milliS_per_microF). * CONSTANTS[204] is Pnak in component INaK (milliS_per_microF). * ALGEBRAIC[161] is Knai in component INaK (millimolar). * ALGEBRAIC[162] is Knao in component INaK (millimolar). * ALGEBRAIC[163] is P in component INaK (dimensionless). * ALGEBRAIC[164] is a1 in component INaK (dimensionless). * CONSTANTS[201] is b1 in component INaK (dimensionless). * CONSTANTS[202] is a2 in component INaK (dimensionless). * ALGEBRAIC[165] is b2 in component INaK (dimensionless). * ALGEBRAIC[166] is a3 in component INaK (dimensionless). * ALGEBRAIC[167] is b3 in component INaK (dimensionless). * CONSTANTS[203] is a4 in component INaK (dimensionless). * ALGEBRAIC[168] is b4 in component INaK (dimensionless). * ALGEBRAIC[169] is x1 in component INaK (dimensionless). * ALGEBRAIC[170] is x2 in component INaK (dimensionless). * ALGEBRAIC[171] is x3 in component INaK (dimensionless). * ALGEBRAIC[172] is x4 in component INaK (dimensionless). * ALGEBRAIC[173] is E1 in component INaK (dimensionless). * ALGEBRAIC[174] is E2 in component INaK (dimensionless). * ALGEBRAIC[175] is E3 in component INaK (dimensionless). * ALGEBRAIC[176] is E4 in component INaK (dimensionless). * ALGEBRAIC[177] is JnakNa in component INaK (millimolar_per_millisecond). * ALGEBRAIC[178] is JnakK in component INaK (millimolar_per_millisecond). * ALGEBRAIC[180] is xkb in component IKb (dimensionless). * CONSTANTS[141] is GKb_b in component IKb (milliS_per_microF). * CONSTANTS[163] is GKb in component IKb (milliS_per_microF). * CONSTANTS[142] is PNab in component INab (milliS_per_microF). * ALGEBRAIC[182] is A in component INab (microA_per_microF). * CONSTANTS[178] is B in component INab (per_millivolt). * CONSTANTS[164] is v0 in component INab (millivolt). * ALGEBRAIC[184] is U in component INab (dimensionless). * CONSTANTS[143] is PCab in component ICab (milliS_per_microF). * ALGEBRAIC[186] is A in component ICab (microA_per_microF). * CONSTANTS[179] is B in component ICab (per_millivolt). * CONSTANTS[165] is v0 in component ICab (millivolt). * ALGEBRAIC[188] is U in component ICab (dimensionless). * CONSTANTS[144] is GpCa in component IpCa (milliS_per_microF). * CONSTANTS[145] is KmCap in component IpCa (millimolar). * CONSTANTS[146] is bt in component ryr (millisecond). * CONSTANTS[166] is a_rel in component ryr (millisecond). * ALGEBRAIC[88] is Jrel_inf in component ryr (dimensionless). * ALGEBRAIC[94] is tau_rel in component ryr (millisecond). * ALGEBRAIC[89] is Jrel_infp in component ryr (dimensionless). * ALGEBRAIC[86] is Jrel_temp in component ryr (dimensionless). * ALGEBRAIC[95] is tau_relp in component ryr (millisecond). * STATES[47] is Jrelnp in component ryr (dimensionless). * STATES[48] is Jrelp in component ryr (dimensionless). * CONSTANTS[167] is btp in component ryr (millisecond). * CONSTANTS[180] is a_relp in component ryr (millisecond). * ALGEBRAIC[85] is Jrel_inf_temp in component ryr (dimensionless). * ALGEBRAIC[192] is fJrelp in component ryr (dimensionless). * CONSTANTS[147] is Jrel_scaling_factor in component ryr (dimensionless). * ALGEBRAIC[91] is tau_rel_temp in component ryr (millisecond). * ALGEBRAIC[92] is tau_relp_temp in component ryr (millisecond). * CONSTANTS[168] is upScale in component SERCA (dimensionless). * ALGEBRAIC[194] is Jupnp in component SERCA (millimolar_per_millisecond). * ALGEBRAIC[195] is Jupp in component SERCA (millimolar_per_millisecond). * ALGEBRAIC[196] is fJupp in component SERCA (dimensionless). * ALGEBRAIC[197] is Jleak in component SERCA (millimolar_per_millisecond). * CONSTANTS[148] is Jup_b in component SERCA (dimensionless). * RATES[0] is d/dt v in component membrane (millivolt). * RATES[1] is d/dt CaMKt in component CaMK (millimolar). * RATES[3] is d/dt nai in component intracellular_ions (millimolar). * RATES[4] is d/dt nass in component intracellular_ions (millimolar). * RATES[5] is d/dt ki in component intracellular_ions (millimolar). * RATES[6] is d/dt kss in component intracellular_ions (millimolar). * RATES[9] is d/dt cai in component intracellular_ions (millimolar). * RATES[2] is d/dt cass in component intracellular_ions (millimolar). * RATES[7] is d/dt cansr in component intracellular_ions (millimolar). * RATES[8] is d/dt cajsr in component intracellular_ions (millimolar). * RATES[10] is d/dt m in component INa (dimensionless). * RATES[11] is d/dt hf in component INa (dimensionless). * RATES[12] is d/dt hs in component INa (dimensionless). * RATES[13] is d/dt j in component INa (dimensionless). * RATES[14] is d/dt hsp in component INa (dimensionless). * RATES[15] is d/dt jp in component INa (dimensionless). * RATES[16] is d/dt mL in component INaL (dimensionless). * RATES[17] is d/dt hL in component INaL (dimensionless). * RATES[18] is d/dt hLp in component INaL (dimensionless). * RATES[19] is d/dt a in component Ito (dimensionless). * RATES[20] is d/dt iF in component Ito (dimensionless). * RATES[21] is d/dt iS in component Ito (dimensionless). * RATES[22] is d/dt ap in component Ito (dimensionless). * RATES[23] is d/dt iFp in component Ito (dimensionless). * RATES[24] is d/dt iSp in component Ito (dimensionless). * RATES[25] is d/dt d in component ICaL (dimensionless). * RATES[26] is d/dt ff in component ICaL (dimensionless). * RATES[27] is d/dt fs in component ICaL (dimensionless). * RATES[28] is d/dt fcaf in component ICaL (dimensionless). * RATES[29] is d/dt fcas in component ICaL (dimensionless). * RATES[30] is d/dt jca in component ICaL (dimensionless). * RATES[31] is d/dt ffp in component ICaL (dimensionless). * RATES[32] is d/dt fcafp in component ICaL (dimensionless). * RATES[33] is d/dt nca in component ICaL (dimensionless). * RATES[34] is d/dt IC1 in component IKr (dimensionless). * RATES[35] is d/dt IC2 in component IKr (dimensionless). * RATES[36] is d/dt C1 in component IKr (dimensionless). * RATES[37] is d/dt C2 in component IKr (dimensionless). * RATES[38] is d/dt O in component IKr (dimensionless). * RATES[39] is d/dt IO in component IKr (dimensionless). * RATES[40] is d/dt IObound in component IKr (dimensionless). * RATES[41] is d/dt Obound in component IKr (dimensionless). * RATES[42] is d/dt Cbound in component IKr (dimensionless). * RATES[43] is d/dt D in component IKr (dimensionless). * RATES[44] is d/dt xs1 in component IKs (dimensionless). * RATES[45] is d/dt xs2 in component IKs (dimensionless). * RATES[46] is d/dt xk1 in component IK1 (dimensionless). * RATES[47] is d/dt Jrelnp in component ryr (dimensionless). * RATES[48] is d/dt Jrelp in component ryr (dimensionless). */ void initConsts(double* CONSTANTS, double* RATES, double *STATES) { CONSTANTS[0] = 0; CONSTANTS[1] = 140; CONSTANTS[2] = 1.8; CONSTANTS[3] = 5.4; CONSTANTS[4] = 8314; CONSTANTS[5] = 310; CONSTANTS[6] = 96485; CONSTANTS[7] = 1; CONSTANTS[8] = 2; CONSTANTS[9] = 1; CONSTANTS[10] = 0.01; CONSTANTS[11] = 0.0011; STATES[0] = -88.00190465; CONSTANTS[12] = 10; CONSTANTS[13] = 100000000000000000; CONSTANTS[14] = -80; CONSTANTS[15] = 1000; CONSTANTS[16] = 0.5; CONSTANTS[17] = 0.15; CONSTANTS[18] = 0.05; CONSTANTS[19] = 0.00068; CONSTANTS[20] = 0.05; CONSTANTS[21] = 0.0015; STATES[1] = 0.0125840447; STATES[2] = 8.49e-05; CONSTANTS[22] = 0.05; CONSTANTS[23] = 0.00238; CONSTANTS[24] = 0.07; CONSTANTS[25] = 0.0005; CONSTANTS[26] = 0.047; CONSTANTS[27] = 0.00087; CONSTANTS[28] = 1.124; CONSTANTS[29] = 0.0087; CONSTANTS[30] = 10; CONSTANTS[31] = 0.8; STATES[3] = 7.268004498; STATES[4] = 7.268089977; STATES[5] = 144.6555918; STATES[6] = 144.6555651; STATES[7] = 1.619574538; STATES[8] = 1.571234014; STATES[9] = 8.6e-05; CONSTANTS[32] = 1; CONSTANTS[33] = 0.01833; CONSTANTS[34] = 39.57; CONSTANTS[35] = 9.871; CONSTANTS[36] = 11.64; CONSTANTS[37] = 34.77; CONSTANTS[38] = 6.765; CONSTANTS[39] = 8.552; CONSTANTS[40] = 77.42; CONSTANTS[41] = 5.955; STATES[10] = 0.007344121102; CONSTANTS[42] = 82.9; CONSTANTS[43] = 6.086; CONSTANTS[44] = 0.99; STATES[11] = 0.6981071913; STATES[12] = 0.6980895801; CONSTANTS[45] = 75; CONSTANTS[46] = 0; STATES[13] = 0.6979908432; STATES[14] = 0.4549485525; STATES[15] = 0.6979245865; STATES[16] = 0.0001882617273; CONSTANTS[47] = 200; STATES[17] = 0.5008548855; STATES[18] = 0.2693065357; CONSTANTS[48] = 0.019957499999999975; CONSTANTS[49] = 0.02; STATES[19] = 0.001001097687; STATES[20] = 0.9995541745; STATES[21] = 0.5865061736; STATES[22] = 0.0005100862934; STATES[23] = 0.9995541823; STATES[24] = 0.6393399482; CONSTANTS[50] = 0.002; CONSTANTS[51] = 1000; CONSTANTS[52] = 0.0001007; STATES[25] = 2.34e-9; STATES[26] = 0.9999999909; STATES[27] = 0.9102412777; STATES[28] = 0.9999999909; STATES[29] = 0.9998046777; STATES[30] = 0.9999738312; STATES[31] = 0.9999999909; STATES[32] = 0.9999999909; STATES[33] = 0.002749414044; CONSTANTS[53] = 0.04658545454545456; STATES[34] = 0.999637; STATES[35] = 6.83208e-05; STATES[36] = 1.80145e-08; STATES[37] = 8.26619e-05; STATES[38] = 0.00015551; STATES[39] = 5.67623e-05; STATES[40] = 0; STATES[41] = 0; STATES[42] = 0; STATES[43] = 0; CONSTANTS[54] = 0.0264; CONSTANTS[55] = 4.631E-05; CONSTANTS[56] = 4.843; CONSTANTS[57] = 4.986E-06; CONSTANTS[58] = -0.004226; CONSTANTS[59] = 4.23; CONSTANTS[60] = 0.001214; CONSTANTS[61] = 0.008516; CONSTANTS[62] = 4.962; CONSTANTS[63] = 1.854E-05; CONSTANTS[64] = -0.04641; CONSTANTS[65] = 3.769; CONSTANTS[66] = 0.0007868; CONSTANTS[67] = 1.535E-08; CONSTANTS[68] = 4.942; CONSTANTS[69] = 5.455E-06; CONSTANTS[70] = -0.1688; CONSTANTS[71] = 4.156; CONSTANTS[72] = 0.005509; CONSTANTS[73] = 7.771E-09; CONSTANTS[74] = 4.22; CONSTANTS[75] = 0.001416; CONSTANTS[76] = -0.02877; CONSTANTS[77] = 1.459; CONSTANTS[78] = 0.4492; CONSTANTS[79] = 0.008595; CONSTANTS[80] = 5; CONSTANTS[81] = 0.3181; CONSTANTS[82] = 3.613E-08; CONSTANTS[83] = 4.663; CONSTANTS[84] = 0.149; CONSTANTS[85] = 0.004668; CONSTANTS[86] = 2.412; CONSTANTS[87] = 0.01241; CONSTANTS[88] = 0.1725; CONSTANTS[89] = 5.568; CONSTANTS[90] = 0.3226; CONSTANTS[91] = -0.0006575; CONSTANTS[92] = 5; CONSTANTS[93] = 0.008978; CONSTANTS[94] = -0.02215; CONSTANTS[95] = 5.682; CONSTANTS[96] = 0; CONSTANTS[97] = 0; CONSTANTS[98] = 1; CONSTANTS[99] = 1; CONSTANTS[100] = 0; CONSTANTS[101] = 1; CONSTANTS[102] = 37; CONSTANTS[103] = 0.006358000000000001; CONSTANTS[104] = 817.3; STATES[44] = 0.2707758025; STATES[45] = 0.0001928503426; CONSTANTS[105] = 0.3239783999999998; STATES[46] = 0.9967597594; CONSTANTS[106] = 15; CONSTANTS[107] = 5; CONSTANTS[108] = 88.12; CONSTANTS[109] = 12.5; CONSTANTS[110] = 6e4; CONSTANTS[111] = 6e4; CONSTANTS[112] = 5e3; CONSTANTS[113] = 1.5e6; CONSTANTS[114] = 5e3; CONSTANTS[115] = 0.5224; CONSTANTS[116] = 0.167; CONSTANTS[117] = 150e-6; CONSTANTS[118] = 0.0008; CONSTANTS[119] = 949.5; CONSTANTS[120] = 182.4; CONSTANTS[121] = 687.2; CONSTANTS[122] = 39.4; CONSTANTS[123] = 1899; CONSTANTS[124] = 79300; CONSTANTS[125] = 639; CONSTANTS[126] = 40; CONSTANTS[127] = 9.073; CONSTANTS[128] = 27.78; CONSTANTS[129] = -0.155; CONSTANTS[130] = 0.5; CONSTANTS[131] = 0.3582; CONSTANTS[132] = 0.05; CONSTANTS[133] = 9.8; CONSTANTS[134] = 1.698e-7; CONSTANTS[135] = 1e-7; CONSTANTS[136] = 4.2; CONSTANTS[137] = 1.698e-7; CONSTANTS[138] = 224; CONSTANTS[139] = 292; CONSTANTS[140] = 30; CONSTANTS[141] = 0.003; CONSTANTS[142] = 3.75e-10; CONSTANTS[143] = 2.5e-8; CONSTANTS[144] = 0.0005; CONSTANTS[145] = 0.0005; CONSTANTS[146] = 4.75; STATES[47] = 2.5e-7; STATES[48] = 3.12e-7; CONSTANTS[147] = 1.0; CONSTANTS[148] = 1.0; CONSTANTS[149] = CONSTANTS[6]/( CONSTANTS[4]*CONSTANTS[5]); CONSTANTS[150] = (CONSTANTS[0]==1.00000 ? CONSTANTS[22]*1.30000 : CONSTANTS[22]); CONSTANTS[151] = 1.00000 - CONSTANTS[44]; CONSTANTS[152] = 3.00000*CONSTANTS[47]; CONSTANTS[153] = (CONSTANTS[0]==1.00000 ? CONSTANTS[48]*0.600000 : CONSTANTS[48]); CONSTANTS[154] = (CONSTANTS[0]==1.00000 ? CONSTANTS[49]*4.00000 : CONSTANTS[0]==2.00000 ? CONSTANTS[49]*4.00000 : CONSTANTS[49]); CONSTANTS[155] = 0.600000; CONSTANTS[156] = (CONSTANTS[0]==1.00000 ? CONSTANTS[52]*1.20000 : CONSTANTS[0]==2.00000 ? CONSTANTS[52]*2.50000 : CONSTANTS[52]); CONSTANTS[157] = 75.0000; CONSTANTS[158] = 0.00000; CONSTANTS[159] = (CONSTANTS[0]==1.00000 ? CONSTANTS[53]*1.30000 : CONSTANTS[0]==2.00000 ? CONSTANTS[53]*0.800000 : CONSTANTS[53]); CONSTANTS[160] = (CONSTANTS[0]==1.00000 ? CONSTANTS[103]*1.40000 : CONSTANTS[103]); CONSTANTS[161] = (CONSTANTS[0]==1.00000 ? CONSTANTS[105]*1.20000 : CONSTANTS[0]==2.00000 ? CONSTANTS[105]*1.30000 : CONSTANTS[105]); CONSTANTS[162] = 1000.00*3.14000*CONSTANTS[11]*CONSTANTS[11]*CONSTANTS[10]; CONSTANTS[163] = (CONSTANTS[0]==1.00000 ? CONSTANTS[141]*0.600000 : CONSTANTS[141]); CONSTANTS[164] = 0.00000; CONSTANTS[165] = 0.00000; CONSTANTS[166] = 0.500000*CONSTANTS[146]; CONSTANTS[167] = 1.25000*CONSTANTS[146]; CONSTANTS[168] = (CONSTANTS[0]==1.00000 ? 1.30000 : 1.00000); CONSTANTS[205] = 0.00000; CONSTANTS[169] = CONSTANTS[6]*CONSTANTS[149]; CONSTANTS[170] = 1.00000 - CONSTANTS[155]; CONSTANTS[171] = 1.10000*CONSTANTS[156]; CONSTANTS[172] = 0.00125000*CONSTANTS[156]; CONSTANTS[173] = 0.000357400*CONSTANTS[156]; CONSTANTS[174] = 2.00000*CONSTANTS[149]; CONSTANTS[175] = CONSTANTS[149]; CONSTANTS[176] = CONSTANTS[149]; CONSTANTS[177] = 2.00000*3.14000*CONSTANTS[11]*CONSTANTS[11]+ 2.00000*3.14000*CONSTANTS[11]*CONSTANTS[10]; CONSTANTS[178] = CONSTANTS[149]; CONSTANTS[179] = 2.00000*CONSTANTS[149]; CONSTANTS[180] = 0.500000*CONSTANTS[167]; CONSTANTS[181] = 0.00125000*CONSTANTS[171]; CONSTANTS[182] = 0.000357400*CONSTANTS[171]; CONSTANTS[183] = 2.00000*CONSTANTS[177]; CONSTANTS[184] = 0.680000*CONSTANTS[162]; CONSTANTS[185] = 0.0552000*CONSTANTS[162]; CONSTANTS[186] = 0.00480000*CONSTANTS[162]; CONSTANTS[187] = 0.0200000*CONSTANTS[162]; CONSTANTS[188] = CONSTANTS[109]+1.00000+ (CONSTANTS[1]/CONSTANTS[106])*(1.00000+CONSTANTS[1]/CONSTANTS[107]); CONSTANTS[189] = ( CONSTANTS[1]*CONSTANTS[1])/( CONSTANTS[188]*CONSTANTS[106]*CONSTANTS[107]); CONSTANTS[190] = 1.00000/CONSTANTS[188]; CONSTANTS[191] = CONSTANTS[190]*CONSTANTS[2]*CONSTANTS[113]; CONSTANTS[192] = CONSTANTS[114]; CONSTANTS[193] = CONSTANTS[114]; CONSTANTS[194] = (CONSTANTS[0]==1.00000 ? CONSTANTS[118]*1.10000 : CONSTANTS[0]==2.00000 ? CONSTANTS[118]*1.40000 : CONSTANTS[118]); CONSTANTS[195] = CONSTANTS[109]+1.00000+ (CONSTANTS[1]/CONSTANTS[106])*(1.00000+CONSTANTS[1]/CONSTANTS[107]); CONSTANTS[196] = ( CONSTANTS[1]*CONSTANTS[1])/( CONSTANTS[195]*CONSTANTS[106]*CONSTANTS[107]); CONSTANTS[197] = 1.00000/CONSTANTS[195]; CONSTANTS[198] = CONSTANTS[197]*CONSTANTS[2]*CONSTANTS[113]; CONSTANTS[199] = CONSTANTS[114]; CONSTANTS[200] = CONSTANTS[114]; CONSTANTS[201] = CONSTANTS[120]*CONSTANTS[132]; CONSTANTS[202] = CONSTANTS[121]; CONSTANTS[203] = (( CONSTANTS[125]*CONSTANTS[133])/CONSTANTS[134])/(1.00000+CONSTANTS[133]/CONSTANTS[134]); CONSTANTS[204] = (CONSTANTS[0]==1.00000 ? CONSTANTS[140]*0.900000 : CONSTANTS[0]==2.00000 ? CONSTANTS[140]*0.700000 : CONSTANTS[140]); } void computeRates(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { RATES[43] = CONSTANTS[205]; RATES[34] = (- ( CONSTANTS[66]*exp( CONSTANTS[67]*STATES[0])*STATES[34]*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[68]))/10.0000) - CONSTANTS[69]*exp( CONSTANTS[70]*STATES[0])*STATES[35]*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[71]))/10.0000))+ CONSTANTS[78]*exp( CONSTANTS[79]*STATES[0])*STATES[36]*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[80]))/10.0000)) - CONSTANTS[87]*exp( CONSTANTS[88]*STATES[0])*STATES[34]*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[89]))/10.0000); RATES[35] = ((( CONSTANTS[66]*exp( CONSTANTS[67]*STATES[0])*STATES[34]*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[68]))/10.0000) - CONSTANTS[69]*exp( CONSTANTS[70]*STATES[0])*STATES[35]*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[71]))/10.0000)) - ( CONSTANTS[60]*exp( CONSTANTS[61]*STATES[0])*STATES[35]*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[62]))/10.0000) - CONSTANTS[63]*exp( CONSTANTS[64]*STATES[0])*STATES[39]*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[65]))/10.0000)))+ CONSTANTS[81]*exp( CONSTANTS[82]*STATES[0])*STATES[37]*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[83]))/10.0000)) - CONSTANTS[90]*exp( CONSTANTS[91]*STATES[0])*STATES[35]*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[92]))/10.0000); RATES[36] = - ( CONSTANTS[54]*exp( CONSTANTS[55]*STATES[0])*STATES[36]*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[56]))/10.0000) - CONSTANTS[57]*exp( CONSTANTS[58]*STATES[0])*STATES[37]*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[59]))/10.0000)) - ( CONSTANTS[78]*exp( CONSTANTS[79]*STATES[0])*STATES[36]*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[80]))/10.0000) - CONSTANTS[87]*exp( CONSTANTS[88]*STATES[0])*STATES[34]*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[89]))/10.0000)); RATES[37] = (( CONSTANTS[54]*exp( CONSTANTS[55]*STATES[0])*STATES[36]*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[56]))/10.0000) - CONSTANTS[57]*exp( CONSTANTS[58]*STATES[0])*STATES[37]*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[59]))/10.0000)) - ( CONSTANTS[72]*exp( CONSTANTS[73]*STATES[0])*STATES[37]*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[74]))/10.0000) - CONSTANTS[75]*exp( CONSTANTS[76]*STATES[0])*STATES[38]*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[77]))/10.0000))) - ( CONSTANTS[81]*exp( CONSTANTS[82]*STATES[0])*STATES[37]*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[83]))/10.0000) - CONSTANTS[90]*exp( CONSTANTS[91]*STATES[0])*STATES[35]*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[92]))/10.0000)); RATES[38] = (( CONSTANTS[72]*exp( CONSTANTS[73]*STATES[0])*STATES[37]*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[74]))/10.0000) - CONSTANTS[75]*exp( CONSTANTS[76]*STATES[0])*STATES[38]*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[77]))/10.0000)) - ( CONSTANTS[84]*exp( CONSTANTS[85]*STATES[0])*STATES[38]*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[86]))/10.0000) - CONSTANTS[93]*exp( CONSTANTS[94]*STATES[0])*STATES[39]*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[95]))/10.0000))) - ( (( CONSTANTS[96]*CONSTANTS[97]*exp( CONSTANTS[98]*log(STATES[43])))/(exp( CONSTANTS[98]*log(STATES[43]))+CONSTANTS[99]))*STATES[38] - CONSTANTS[97]*STATES[41]); RATES[39] = ((( CONSTANTS[60]*exp( CONSTANTS[61]*STATES[0])*STATES[35]*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[62]))/10.0000) - CONSTANTS[63]*exp( CONSTANTS[64]*STATES[0])*STATES[39]*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[65]))/10.0000))+ CONSTANTS[84]*exp( CONSTANTS[85]*STATES[0])*STATES[38]*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[86]))/10.0000)) - CONSTANTS[93]*exp( CONSTANTS[94]*STATES[0])*STATES[39]*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[95]))/10.0000)) - ( (( CONSTANTS[96]*CONSTANTS[97]*exp( CONSTANTS[98]*log(STATES[43])))/(exp( CONSTANTS[98]*log(STATES[43]))+CONSTANTS[99]))*STATES[39] - (( CONSTANTS[97]*CONSTANTS[84]*exp( CONSTANTS[85]*STATES[0])*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[86]))/10.0000))/( CONSTANTS[93]*exp( CONSTANTS[94]*STATES[0])*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[95]))/10.0000)))*STATES[40]); RATES[40] = (( (( CONSTANTS[96]*CONSTANTS[97]*exp( CONSTANTS[98]*log(STATES[43])))/(exp( CONSTANTS[98]*log(STATES[43]))+CONSTANTS[99]))*STATES[39] - (( CONSTANTS[97]*CONSTANTS[84]*exp( CONSTANTS[85]*STATES[0])*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[86]))/10.0000))/( CONSTANTS[93]*exp( CONSTANTS[94]*STATES[0])*exp(( (CONSTANTS[102] - 20.0000)*log(CONSTANTS[95]))/10.0000)))*STATES[40])+ (CONSTANTS[100]/(1.00000+exp(- (STATES[0] - CONSTANTS[101])/6.78900)))*STATES[42]) - CONSTANTS[100]*STATES[40]; RATES[41] = (( (( CONSTANTS[96]*CONSTANTS[97]*exp( CONSTANTS[98]*log(STATES[43])))/(exp( CONSTANTS[98]*log(STATES[43]))+CONSTANTS[99]))*STATES[38] - CONSTANTS[97]*STATES[41])+ (CONSTANTS[100]/(1.00000+exp(- (STATES[0] - CONSTANTS[101])/6.78900)))*STATES[42]) - CONSTANTS[100]*STATES[41]; RATES[42] = - ( (CONSTANTS[100]/(1.00000+exp(- (STATES[0] - CONSTANTS[101])/6.78900)))*STATES[42] - CONSTANTS[100]*STATES[41]) - ( (CONSTANTS[100]/(1.00000+exp(- (STATES[0] - CONSTANTS[101])/6.78900)))*STATES[42] - CONSTANTS[100]*STATES[40]); ALGEBRAIC[3] = 1.00000/(1.00000+exp((STATES[0]+87.6100)/7.48800)); RATES[17] = (ALGEBRAIC[3] - STATES[17])/CONSTANTS[47]; ALGEBRAIC[4] = 1.00000/(1.00000+exp((STATES[0]+93.8100)/7.48800)); RATES[18] = (ALGEBRAIC[4] - STATES[18])/CONSTANTS[152]; ALGEBRAIC[1] = 1.00000/(1.00000+exp(- (STATES[0]+CONSTANTS[34])/CONSTANTS[35])); ALGEBRAIC[13] = 1.00000/( CONSTANTS[38]*exp((STATES[0]+CONSTANTS[36])/CONSTANTS[37])+ CONSTANTS[39]*exp(- (STATES[0]+CONSTANTS[40])/CONSTANTS[41])); RATES[10] = (ALGEBRAIC[1] - STATES[10])/ALGEBRAIC[13]; ALGEBRAIC[2] = 1.00000/(1.00000+exp(((STATES[0]+CONSTANTS[42]) - CONSTANTS[46])/CONSTANTS[43])); ALGEBRAIC[14] = 1.00000/( 1.43200e-05*exp(- ((STATES[0]+1.19600) - CONSTANTS[46])/6.28500)+ 6.14900*exp(((STATES[0]+0.509600) - CONSTANTS[46])/20.2700)); RATES[11] = (ALGEBRAIC[2] - STATES[11])/ALGEBRAIC[14]; ALGEBRAIC[15] = 1.00000/( 0.00979400*exp(- ((STATES[0]+17.9500) - CONSTANTS[46])/28.0500)+ 0.334300*exp(((STATES[0]+5.73000) - CONSTANTS[46])/56.6600)); RATES[12] = (ALGEBRAIC[2] - STATES[12])/ALGEBRAIC[15]; ALGEBRAIC[5] = 1.00000/(1.00000+exp(- (STATES[0] - 14.3400)/14.8200)); ALGEBRAIC[17] = 1.05150/(1.00000/( 1.20890*(1.00000+exp(- (STATES[0] - 18.4099)/29.3814)))+3.50000/(1.00000+exp((STATES[0]+100.000)/29.3814))); RATES[19] = (ALGEBRAIC[5] - STATES[19])/ALGEBRAIC[17]; ALGEBRAIC[7] = 1.00000/(1.00000+exp(- (STATES[0]+3.94000)/4.23000)); ALGEBRAIC[21] = 0.600000+1.00000/(exp( - 0.0500000*(STATES[0]+6.00000))+exp( 0.0900000*(STATES[0]+14.0000))); RATES[25] = (ALGEBRAIC[7] - STATES[25])/ALGEBRAIC[21]; ALGEBRAIC[8] = 1.00000/(1.00000+exp((STATES[0]+19.5800)/3.69600)); ALGEBRAIC[22] = 7.00000+1.00000/( 0.00450000*exp(- (STATES[0]+20.0000)/10.0000)+ 0.00450000*exp((STATES[0]+20.0000)/10.0000)); RATES[26] = (ALGEBRAIC[8] - STATES[26])/ALGEBRAIC[22]; ALGEBRAIC[23] = 1000.00+1.00000/( 3.50000e-05*exp(- (STATES[0]+5.00000)/4.00000)+ 3.50000e-05*exp((STATES[0]+5.00000)/6.00000)); RATES[27] = (ALGEBRAIC[8] - STATES[27])/ALGEBRAIC[23]; ALGEBRAIC[19] = ALGEBRAIC[8]; RATES[30] = (ALGEBRAIC[19] - STATES[30])/CONSTANTS[157]; ALGEBRAIC[9] = STATES[30]*1.00000; ALGEBRAIC[20] = 1.00000/(CONSTANTS[51]/ALGEBRAIC[9]+pow(1.00000+CONSTANTS[50]/STATES[2], 4.00000)); RATES[33] = ALGEBRAIC[20]*CONSTANTS[51] - STATES[33]*ALGEBRAIC[9]; ALGEBRAIC[10] = 1.00000/(1.00000+exp(- (STATES[0]+11.6000)/8.93200)); ALGEBRAIC[25] = CONSTANTS[104]+1.00000/( 0.000232600*exp((STATES[0]+48.2800)/17.8000)+ 0.00129200*exp(- (STATES[0]+210.000)/230.000)); RATES[44] = (ALGEBRAIC[10] - STATES[44])/ALGEBRAIC[25]; ALGEBRAIC[11] = 1.00000/(1.00000+exp(- (STATES[0]+ 2.55380*CONSTANTS[3]+144.590)/( 1.56920*CONSTANTS[3]+3.81150))); ALGEBRAIC[26] = 122.200/(exp(- (STATES[0]+127.200)/20.3600)+exp((STATES[0]+236.800)/69.3300)); RATES[46] = (ALGEBRAIC[11] - STATES[46])/ALGEBRAIC[26]; ALGEBRAIC[36] = ( CONSTANTS[20]*(1.00000 - STATES[1]))/(1.00000+CONSTANTS[21]/STATES[2]); RATES[1] = CONSTANTS[18]*ALGEBRAIC[36]*(ALGEBRAIC[36]+STATES[1]) - CONSTANTS[19]*STATES[1]; ALGEBRAIC[16] = ALGEBRAIC[2]; ALGEBRAIC[27] = 2.03800+1.00000/( 0.0213600*exp(- ((STATES[0]+100.600) - CONSTANTS[46])/8.28100)+ 0.305200*exp(((STATES[0]+0.994100) - CONSTANTS[46])/38.4500)); RATES[13] = (ALGEBRAIC[16] - STATES[13])/ALGEBRAIC[27]; ALGEBRAIC[31] = 1.00000/(1.00000+exp(- (STATES[0] - 24.3400)/14.8200)); RATES[22] = (ALGEBRAIC[31] - STATES[22])/ALGEBRAIC[17]; ALGEBRAIC[32] = 7.00000+1.00000/( 0.0400000*exp(- (STATES[0] - 4.00000)/7.00000)+ 0.0400000*exp((STATES[0] - 4.00000)/7.00000)); RATES[28] = (ALGEBRAIC[19] - STATES[28])/ALGEBRAIC[32]; ALGEBRAIC[33] = 100.000+1.00000/( 0.000120000*exp(- STATES[0]/3.00000)+ 0.000120000*exp(STATES[0]/7.00000)); RATES[29] = (ALGEBRAIC[19] - STATES[29])/ALGEBRAIC[33]; ALGEBRAIC[34] = 2.50000*ALGEBRAIC[22]; RATES[31] = (ALGEBRAIC[8] - STATES[31])/ALGEBRAIC[34]; ALGEBRAIC[24] = ALGEBRAIC[10]; ALGEBRAIC[35] = 1.00000/( 0.0100000*exp((STATES[0] - 50.0000)/20.0000)+ 0.0193000*exp(- (STATES[0]+66.5400)/31.0000)); RATES[45] = (ALGEBRAIC[24] - STATES[45])/ALGEBRAIC[35]; ALGEBRAIC[28] = 1.00000/(1.00000+exp(((STATES[0]+89.1000) - CONSTANTS[46])/6.08600)); ALGEBRAIC[37] = 3.00000*ALGEBRAIC[15]; RATES[14] = (ALGEBRAIC[28] - STATES[14])/ALGEBRAIC[37]; ALGEBRAIC[38] = 1.46000*ALGEBRAIC[27]; RATES[15] = (ALGEBRAIC[16] - STATES[15])/ALGEBRAIC[38]; ALGEBRAIC[29] = 1.00000/(1.00000+exp(- (STATES[0]+42.8500)/5.26400)); ALGEBRAIC[39] = ALGEBRAIC[13]; RATES[16] = (ALGEBRAIC[29] - STATES[16])/ALGEBRAIC[39]; ALGEBRAIC[41] = 2.50000*ALGEBRAIC[32]; RATES[32] = (ALGEBRAIC[19] - STATES[32])/ALGEBRAIC[41]; ALGEBRAIC[6] = 1.00000/(1.00000+exp((STATES[0]+43.9400)/5.71100)); ALGEBRAIC[18] = (CONSTANTS[0]==1.00000 ? 1.00000 - 0.950000/(1.00000+exp((STATES[0]+70.0000)/5.00000)) : 1.00000); ALGEBRAIC[30] = 4.56200+1.00000/( 0.393300*exp(- (STATES[0]+100.000)/100.000)+ 0.0800400*exp((STATES[0]+50.0000)/16.5900)); ALGEBRAIC[43] = ALGEBRAIC[30]*ALGEBRAIC[18]; RATES[20] = (ALGEBRAIC[6] - STATES[20])/ALGEBRAIC[43]; ALGEBRAIC[40] = 23.6200+1.00000/( 0.00141600*exp(- (STATES[0]+96.5200)/59.0500)+ 1.78000e-08*exp((STATES[0]+114.100)/8.07900)); ALGEBRAIC[45] = ALGEBRAIC[40]*ALGEBRAIC[18]; RATES[21] = (ALGEBRAIC[6] - STATES[21])/ALGEBRAIC[45]; ALGEBRAIC[47] = 1.35400+0.000100000/(exp((STATES[0] - 167.400)/15.8900)+exp(- (STATES[0] - 12.2300)/0.215400)); ALGEBRAIC[49] = 1.00000 - 0.500000/(1.00000+exp((STATES[0]+70.0000)/20.0000)); ALGEBRAIC[51] = ALGEBRAIC[47]*ALGEBRAIC[49]*ALGEBRAIC[43]; RATES[23] = (ALGEBRAIC[6] - STATES[23])/ALGEBRAIC[51]; ALGEBRAIC[52] = ALGEBRAIC[47]*ALGEBRAIC[49]*ALGEBRAIC[45]; RATES[24] = (ALGEBRAIC[6] - STATES[24])/ALGEBRAIC[52]; ALGEBRAIC[67] = CONSTANTS[155]*STATES[26]+ CONSTANTS[170]*STATES[27]; ALGEBRAIC[68] = 0.300000+0.600000/(1.00000+exp((STATES[0] - 10.0000)/10.0000)); ALGEBRAIC[69] = 1.00000 - ALGEBRAIC[68]; ALGEBRAIC[70] = ALGEBRAIC[68]*STATES[28]+ ALGEBRAIC[69]*STATES[29]; ALGEBRAIC[71] = CONSTANTS[155]*STATES[31]+ CONSTANTS[170]*STATES[27]; ALGEBRAIC[72] = ALGEBRAIC[68]*STATES[32]+ ALGEBRAIC[69]*STATES[29]; ALGEBRAIC[12] = STATES[0]*CONSTANTS[149]; ALGEBRAIC[73] = ( 4.00000*CONSTANTS[169]*( STATES[2]*exp( 2.00000*ALGEBRAIC[12]) - 0.341000*CONSTANTS[2]))/CONSTANTS[174]; ALGEBRAIC[74] = CONSTANTS[174]*(STATES[0] - CONSTANTS[158]); ALGEBRAIC[75] = (- 1.00000e-07<=ALGEBRAIC[74]&&ALGEBRAIC[74]<=1.00000e-07 ? ALGEBRAIC[73]*(1.00000 - 0.500000*ALGEBRAIC[74]) : ( ALGEBRAIC[73]*ALGEBRAIC[74])/(exp(ALGEBRAIC[74]) - 1.00000)); ALGEBRAIC[42] = ALGEBRAIC[36]+STATES[1]; ALGEBRAIC[82] = 1.00000/(1.00000+CONSTANTS[17]/ALGEBRAIC[42]); ALGEBRAIC[83] = (1.00000 - ALGEBRAIC[82])*CONSTANTS[156]*ALGEBRAIC[75]*STATES[25]*( ALGEBRAIC[67]*(1.00000 - STATES[33])+ STATES[30]*ALGEBRAIC[70]*STATES[33])+ ALGEBRAIC[82]*CONSTANTS[171]*ALGEBRAIC[75]*STATES[25]*( ALGEBRAIC[71]*(1.00000 - STATES[33])+ STATES[30]*ALGEBRAIC[72]*STATES[33]); ALGEBRAIC[85] = ( CONSTANTS[166]*- ALGEBRAIC[83])/(1.00000+ 1.00000*pow(1.50000/STATES[8], 8.00000)); ALGEBRAIC[88] = (CONSTANTS[0]==2.00000 ? ALGEBRAIC[85]*1.70000 : ALGEBRAIC[85]); ALGEBRAIC[91] = CONSTANTS[146]/(1.00000+0.0123000/STATES[8]); ALGEBRAIC[94] = (ALGEBRAIC[91]<0.00100000 ? 0.00100000 : ALGEBRAIC[91]); RATES[47] = (ALGEBRAIC[88] - STATES[47])/ALGEBRAIC[94]; ALGEBRAIC[86] = ( CONSTANTS[180]*- ALGEBRAIC[83])/(1.00000+pow(1.50000/STATES[8], 8.00000)); ALGEBRAIC[89] = (CONSTANTS[0]==2.00000 ? ALGEBRAIC[86]*1.70000 : ALGEBRAIC[86]); ALGEBRAIC[92] = CONSTANTS[167]/(1.00000+0.0123000/STATES[8]); ALGEBRAIC[95] = (ALGEBRAIC[92]<0.00100000 ? 0.00100000 : ALGEBRAIC[92]); RATES[48] = (ALGEBRAIC[89] - STATES[48])/ALGEBRAIC[95]; ALGEBRAIC[53] = (( CONSTANTS[4]*CONSTANTS[5])/CONSTANTS[6])*log(CONSTANTS[3]/STATES[5]); ALGEBRAIC[61] = 1.00000/(1.00000+exp((STATES[0] - 213.600)/151.200)); ALGEBRAIC[62] = 1.00000 - ALGEBRAIC[61]; ALGEBRAIC[63] = ALGEBRAIC[61]*STATES[20]+ ALGEBRAIC[62]*STATES[21]; ALGEBRAIC[64] = ALGEBRAIC[61]*STATES[23]+ ALGEBRAIC[62]*STATES[24]; ALGEBRAIC[65] = 1.00000/(1.00000+CONSTANTS[17]/ALGEBRAIC[42]); ALGEBRAIC[66] = CONSTANTS[154]*(STATES[0] - ALGEBRAIC[53])*( (1.00000 - ALGEBRAIC[65])*STATES[19]*ALGEBRAIC[63]+ ALGEBRAIC[65]*STATES[22]*ALGEBRAIC[64]); ALGEBRAIC[90] = CONSTANTS[159]* pow((CONSTANTS[3]/5.40000), 1.0 / 2)*STATES[38]*(STATES[0] - ALGEBRAIC[53]); ALGEBRAIC[54] = (( CONSTANTS[4]*CONSTANTS[5])/CONSTANTS[6])*log((CONSTANTS[3]+ CONSTANTS[33]*CONSTANTS[1])/(STATES[5]+ CONSTANTS[33]*STATES[3])); ALGEBRAIC[93] = 1.00000+0.600000/(1.00000+pow(3.80000e-05/STATES[9], 1.40000)); ALGEBRAIC[96] = CONSTANTS[160]*ALGEBRAIC[93]*STATES[44]*STATES[45]*(STATES[0] - ALGEBRAIC[54]); ALGEBRAIC[97] = 1.00000/(1.00000+exp(((STATES[0]+105.800) - 2.60000*CONSTANTS[3])/9.49300)); ALGEBRAIC[98] = CONSTANTS[161]* pow(CONSTANTS[3], 1.0 / 2)*ALGEBRAIC[97]*STATES[46]*(STATES[0] - ALGEBRAIC[53]); ALGEBRAIC[162] = CONSTANTS[128]*exp(( (1.00000 - CONSTANTS[129])*STATES[0]*CONSTANTS[6])/( 3.00000*CONSTANTS[4]*CONSTANTS[5])); ALGEBRAIC[166] = ( CONSTANTS[123]*pow(CONSTANTS[3]/CONSTANTS[131], 2.00000))/((pow(1.00000+CONSTANTS[1]/ALGEBRAIC[162], 3.00000)+pow(1.00000+CONSTANTS[3]/CONSTANTS[131], 2.00000)) - 1.00000); ALGEBRAIC[163] = CONSTANTS[136]/(1.00000+CONSTANTS[135]/CONSTANTS[137]+STATES[3]/CONSTANTS[138]+STATES[5]/CONSTANTS[139]); ALGEBRAIC[167] = ( CONSTANTS[124]*ALGEBRAIC[163]*CONSTANTS[135])/(1.00000+CONSTANTS[133]/CONSTANTS[134]); ALGEBRAIC[161] = CONSTANTS[127]*exp(( CONSTANTS[129]*STATES[0]*CONSTANTS[6])/( 3.00000*CONSTANTS[4]*CONSTANTS[5])); ALGEBRAIC[164] = ( CONSTANTS[119]*pow(STATES[3]/ALGEBRAIC[161], 3.00000))/((pow(1.00000+STATES[3]/ALGEBRAIC[161], 3.00000)+pow(1.00000+STATES[5]/CONSTANTS[130], 2.00000)) - 1.00000); ALGEBRAIC[165] = ( CONSTANTS[122]*pow(CONSTANTS[1]/ALGEBRAIC[162], 3.00000))/((pow(1.00000+CONSTANTS[1]/ALGEBRAIC[162], 3.00000)+pow(1.00000+CONSTANTS[3]/CONSTANTS[131], 2.00000)) - 1.00000); ALGEBRAIC[168] = ( CONSTANTS[126]*pow(STATES[5]/CONSTANTS[130], 2.00000))/((pow(1.00000+STATES[3]/ALGEBRAIC[161], 3.00000)+pow(1.00000+STATES[5]/CONSTANTS[130], 2.00000)) - 1.00000); ALGEBRAIC[169] = CONSTANTS[203]*ALGEBRAIC[164]*CONSTANTS[202]+ ALGEBRAIC[165]*ALGEBRAIC[168]*ALGEBRAIC[167]+ CONSTANTS[202]*ALGEBRAIC[168]*ALGEBRAIC[167]+ ALGEBRAIC[167]*ALGEBRAIC[164]*CONSTANTS[202]; ALGEBRAIC[170] = ALGEBRAIC[165]*CONSTANTS[201]*ALGEBRAIC[168]+ ALGEBRAIC[164]*CONSTANTS[202]*ALGEBRAIC[166]+ ALGEBRAIC[166]*CONSTANTS[201]*ALGEBRAIC[168]+ CONSTANTS[202]*ALGEBRAIC[166]*ALGEBRAIC[168]; ALGEBRAIC[171] = CONSTANTS[202]*ALGEBRAIC[166]*CONSTANTS[203]+ ALGEBRAIC[167]*ALGEBRAIC[165]*CONSTANTS[201]+ ALGEBRAIC[165]*CONSTANTS[201]*CONSTANTS[203]+ ALGEBRAIC[166]*CONSTANTS[203]*CONSTANTS[201]; ALGEBRAIC[172] = ALGEBRAIC[168]*ALGEBRAIC[167]*ALGEBRAIC[165]+ ALGEBRAIC[166]*CONSTANTS[203]*ALGEBRAIC[164]+ ALGEBRAIC[165]*CONSTANTS[203]*ALGEBRAIC[164]+ ALGEBRAIC[167]*ALGEBRAIC[165]*ALGEBRAIC[164]; ALGEBRAIC[173] = ALGEBRAIC[169]/(ALGEBRAIC[169]+ALGEBRAIC[170]+ALGEBRAIC[171]+ALGEBRAIC[172]); ALGEBRAIC[174] = ALGEBRAIC[170]/(ALGEBRAIC[169]+ALGEBRAIC[170]+ALGEBRAIC[171]+ALGEBRAIC[172]); ALGEBRAIC[177] = 3.00000*( ALGEBRAIC[173]*ALGEBRAIC[166] - ALGEBRAIC[174]*ALGEBRAIC[167]); ALGEBRAIC[175] = ALGEBRAIC[171]/(ALGEBRAIC[169]+ALGEBRAIC[170]+ALGEBRAIC[171]+ALGEBRAIC[172]); ALGEBRAIC[176] = ALGEBRAIC[172]/(ALGEBRAIC[169]+ALGEBRAIC[170]+ALGEBRAIC[171]+ALGEBRAIC[172]); ALGEBRAIC[178] = 2.00000*( ALGEBRAIC[176]*CONSTANTS[201] - ALGEBRAIC[175]*ALGEBRAIC[164]); ALGEBRAIC[179] = CONSTANTS[204]*( CONSTANTS[7]*ALGEBRAIC[177]+ CONSTANTS[9]*ALGEBRAIC[178]); ALGEBRAIC[180] = 1.00000/(1.00000+exp(- (STATES[0] - 14.4800)/18.3400)); ALGEBRAIC[181] = CONSTANTS[163]*ALGEBRAIC[180]*(STATES[0] - ALGEBRAIC[53]); ALGEBRAIC[0] = (VOI>=CONSTANTS[12]&&VOI<=CONSTANTS[13]&&(VOI - CONSTANTS[12]) - floor((VOI - CONSTANTS[12])/CONSTANTS[15])*CONSTANTS[15]<=CONSTANTS[16] ? CONSTANTS[14] : 0.00000); ALGEBRAIC[183] = (STATES[6] - STATES[5])/2.00000; RATES[5] = ( - ((ALGEBRAIC[66]+ALGEBRAIC[90]+ALGEBRAIC[96]+ALGEBRAIC[98]+ALGEBRAIC[181]+ALGEBRAIC[0]) - 2.00000*ALGEBRAIC[179])*CONSTANTS[32]*CONSTANTS[183])/( CONSTANTS[6]*CONSTANTS[184])+( ALGEBRAIC[183]*CONSTANTS[187])/CONSTANTS[184]; ALGEBRAIC[79] = ( 0.750000*CONSTANTS[169]*( STATES[6]*exp(ALGEBRAIC[12]) - CONSTANTS[3]))/CONSTANTS[176]; ALGEBRAIC[80] = CONSTANTS[176]*(STATES[0] - CONSTANTS[158]); ALGEBRAIC[81] = (- 1.00000e-07<=ALGEBRAIC[80]&&ALGEBRAIC[80]<=1.00000e-07 ? ALGEBRAIC[79]*(1.00000 - 0.500000*ALGEBRAIC[80]) : ( ALGEBRAIC[79]*ALGEBRAIC[80])/(exp(ALGEBRAIC[80]) - 1.00000)); ALGEBRAIC[87] = (1.00000 - ALGEBRAIC[82])*CONSTANTS[173]*ALGEBRAIC[81]*STATES[25]*( ALGEBRAIC[67]*(1.00000 - STATES[33])+ STATES[30]*ALGEBRAIC[70]*STATES[33])+ ALGEBRAIC[82]*CONSTANTS[182]*ALGEBRAIC[81]*STATES[25]*( ALGEBRAIC[71]*(1.00000 - STATES[33])+ STATES[30]*ALGEBRAIC[72]*STATES[33]); RATES[6] = ( - ALGEBRAIC[87]*CONSTANTS[32]*CONSTANTS[183])/( CONSTANTS[6]*CONSTANTS[187]) - ALGEBRAIC[183]; ALGEBRAIC[50] = (( CONSTANTS[4]*CONSTANTS[5])/CONSTANTS[6])*log(CONSTANTS[1]/STATES[3]); ALGEBRAIC[55] = CONSTANTS[44]*STATES[11]+ CONSTANTS[151]*STATES[12]; ALGEBRAIC[56] = CONSTANTS[44]*STATES[11]+ CONSTANTS[151]*STATES[14]; ALGEBRAIC[57] = 1.00000/(1.00000+CONSTANTS[17]/ALGEBRAIC[42]); ALGEBRAIC[58] = CONSTANTS[45]*(STATES[0] - ALGEBRAIC[50])*pow(STATES[10], 3.00000)*( (1.00000 - ALGEBRAIC[57])*ALGEBRAIC[55]*STATES[13]+ ALGEBRAIC[57]*ALGEBRAIC[56]*STATES[15]); ALGEBRAIC[59] = 1.00000/(1.00000+CONSTANTS[17]/ALGEBRAIC[42]); ALGEBRAIC[60] = CONSTANTS[153]*(STATES[0] - ALGEBRAIC[50])*STATES[16]*( (1.00000 - ALGEBRAIC[59])*STATES[17]+ ALGEBRAIC[59]*STATES[18]); ALGEBRAIC[127] = 1.00000/(1.00000+pow(CONSTANTS[117]/STATES[9], 2.00000)); ALGEBRAIC[100] = exp(( CONSTANTS[115]*STATES[0]*CONSTANTS[6])/( CONSTANTS[4]*CONSTANTS[5])); ALGEBRAIC[107] = 1.00000+ (CONSTANTS[1]/CONSTANTS[108])*(1.00000+1.00000/ALGEBRAIC[100]); ALGEBRAIC[108] = CONSTANTS[1]/( CONSTANTS[108]*ALGEBRAIC[100]*ALGEBRAIC[107]); ALGEBRAIC[111] = ALGEBRAIC[108]*CONSTANTS[112]; ALGEBRAIC[101] = 1.00000+ (STATES[3]/CONSTANTS[108])*(1.00000+ALGEBRAIC[100]); ALGEBRAIC[102] = ( STATES[3]*ALGEBRAIC[100])/( CONSTANTS[108]*ALGEBRAIC[101]); ALGEBRAIC[114] = ALGEBRAIC[102]*CONSTANTS[112]; ALGEBRAIC[104] = 1.00000+ (STATES[3]/CONSTANTS[106])*(1.00000+STATES[3]/CONSTANTS[107]); ALGEBRAIC[105] = ( STATES[3]*STATES[3])/( ALGEBRAIC[104]*CONSTANTS[106]*CONSTANTS[107]); ALGEBRAIC[117] = ALGEBRAIC[105]*ALGEBRAIC[102]*CONSTANTS[110]; ALGEBRAIC[118] = ALGEBRAIC[108]*CONSTANTS[189]*CONSTANTS[110]; ALGEBRAIC[109] = 1.00000/ALGEBRAIC[107]; ALGEBRAIC[110] = ALGEBRAIC[109]*CONSTANTS[111]; ALGEBRAIC[112] = ALGEBRAIC[110]+ALGEBRAIC[111]; ALGEBRAIC[99] = exp(( CONSTANTS[116]*STATES[0]*CONSTANTS[6])/( CONSTANTS[4]*CONSTANTS[5])); ALGEBRAIC[103] = 1.00000/ALGEBRAIC[101]; ALGEBRAIC[113] = ( ALGEBRAIC[103]*CONSTANTS[111])/ALGEBRAIC[99]; ALGEBRAIC[115] = ALGEBRAIC[113]+ALGEBRAIC[114]; ALGEBRAIC[106] = 1.00000/ALGEBRAIC[104]; ALGEBRAIC[116] = ALGEBRAIC[106]*STATES[9]*CONSTANTS[113]; ALGEBRAIC[119] = CONSTANTS[192]*ALGEBRAIC[115]*(ALGEBRAIC[117]+ALGEBRAIC[116])+ CONSTANTS[193]*ALGEBRAIC[117]*(CONSTANTS[192]+ALGEBRAIC[112]); ALGEBRAIC[120] = CONSTANTS[191]*ALGEBRAIC[117]*(ALGEBRAIC[115]+CONSTANTS[193])+ ALGEBRAIC[115]*ALGEBRAIC[116]*(CONSTANTS[191]+ALGEBRAIC[118]); ALGEBRAIC[121] = CONSTANTS[191]*ALGEBRAIC[112]*(ALGEBRAIC[117]+ALGEBRAIC[116])+ ALGEBRAIC[118]*ALGEBRAIC[116]*(CONSTANTS[192]+ALGEBRAIC[112]); ALGEBRAIC[122] = CONSTANTS[192]*ALGEBRAIC[118]*(ALGEBRAIC[115]+CONSTANTS[193])+ ALGEBRAIC[112]*CONSTANTS[193]*(CONSTANTS[191]+ALGEBRAIC[118]); ALGEBRAIC[123] = ALGEBRAIC[119]/(ALGEBRAIC[119]+ALGEBRAIC[120]+ALGEBRAIC[121]+ALGEBRAIC[122]); ALGEBRAIC[124] = ALGEBRAIC[120]/(ALGEBRAIC[119]+ALGEBRAIC[120]+ALGEBRAIC[121]+ALGEBRAIC[122]); ALGEBRAIC[125] = ALGEBRAIC[121]/(ALGEBRAIC[119]+ALGEBRAIC[120]+ALGEBRAIC[121]+ALGEBRAIC[122]); ALGEBRAIC[126] = ALGEBRAIC[122]/(ALGEBRAIC[119]+ALGEBRAIC[120]+ALGEBRAIC[121]+ALGEBRAIC[122]); ALGEBRAIC[128] = ( 3.00000*( ALGEBRAIC[126]*ALGEBRAIC[117] - ALGEBRAIC[123]*ALGEBRAIC[118])+ ALGEBRAIC[125]*ALGEBRAIC[114]) - ALGEBRAIC[124]*ALGEBRAIC[111]; ALGEBRAIC[129] = ALGEBRAIC[124]*CONSTANTS[192] - ALGEBRAIC[123]*CONSTANTS[191]; ALGEBRAIC[130] = 0.800000*CONSTANTS[194]*ALGEBRAIC[127]*( CONSTANTS[7]*ALGEBRAIC[128]+ CONSTANTS[8]*ALGEBRAIC[129]); ALGEBRAIC[182] = ( CONSTANTS[142]*CONSTANTS[169]*( STATES[3]*exp(ALGEBRAIC[12]) - CONSTANTS[1]))/CONSTANTS[178]; ALGEBRAIC[184] = CONSTANTS[178]*(STATES[0] - CONSTANTS[164]); ALGEBRAIC[185] = (- 1.00000e-07<=ALGEBRAIC[184]&&ALGEBRAIC[184]<=1.00000e-07 ? ALGEBRAIC[182]*(1.00000 - 0.500000*ALGEBRAIC[184]) : ( ALGEBRAIC[182]*ALGEBRAIC[184])/(exp(ALGEBRAIC[184]) - 1.00000)); ALGEBRAIC[187] = (STATES[4] - STATES[3])/2.00000; RATES[3] = ( - (ALGEBRAIC[58]+ALGEBRAIC[60]+ 3.00000*ALGEBRAIC[130]+ 3.00000*ALGEBRAIC[179]+ALGEBRAIC[185])*CONSTANTS[183]*CONSTANTS[32])/( CONSTANTS[6]*CONSTANTS[184])+( ALGEBRAIC[187]*CONSTANTS[187])/CONSTANTS[184]; ALGEBRAIC[76] = ( 0.750000*CONSTANTS[169]*( STATES[4]*exp(ALGEBRAIC[12]) - CONSTANTS[1]))/CONSTANTS[175]; ALGEBRAIC[77] = CONSTANTS[175]*(STATES[0] - CONSTANTS[158]); ALGEBRAIC[78] = (- 1.00000e-07<=ALGEBRAIC[77]&&ALGEBRAIC[77]<=1.00000e-07 ? ALGEBRAIC[76]*(1.00000 - 0.500000*ALGEBRAIC[77]) : ( ALGEBRAIC[76]*ALGEBRAIC[77])/(exp(ALGEBRAIC[77]) - 1.00000)); ALGEBRAIC[84] = (1.00000 - ALGEBRAIC[82])*CONSTANTS[172]*ALGEBRAIC[78]*STATES[25]*( ALGEBRAIC[67]*(1.00000 - STATES[33])+ STATES[30]*ALGEBRAIC[70]*STATES[33])+ ALGEBRAIC[82]*CONSTANTS[181]*ALGEBRAIC[78]*STATES[25]*( ALGEBRAIC[71]*(1.00000 - STATES[33])+ STATES[30]*ALGEBRAIC[72]*STATES[33]); ALGEBRAIC[157] = 1.00000/(1.00000+pow(CONSTANTS[117]/STATES[2], 2.00000)); ALGEBRAIC[137] = 1.00000+ (CONSTANTS[1]/CONSTANTS[108])*(1.00000+1.00000/ALGEBRAIC[100]); ALGEBRAIC[138] = CONSTANTS[1]/( CONSTANTS[108]*ALGEBRAIC[100]*ALGEBRAIC[137]); ALGEBRAIC[141] = ALGEBRAIC[138]*CONSTANTS[112]; ALGEBRAIC[131] = 1.00000+ (STATES[4]/CONSTANTS[108])*(1.00000+ALGEBRAIC[100]); ALGEBRAIC[132] = ( STATES[4]*ALGEBRAIC[100])/( CONSTANTS[108]*ALGEBRAIC[131]); ALGEBRAIC[144] = ALGEBRAIC[132]*CONSTANTS[112]; ALGEBRAIC[134] = 1.00000+ (STATES[4]/CONSTANTS[106])*(1.00000+STATES[4]/CONSTANTS[107]); ALGEBRAIC[135] = ( STATES[4]*STATES[4])/( ALGEBRAIC[134]*CONSTANTS[106]*CONSTANTS[107]); ALGEBRAIC[147] = ALGEBRAIC[135]*ALGEBRAIC[132]*CONSTANTS[110]; ALGEBRAIC[148] = ALGEBRAIC[138]*CONSTANTS[196]*CONSTANTS[110]; ALGEBRAIC[139] = 1.00000/ALGEBRAIC[137]; ALGEBRAIC[140] = ALGEBRAIC[139]*CONSTANTS[111]; ALGEBRAIC[142] = ALGEBRAIC[140]+ALGEBRAIC[141]; ALGEBRAIC[133] = 1.00000/ALGEBRAIC[131]; ALGEBRAIC[143] = ( ALGEBRAIC[133]*CONSTANTS[111])/ALGEBRAIC[99]; ALGEBRAIC[145] = ALGEBRAIC[143]+ALGEBRAIC[144]; ALGEBRAIC[136] = 1.00000/ALGEBRAIC[134]; ALGEBRAIC[146] = ALGEBRAIC[136]*STATES[2]*CONSTANTS[113]; ALGEBRAIC[149] = CONSTANTS[199]*ALGEBRAIC[145]*(ALGEBRAIC[147]+ALGEBRAIC[146])+ CONSTANTS[200]*ALGEBRAIC[147]*(CONSTANTS[199]+ALGEBRAIC[142]); ALGEBRAIC[150] = CONSTANTS[198]*ALGEBRAIC[147]*(ALGEBRAIC[145]+CONSTANTS[200])+ ALGEBRAIC[145]*ALGEBRAIC[146]*(CONSTANTS[198]+ALGEBRAIC[148]); ALGEBRAIC[151] = CONSTANTS[198]*ALGEBRAIC[142]*(ALGEBRAIC[147]+ALGEBRAIC[146])+ ALGEBRAIC[148]*ALGEBRAIC[146]*(CONSTANTS[199]+ALGEBRAIC[142]); ALGEBRAIC[152] = CONSTANTS[199]*ALGEBRAIC[148]*(ALGEBRAIC[145]+CONSTANTS[200])+ ALGEBRAIC[142]*CONSTANTS[200]*(CONSTANTS[198]+ALGEBRAIC[148]); ALGEBRAIC[153] = ALGEBRAIC[149]/(ALGEBRAIC[149]+ALGEBRAIC[150]+ALGEBRAIC[151]+ALGEBRAIC[152]); ALGEBRAIC[154] = ALGEBRAIC[150]/(ALGEBRAIC[149]+ALGEBRAIC[150]+ALGEBRAIC[151]+ALGEBRAIC[152]); ALGEBRAIC[155] = ALGEBRAIC[151]/(ALGEBRAIC[149]+ALGEBRAIC[150]+ALGEBRAIC[151]+ALGEBRAIC[152]); ALGEBRAIC[156] = ALGEBRAIC[152]/(ALGEBRAIC[149]+ALGEBRAIC[150]+ALGEBRAIC[151]+ALGEBRAIC[152]); ALGEBRAIC[158] = ( 3.00000*( ALGEBRAIC[156]*ALGEBRAIC[147] - ALGEBRAIC[153]*ALGEBRAIC[148])+ ALGEBRAIC[155]*ALGEBRAIC[144]) - ALGEBRAIC[154]*ALGEBRAIC[141]; ALGEBRAIC[159] = ALGEBRAIC[154]*CONSTANTS[199] - ALGEBRAIC[153]*CONSTANTS[198]; ALGEBRAIC[160] = 0.200000*CONSTANTS[194]*ALGEBRAIC[157]*( CONSTANTS[7]*ALGEBRAIC[158]+ CONSTANTS[8]*ALGEBRAIC[159]); RATES[4] = ( - (ALGEBRAIC[84]+ 3.00000*ALGEBRAIC[160])*CONSTANTS[32]*CONSTANTS[183])/( CONSTANTS[6]*CONSTANTS[187]) - ALGEBRAIC[187]; ALGEBRAIC[190] = ( CONSTANTS[144]*STATES[9])/(CONSTANTS[145]+STATES[9]); ALGEBRAIC[186] = ( CONSTANTS[143]*4.00000*CONSTANTS[169]*( STATES[9]*exp( 2.00000*ALGEBRAIC[12]) - 0.341000*CONSTANTS[2]))/CONSTANTS[179]; ALGEBRAIC[188] = CONSTANTS[179]*(STATES[0] - CONSTANTS[165]); ALGEBRAIC[189] = (- 1.00000e-07<=ALGEBRAIC[188]&&ALGEBRAIC[188]<=1.00000e-07 ? ALGEBRAIC[186]*(1.00000 - 0.500000*ALGEBRAIC[188]) : ( ALGEBRAIC[186]*ALGEBRAIC[188])/(exp(ALGEBRAIC[188]) - 1.00000)); RATES[0] = - (ALGEBRAIC[58]+ALGEBRAIC[60]+ALGEBRAIC[66]+ALGEBRAIC[83]+ALGEBRAIC[84]+ALGEBRAIC[87]+ALGEBRAIC[90]+ALGEBRAIC[96]+ALGEBRAIC[98]+ALGEBRAIC[130]+ALGEBRAIC[160]+ALGEBRAIC[179]+ALGEBRAIC[185]+ALGEBRAIC[181]+ALGEBRAIC[190]+ALGEBRAIC[189]+ALGEBRAIC[0]); ALGEBRAIC[191] = (STATES[2] - STATES[9])/0.200000; ALGEBRAIC[192] = 1.00000/(1.00000+CONSTANTS[17]/ALGEBRAIC[42]); ALGEBRAIC[193] = CONSTANTS[147]*( (1.00000 - ALGEBRAIC[192])*STATES[47]+ ALGEBRAIC[192]*STATES[48]); ALGEBRAIC[46] = 1.00000/(1.00000+( CONSTANTS[26]*CONSTANTS[27])/pow(CONSTANTS[27]+STATES[2], 2.00000)+( CONSTANTS[28]*CONSTANTS[29])/pow(CONSTANTS[29]+STATES[2], 2.00000)); RATES[2] = ALGEBRAIC[46]*((( - (ALGEBRAIC[83] - 2.00000*ALGEBRAIC[160])*CONSTANTS[32]*CONSTANTS[183])/( 2.00000*CONSTANTS[6]*CONSTANTS[187])+( ALGEBRAIC[193]*CONSTANTS[186])/CONSTANTS[187]) - ALGEBRAIC[191]); ALGEBRAIC[194] = ( CONSTANTS[168]*0.00437500*STATES[9])/(STATES[9]+0.000920000); ALGEBRAIC[195] = ( CONSTANTS[168]*2.75000*0.00437500*STATES[9])/((STATES[9]+0.000920000) - 0.000170000); ALGEBRAIC[196] = 1.00000/(1.00000+CONSTANTS[17]/ALGEBRAIC[42]); ALGEBRAIC[197] = ( 0.00393750*STATES[7])/15.0000; ALGEBRAIC[198] = CONSTANTS[148]*(( (1.00000 - ALGEBRAIC[196])*ALGEBRAIC[194]+ ALGEBRAIC[196]*ALGEBRAIC[195]) - ALGEBRAIC[197]); ALGEBRAIC[44] = 1.00000/(1.00000+( CONSTANTS[150]*CONSTANTS[23])/pow(CONSTANTS[23]+STATES[9], 2.00000)+( CONSTANTS[24]*CONSTANTS[25])/pow(CONSTANTS[25]+STATES[9], 2.00000)); RATES[9] = ALGEBRAIC[44]*((( - ((ALGEBRAIC[190]+ALGEBRAIC[189]) - 2.00000*ALGEBRAIC[130])*CONSTANTS[32]*CONSTANTS[183])/( 2.00000*CONSTANTS[6]*CONSTANTS[184]) - ( ALGEBRAIC[198]*CONSTANTS[185])/CONSTANTS[184])+( ALGEBRAIC[191]*CONSTANTS[187])/CONSTANTS[184]); ALGEBRAIC[199] = (STATES[7] - STATES[8])/100.000; RATES[7] = ALGEBRAIC[198] - ( ALGEBRAIC[199]*CONSTANTS[186])/CONSTANTS[185]; ALGEBRAIC[48] = 1.00000/(1.00000+( CONSTANTS[30]*CONSTANTS[31])/pow(CONSTANTS[31]+STATES[8], 2.00000)); RATES[8] = ALGEBRAIC[48]*(ALGEBRAIC[199] - ALGEBRAIC[193]); } void computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[3] = 1.00000/(1.00000+exp((STATES[0]+87.6100)/7.48800)); ALGEBRAIC[4] = 1.00000/(1.00000+exp((STATES[0]+93.8100)/7.48800)); ALGEBRAIC[1] = 1.00000/(1.00000+exp(- (STATES[0]+CONSTANTS[34])/CONSTANTS[35])); ALGEBRAIC[13] = 1.00000/( CONSTANTS[38]*exp((STATES[0]+CONSTANTS[36])/CONSTANTS[37])+ CONSTANTS[39]*exp(- (STATES[0]+CONSTANTS[40])/CONSTANTS[41])); ALGEBRAIC[2] = 1.00000/(1.00000+exp(((STATES[0]+CONSTANTS[42]) - CONSTANTS[46])/CONSTANTS[43])); ALGEBRAIC[14] = 1.00000/( 1.43200e-05*exp(- ((STATES[0]+1.19600) - CONSTANTS[46])/6.28500)+ 6.14900*exp(((STATES[0]+0.509600) - CONSTANTS[46])/20.2700)); ALGEBRAIC[15] = 1.00000/( 0.00979400*exp(- ((STATES[0]+17.9500) - CONSTANTS[46])/28.0500)+ 0.334300*exp(((STATES[0]+5.73000) - CONSTANTS[46])/56.6600)); ALGEBRAIC[5] = 1.00000/(1.00000+exp(- (STATES[0] - 14.3400)/14.8200)); ALGEBRAIC[17] = 1.05150/(1.00000/( 1.20890*(1.00000+exp(- (STATES[0] - 18.4099)/29.3814)))+3.50000/(1.00000+exp((STATES[0]+100.000)/29.3814))); ALGEBRAIC[7] = 1.00000/(1.00000+exp(- (STATES[0]+3.94000)/4.23000)); ALGEBRAIC[21] = 0.600000+1.00000/(exp( - 0.0500000*(STATES[0]+6.00000))+exp( 0.0900000*(STATES[0]+14.0000))); ALGEBRAIC[8] = 1.00000/(1.00000+exp((STATES[0]+19.5800)/3.69600)); ALGEBRAIC[22] = 7.00000+1.00000/( 0.00450000*exp(- (STATES[0]+20.0000)/10.0000)+ 0.00450000*exp((STATES[0]+20.0000)/10.0000)); ALGEBRAIC[23] = 1000.00+1.00000/( 3.50000e-05*exp(- (STATES[0]+5.00000)/4.00000)+ 3.50000e-05*exp((STATES[0]+5.00000)/6.00000)); ALGEBRAIC[19] = ALGEBRAIC[8]; ALGEBRAIC[9] = STATES[30]*1.00000; ALGEBRAIC[20] = 1.00000/(CONSTANTS[51]/ALGEBRAIC[9]+pow(1.00000+CONSTANTS[50]/STATES[2], 4.00000)); ALGEBRAIC[10] = 1.00000/(1.00000+exp(- (STATES[0]+11.6000)/8.93200)); ALGEBRAIC[25] = CONSTANTS[104]+1.00000/( 0.000232600*exp((STATES[0]+48.2800)/17.8000)+ 0.00129200*exp(- (STATES[0]+210.000)/230.000)); ALGEBRAIC[11] = 1.00000/(1.00000+exp(- (STATES[0]+ 2.55380*CONSTANTS[3]+144.590)/( 1.56920*CONSTANTS[3]+3.81150))); ALGEBRAIC[26] = 122.200/(exp(- (STATES[0]+127.200)/20.3600)+exp((STATES[0]+236.800)/69.3300)); ALGEBRAIC[36] = ( CONSTANTS[20]*(1.00000 - STATES[1]))/(1.00000+CONSTANTS[21]/STATES[2]); ALGEBRAIC[16] = ALGEBRAIC[2]; ALGEBRAIC[27] = 2.03800+1.00000/( 0.0213600*exp(- ((STATES[0]+100.600) - CONSTANTS[46])/8.28100)+ 0.305200*exp(((STATES[0]+0.994100) - CONSTANTS[46])/38.4500)); ALGEBRAIC[31] = 1.00000/(1.00000+exp(- (STATES[0] - 24.3400)/14.8200)); ALGEBRAIC[32] = 7.00000+1.00000/( 0.0400000*exp(- (STATES[0] - 4.00000)/7.00000)+ 0.0400000*exp((STATES[0] - 4.00000)/7.00000)); ALGEBRAIC[33] = 100.000+1.00000/( 0.000120000*exp(- STATES[0]/3.00000)+ 0.000120000*exp(STATES[0]/7.00000)); ALGEBRAIC[34] = 2.50000*ALGEBRAIC[22]; ALGEBRAIC[24] = ALGEBRAIC[10]; ALGEBRAIC[35] = 1.00000/( 0.0100000*exp((STATES[0] - 50.0000)/20.0000)+ 0.0193000*exp(- (STATES[0]+66.5400)/31.0000)); ALGEBRAIC[28] = 1.00000/(1.00000+exp(((STATES[0]+89.1000) - CONSTANTS[46])/6.08600)); ALGEBRAIC[37] = 3.00000*ALGEBRAIC[15]; ALGEBRAIC[38] = 1.46000*ALGEBRAIC[27]; ALGEBRAIC[29] = 1.00000/(1.00000+exp(- (STATES[0]+42.8500)/5.26400)); ALGEBRAIC[39] = ALGEBRAIC[13]; ALGEBRAIC[41] = 2.50000*ALGEBRAIC[32]; ALGEBRAIC[6] = 1.00000/(1.00000+exp((STATES[0]+43.9400)/5.71100)); ALGEBRAIC[18] = (CONSTANTS[0]==1.00000 ? 1.00000 - 0.950000/(1.00000+exp((STATES[0]+70.0000)/5.00000)) : 1.00000); ALGEBRAIC[30] = 4.56200+1.00000/( 0.393300*exp(- (STATES[0]+100.000)/100.000)+ 0.0800400*exp((STATES[0]+50.0000)/16.5900)); ALGEBRAIC[43] = ALGEBRAIC[30]*ALGEBRAIC[18]; ALGEBRAIC[40] = 23.6200+1.00000/( 0.00141600*exp(- (STATES[0]+96.5200)/59.0500)+ 1.78000e-08*exp((STATES[0]+114.100)/8.07900)); ALGEBRAIC[45] = ALGEBRAIC[40]*ALGEBRAIC[18]; ALGEBRAIC[47] = 1.35400+0.000100000/(exp((STATES[0] - 167.400)/15.8900)+exp(- (STATES[0] - 12.2300)/0.215400)); ALGEBRAIC[49] = 1.00000 - 0.500000/(1.00000+exp((STATES[0]+70.0000)/20.0000)); ALGEBRAIC[51] = ALGEBRAIC[47]*ALGEBRAIC[49]*ALGEBRAIC[43]; ALGEBRAIC[52] = ALGEBRAIC[47]*ALGEBRAIC[49]*ALGEBRAIC[45]; ALGEBRAIC[67] = CONSTANTS[155]*STATES[26]+ CONSTANTS[170]*STATES[27]; ALGEBRAIC[68] = 0.300000+0.600000/(1.00000+exp((STATES[0] - 10.0000)/10.0000)); ALGEBRAIC[69] = 1.00000 - ALGEBRAIC[68]; ALGEBRAIC[70] = ALGEBRAIC[68]*STATES[28]+ ALGEBRAIC[69]*STATES[29]; ALGEBRAIC[71] = CONSTANTS[155]*STATES[31]+ CONSTANTS[170]*STATES[27]; ALGEBRAIC[72] = ALGEBRAIC[68]*STATES[32]+ ALGEBRAIC[69]*STATES[29]; ALGEBRAIC[12] = STATES[0]*CONSTANTS[149]; ALGEBRAIC[73] = ( 4.00000*CONSTANTS[169]*( STATES[2]*exp( 2.00000*ALGEBRAIC[12]) - 0.341000*CONSTANTS[2]))/CONSTANTS[174]; ALGEBRAIC[74] = CONSTANTS[174]*(STATES[0] - CONSTANTS[158]); ALGEBRAIC[75] = (- 1.00000e-07<=ALGEBRAIC[74]&&ALGEBRAIC[74]<=1.00000e-07 ? ALGEBRAIC[73]*(1.00000 - 0.500000*ALGEBRAIC[74]) : ( ALGEBRAIC[73]*ALGEBRAIC[74])/(exp(ALGEBRAIC[74]) - 1.00000)); ALGEBRAIC[42] = ALGEBRAIC[36]+STATES[1]; ALGEBRAIC[82] = 1.00000/(1.00000+CONSTANTS[17]/ALGEBRAIC[42]); ALGEBRAIC[83] = (1.00000 - ALGEBRAIC[82])*CONSTANTS[156]*ALGEBRAIC[75]*STATES[25]*( ALGEBRAIC[67]*(1.00000 - STATES[33])+ STATES[30]*ALGEBRAIC[70]*STATES[33])+ ALGEBRAIC[82]*CONSTANTS[171]*ALGEBRAIC[75]*STATES[25]*( ALGEBRAIC[71]*(1.00000 - STATES[33])+ STATES[30]*ALGEBRAIC[72]*STATES[33]); ALGEBRAIC[85] = ( CONSTANTS[166]*- ALGEBRAIC[83])/(1.00000+ 1.00000*pow(1.50000/STATES[8], 8.00000)); ALGEBRAIC[88] = (CONSTANTS[0]==2.00000 ? ALGEBRAIC[85]*1.70000 : ALGEBRAIC[85]); ALGEBRAIC[91] = CONSTANTS[146]/(1.00000+0.0123000/STATES[8]); ALGEBRAIC[94] = (ALGEBRAIC[91]<0.00100000 ? 0.00100000 : ALGEBRAIC[91]); ALGEBRAIC[86] = ( CONSTANTS[180]*- ALGEBRAIC[83])/(1.00000+pow(1.50000/STATES[8], 8.00000)); ALGEBRAIC[89] = (CONSTANTS[0]==2.00000 ? ALGEBRAIC[86]*1.70000 : ALGEBRAIC[86]); ALGEBRAIC[92] = CONSTANTS[167]/(1.00000+0.0123000/STATES[8]); ALGEBRAIC[95] = (ALGEBRAIC[92]<0.00100000 ? 0.00100000 : ALGEBRAIC[92]); ALGEBRAIC[53] = (( CONSTANTS[4]*CONSTANTS[5])/CONSTANTS[6])*log(CONSTANTS[3]/STATES[5]); ALGEBRAIC[61] = 1.00000/(1.00000+exp((STATES[0] - 213.600)/151.200)); ALGEBRAIC[62] = 1.00000 - ALGEBRAIC[61]; ALGEBRAIC[63] = ALGEBRAIC[61]*STATES[20]+ ALGEBRAIC[62]*STATES[21]; ALGEBRAIC[64] = ALGEBRAIC[61]*STATES[23]+ ALGEBRAIC[62]*STATES[24]; ALGEBRAIC[65] = 1.00000/(1.00000+CONSTANTS[17]/ALGEBRAIC[42]); ALGEBRAIC[66] = CONSTANTS[154]*(STATES[0] - ALGEBRAIC[53])*( (1.00000 - ALGEBRAIC[65])*STATES[19]*ALGEBRAIC[63]+ ALGEBRAIC[65]*STATES[22]*ALGEBRAIC[64]); ALGEBRAIC[90] = CONSTANTS[159]* pow((CONSTANTS[3]/5.40000), 1.0 / 2)*STATES[38]*(STATES[0] - ALGEBRAIC[53]); ALGEBRAIC[54] = (( CONSTANTS[4]*CONSTANTS[5])/CONSTANTS[6])*log((CONSTANTS[3]+ CONSTANTS[33]*CONSTANTS[1])/(STATES[5]+ CONSTANTS[33]*STATES[3])); ALGEBRAIC[93] = 1.00000+0.600000/(1.00000+pow(3.80000e-05/STATES[9], 1.40000)); ALGEBRAIC[96] = CONSTANTS[160]*ALGEBRAIC[93]*STATES[44]*STATES[45]*(STATES[0] - ALGEBRAIC[54]); ALGEBRAIC[97] = 1.00000/(1.00000+exp(((STATES[0]+105.800) - 2.60000*CONSTANTS[3])/9.49300)); ALGEBRAIC[98] = CONSTANTS[161]* pow(CONSTANTS[3], 1.0 / 2)*ALGEBRAIC[97]*STATES[46]*(STATES[0] - ALGEBRAIC[53]); ALGEBRAIC[162] = CONSTANTS[128]*exp(( (1.00000 - CONSTANTS[129])*STATES[0]*CONSTANTS[6])/( 3.00000*CONSTANTS[4]*CONSTANTS[5])); ALGEBRAIC[166] = ( CONSTANTS[123]*pow(CONSTANTS[3]/CONSTANTS[131], 2.00000))/((pow(1.00000+CONSTANTS[1]/ALGEBRAIC[162], 3.00000)+pow(1.00000+CONSTANTS[3]/CONSTANTS[131], 2.00000)) - 1.00000); ALGEBRAIC[163] = CONSTANTS[136]/(1.00000+CONSTANTS[135]/CONSTANTS[137]+STATES[3]/CONSTANTS[138]+STATES[5]/CONSTANTS[139]); ALGEBRAIC[167] = ( CONSTANTS[124]*ALGEBRAIC[163]*CONSTANTS[135])/(1.00000+CONSTANTS[133]/CONSTANTS[134]); ALGEBRAIC[161] = CONSTANTS[127]*exp(( CONSTANTS[129]*STATES[0]*CONSTANTS[6])/( 3.00000*CONSTANTS[4]*CONSTANTS[5])); ALGEBRAIC[164] = ( CONSTANTS[119]*pow(STATES[3]/ALGEBRAIC[161], 3.00000))/((pow(1.00000+STATES[3]/ALGEBRAIC[161], 3.00000)+pow(1.00000+STATES[5]/CONSTANTS[130], 2.00000)) - 1.00000); ALGEBRAIC[165] = ( CONSTANTS[122]*pow(CONSTANTS[1]/ALGEBRAIC[162], 3.00000))/((pow(1.00000+CONSTANTS[1]/ALGEBRAIC[162], 3.00000)+pow(1.00000+CONSTANTS[3]/CONSTANTS[131], 2.00000)) - 1.00000); ALGEBRAIC[168] = ( CONSTANTS[126]*pow(STATES[5]/CONSTANTS[130], 2.00000))/((pow(1.00000+STATES[3]/ALGEBRAIC[161], 3.00000)+pow(1.00000+STATES[5]/CONSTANTS[130], 2.00000)) - 1.00000); ALGEBRAIC[169] = CONSTANTS[203]*ALGEBRAIC[164]*CONSTANTS[202]+ ALGEBRAIC[165]*ALGEBRAIC[168]*ALGEBRAIC[167]+ CONSTANTS[202]*ALGEBRAIC[168]*ALGEBRAIC[167]+ ALGEBRAIC[167]*ALGEBRAIC[164]*CONSTANTS[202]; ALGEBRAIC[170] = ALGEBRAIC[165]*CONSTANTS[201]*ALGEBRAIC[168]+ ALGEBRAIC[164]*CONSTANTS[202]*ALGEBRAIC[166]+ ALGEBRAIC[166]*CONSTANTS[201]*ALGEBRAIC[168]+ CONSTANTS[202]*ALGEBRAIC[166]*ALGEBRAIC[168]; ALGEBRAIC[171] = CONSTANTS[202]*ALGEBRAIC[166]*CONSTANTS[203]+ ALGEBRAIC[167]*ALGEBRAIC[165]*CONSTANTS[201]+ ALGEBRAIC[165]*CONSTANTS[201]*CONSTANTS[203]+ ALGEBRAIC[166]*CONSTANTS[203]*CONSTANTS[201]; ALGEBRAIC[172] = ALGEBRAIC[168]*ALGEBRAIC[167]*ALGEBRAIC[165]+ ALGEBRAIC[166]*CONSTANTS[203]*ALGEBRAIC[164]+ ALGEBRAIC[165]*CONSTANTS[203]*ALGEBRAIC[164]+ ALGEBRAIC[167]*ALGEBRAIC[165]*ALGEBRAIC[164]; ALGEBRAIC[173] = ALGEBRAIC[169]/(ALGEBRAIC[169]+ALGEBRAIC[170]+ALGEBRAIC[171]+ALGEBRAIC[172]); ALGEBRAIC[174] = ALGEBRAIC[170]/(ALGEBRAIC[169]+ALGEBRAIC[170]+ALGEBRAIC[171]+ALGEBRAIC[172]); ALGEBRAIC[177] = 3.00000*( ALGEBRAIC[173]*ALGEBRAIC[166] - ALGEBRAIC[174]*ALGEBRAIC[167]); ALGEBRAIC[175] = ALGEBRAIC[171]/(ALGEBRAIC[169]+ALGEBRAIC[170]+ALGEBRAIC[171]+ALGEBRAIC[172]); ALGEBRAIC[176] = ALGEBRAIC[172]/(ALGEBRAIC[169]+ALGEBRAIC[170]+ALGEBRAIC[171]+ALGEBRAIC[172]); ALGEBRAIC[178] = 2.00000*( ALGEBRAIC[176]*CONSTANTS[201] - ALGEBRAIC[175]*ALGEBRAIC[164]); ALGEBRAIC[179] = CONSTANTS[204]*( CONSTANTS[7]*ALGEBRAIC[177]+ CONSTANTS[9]*ALGEBRAIC[178]); ALGEBRAIC[180] = 1.00000/(1.00000+exp(- (STATES[0] - 14.4800)/18.3400)); ALGEBRAIC[181] = CONSTANTS[163]*ALGEBRAIC[180]*(STATES[0] - ALGEBRAIC[53]); ALGEBRAIC[0] = (VOI>=CONSTANTS[12]&&VOI<=CONSTANTS[13]&&(VOI - CONSTANTS[12]) - floor((VOI - CONSTANTS[12])/CONSTANTS[15])*CONSTANTS[15]<=CONSTANTS[16] ? CONSTANTS[14] : 0.00000); ALGEBRAIC[183] = (STATES[6] - STATES[5])/2.00000; ALGEBRAIC[79] = ( 0.750000*CONSTANTS[169]*( STATES[6]*exp(ALGEBRAIC[12]) - CONSTANTS[3]))/CONSTANTS[176]; ALGEBRAIC[80] = CONSTANTS[176]*(STATES[0] - CONSTANTS[158]); ALGEBRAIC[81] = (- 1.00000e-07<=ALGEBRAIC[80]&&ALGEBRAIC[80]<=1.00000e-07 ? ALGEBRAIC[79]*(1.00000 - 0.500000*ALGEBRAIC[80]) : ( ALGEBRAIC[79]*ALGEBRAIC[80])/(exp(ALGEBRAIC[80]) - 1.00000)); ALGEBRAIC[87] = (1.00000 - ALGEBRAIC[82])*CONSTANTS[173]*ALGEBRAIC[81]*STATES[25]*( ALGEBRAIC[67]*(1.00000 - STATES[33])+ STATES[30]*ALGEBRAIC[70]*STATES[33])+ ALGEBRAIC[82]*CONSTANTS[182]*ALGEBRAIC[81]*STATES[25]*( ALGEBRAIC[71]*(1.00000 - STATES[33])+ STATES[30]*ALGEBRAIC[72]*STATES[33]); ALGEBRAIC[50] = (( CONSTANTS[4]*CONSTANTS[5])/CONSTANTS[6])*log(CONSTANTS[1]/STATES[3]); ALGEBRAIC[55] = CONSTANTS[44]*STATES[11]+ CONSTANTS[151]*STATES[12]; ALGEBRAIC[56] = CONSTANTS[44]*STATES[11]+ CONSTANTS[151]*STATES[14]; ALGEBRAIC[57] = 1.00000/(1.00000+CONSTANTS[17]/ALGEBRAIC[42]); ALGEBRAIC[58] = CONSTANTS[45]*(STATES[0] - ALGEBRAIC[50])*pow(STATES[10], 3.00000)*( (1.00000 - ALGEBRAIC[57])*ALGEBRAIC[55]*STATES[13]+ ALGEBRAIC[57]*ALGEBRAIC[56]*STATES[15]); ALGEBRAIC[59] = 1.00000/(1.00000+CONSTANTS[17]/ALGEBRAIC[42]); ALGEBRAIC[60] = CONSTANTS[153]*(STATES[0] - ALGEBRAIC[50])*STATES[16]*( (1.00000 - ALGEBRAIC[59])*STATES[17]+ ALGEBRAIC[59]*STATES[18]); ALGEBRAIC[127] = 1.00000/(1.00000+pow(CONSTANTS[117]/STATES[9], 2.00000)); ALGEBRAIC[100] = exp(( CONSTANTS[115]*STATES[0]*CONSTANTS[6])/( CONSTANTS[4]*CONSTANTS[5])); ALGEBRAIC[107] = 1.00000+ (CONSTANTS[1]/CONSTANTS[108])*(1.00000+1.00000/ALGEBRAIC[100]); ALGEBRAIC[108] = CONSTANTS[1]/( CONSTANTS[108]*ALGEBRAIC[100]*ALGEBRAIC[107]); ALGEBRAIC[111] = ALGEBRAIC[108]*CONSTANTS[112]; ALGEBRAIC[101] = 1.00000+ (STATES[3]/CONSTANTS[108])*(1.00000+ALGEBRAIC[100]); ALGEBRAIC[102] = ( STATES[3]*ALGEBRAIC[100])/( CONSTANTS[108]*ALGEBRAIC[101]); ALGEBRAIC[114] = ALGEBRAIC[102]*CONSTANTS[112]; ALGEBRAIC[104] = 1.00000+ (STATES[3]/CONSTANTS[106])*(1.00000+STATES[3]/CONSTANTS[107]); ALGEBRAIC[105] = ( STATES[3]*STATES[3])/( ALGEBRAIC[104]*CONSTANTS[106]*CONSTANTS[107]); ALGEBRAIC[117] = ALGEBRAIC[105]*ALGEBRAIC[102]*CONSTANTS[110]; ALGEBRAIC[118] = ALGEBRAIC[108]*CONSTANTS[189]*CONSTANTS[110]; ALGEBRAIC[109] = 1.00000/ALGEBRAIC[107]; ALGEBRAIC[110] = ALGEBRAIC[109]*CONSTANTS[111]; ALGEBRAIC[112] = ALGEBRAIC[110]+ALGEBRAIC[111]; ALGEBRAIC[99] = exp(( CONSTANTS[116]*STATES[0]*CONSTANTS[6])/( CONSTANTS[4]*CONSTANTS[5])); ALGEBRAIC[103] = 1.00000/ALGEBRAIC[101]; ALGEBRAIC[113] = ( ALGEBRAIC[103]*CONSTANTS[111])/ALGEBRAIC[99]; ALGEBRAIC[115] = ALGEBRAIC[113]+ALGEBRAIC[114]; ALGEBRAIC[106] = 1.00000/ALGEBRAIC[104]; ALGEBRAIC[116] = ALGEBRAIC[106]*STATES[9]*CONSTANTS[113]; ALGEBRAIC[119] = CONSTANTS[192]*ALGEBRAIC[115]*(ALGEBRAIC[117]+ALGEBRAIC[116])+ CONSTANTS[193]*ALGEBRAIC[117]*(CONSTANTS[192]+ALGEBRAIC[112]); ALGEBRAIC[120] = CONSTANTS[191]*ALGEBRAIC[117]*(ALGEBRAIC[115]+CONSTANTS[193])+ ALGEBRAIC[115]*ALGEBRAIC[116]*(CONSTANTS[191]+ALGEBRAIC[118]); ALGEBRAIC[121] = CONSTANTS[191]*ALGEBRAIC[112]*(ALGEBRAIC[117]+ALGEBRAIC[116])+ ALGEBRAIC[118]*ALGEBRAIC[116]*(CONSTANTS[192]+ALGEBRAIC[112]); ALGEBRAIC[122] = CONSTANTS[192]*ALGEBRAIC[118]*(ALGEBRAIC[115]+CONSTANTS[193])+ ALGEBRAIC[112]*CONSTANTS[193]*(CONSTANTS[191]+ALGEBRAIC[118]); ALGEBRAIC[123] = ALGEBRAIC[119]/(ALGEBRAIC[119]+ALGEBRAIC[120]+ALGEBRAIC[121]+ALGEBRAIC[122]); ALGEBRAIC[124] = ALGEBRAIC[120]/(ALGEBRAIC[119]+ALGEBRAIC[120]+ALGEBRAIC[121]+ALGEBRAIC[122]); ALGEBRAIC[125] = ALGEBRAIC[121]/(ALGEBRAIC[119]+ALGEBRAIC[120]+ALGEBRAIC[121]+ALGEBRAIC[122]); ALGEBRAIC[126] = ALGEBRAIC[122]/(ALGEBRAIC[119]+ALGEBRAIC[120]+ALGEBRAIC[121]+ALGEBRAIC[122]); ALGEBRAIC[128] = ( 3.00000*( ALGEBRAIC[126]*ALGEBRAIC[117] - ALGEBRAIC[123]*ALGEBRAIC[118])+ ALGEBRAIC[125]*ALGEBRAIC[114]) - ALGEBRAIC[124]*ALGEBRAIC[111]; ALGEBRAIC[129] = ALGEBRAIC[124]*CONSTANTS[192] - ALGEBRAIC[123]*CONSTANTS[191]; ALGEBRAIC[130] = 0.800000*CONSTANTS[194]*ALGEBRAIC[127]*( CONSTANTS[7]*ALGEBRAIC[128]+ CONSTANTS[8]*ALGEBRAIC[129]); ALGEBRAIC[182] = ( CONSTANTS[142]*CONSTANTS[169]*( STATES[3]*exp(ALGEBRAIC[12]) - CONSTANTS[1]))/CONSTANTS[178]; ALGEBRAIC[184] = CONSTANTS[178]*(STATES[0] - CONSTANTS[164]); ALGEBRAIC[185] = (- 1.00000e-07<=ALGEBRAIC[184]&&ALGEBRAIC[184]<=1.00000e-07 ? ALGEBRAIC[182]*(1.00000 - 0.500000*ALGEBRAIC[184]) : ( ALGEBRAIC[182]*ALGEBRAIC[184])/(exp(ALGEBRAIC[184]) - 1.00000)); ALGEBRAIC[187] = (STATES[4] - STATES[3])/2.00000; ALGEBRAIC[76] = ( 0.750000*CONSTANTS[169]*( STATES[4]*exp(ALGEBRAIC[12]) - CONSTANTS[1]))/CONSTANTS[175]; ALGEBRAIC[77] = CONSTANTS[175]*(STATES[0] - CONSTANTS[158]); ALGEBRAIC[78] = (- 1.00000e-07<=ALGEBRAIC[77]&&ALGEBRAIC[77]<=1.00000e-07 ? ALGEBRAIC[76]*(1.00000 - 0.500000*ALGEBRAIC[77]) : ( ALGEBRAIC[76]*ALGEBRAIC[77])/(exp(ALGEBRAIC[77]) - 1.00000)); ALGEBRAIC[84] = (1.00000 - ALGEBRAIC[82])*CONSTANTS[172]*ALGEBRAIC[78]*STATES[25]*( ALGEBRAIC[67]*(1.00000 - STATES[33])+ STATES[30]*ALGEBRAIC[70]*STATES[33])+ ALGEBRAIC[82]*CONSTANTS[181]*ALGEBRAIC[78]*STATES[25]*( ALGEBRAIC[71]*(1.00000 - STATES[33])+ STATES[30]*ALGEBRAIC[72]*STATES[33]); ALGEBRAIC[157] = 1.00000/(1.00000+pow(CONSTANTS[117]/STATES[2], 2.00000)); ALGEBRAIC[137] = 1.00000+ (CONSTANTS[1]/CONSTANTS[108])*(1.00000+1.00000/ALGEBRAIC[100]); ALGEBRAIC[138] = CONSTANTS[1]/( CONSTANTS[108]*ALGEBRAIC[100]*ALGEBRAIC[137]); ALGEBRAIC[141] = ALGEBRAIC[138]*CONSTANTS[112]; ALGEBRAIC[131] = 1.00000+ (STATES[4]/CONSTANTS[108])*(1.00000+ALGEBRAIC[100]); ALGEBRAIC[132] = ( STATES[4]*ALGEBRAIC[100])/( CONSTANTS[108]*ALGEBRAIC[131]); ALGEBRAIC[144] = ALGEBRAIC[132]*CONSTANTS[112]; ALGEBRAIC[134] = 1.00000+ (STATES[4]/CONSTANTS[106])*(1.00000+STATES[4]/CONSTANTS[107]); ALGEBRAIC[135] = ( STATES[4]*STATES[4])/( ALGEBRAIC[134]*CONSTANTS[106]*CONSTANTS[107]); ALGEBRAIC[147] = ALGEBRAIC[135]*ALGEBRAIC[132]*CONSTANTS[110]; ALGEBRAIC[148] = ALGEBRAIC[138]*CONSTANTS[196]*CONSTANTS[110]; ALGEBRAIC[139] = 1.00000/ALGEBRAIC[137]; ALGEBRAIC[140] = ALGEBRAIC[139]*CONSTANTS[111]; ALGEBRAIC[142] = ALGEBRAIC[140]+ALGEBRAIC[141]; ALGEBRAIC[133] = 1.00000/ALGEBRAIC[131]; ALGEBRAIC[143] = ( ALGEBRAIC[133]*CONSTANTS[111])/ALGEBRAIC[99]; ALGEBRAIC[145] = ALGEBRAIC[143]+ALGEBRAIC[144]; ALGEBRAIC[136] = 1.00000/ALGEBRAIC[134]; ALGEBRAIC[146] = ALGEBRAIC[136]*STATES[2]*CONSTANTS[113]; ALGEBRAIC[149] = CONSTANTS[199]*ALGEBRAIC[145]*(ALGEBRAIC[147]+ALGEBRAIC[146])+ CONSTANTS[200]*ALGEBRAIC[147]*(CONSTANTS[199]+ALGEBRAIC[142]); ALGEBRAIC[150] = CONSTANTS[198]*ALGEBRAIC[147]*(ALGEBRAIC[145]+CONSTANTS[200])+ ALGEBRAIC[145]*ALGEBRAIC[146]*(CONSTANTS[198]+ALGEBRAIC[148]); ALGEBRAIC[151] = CONSTANTS[198]*ALGEBRAIC[142]*(ALGEBRAIC[147]+ALGEBRAIC[146])+ ALGEBRAIC[148]*ALGEBRAIC[146]*(CONSTANTS[199]+ALGEBRAIC[142]); ALGEBRAIC[152] = CONSTANTS[199]*ALGEBRAIC[148]*(ALGEBRAIC[145]+CONSTANTS[200])+ ALGEBRAIC[142]*CONSTANTS[200]*(CONSTANTS[198]+ALGEBRAIC[148]); ALGEBRAIC[153] = ALGEBRAIC[149]/(ALGEBRAIC[149]+ALGEBRAIC[150]+ALGEBRAIC[151]+ALGEBRAIC[152]); ALGEBRAIC[154] = ALGEBRAIC[150]/(ALGEBRAIC[149]+ALGEBRAIC[150]+ALGEBRAIC[151]+ALGEBRAIC[152]); ALGEBRAIC[155] = ALGEBRAIC[151]/(ALGEBRAIC[149]+ALGEBRAIC[150]+ALGEBRAIC[151]+ALGEBRAIC[152]); ALGEBRAIC[156] = ALGEBRAIC[152]/(ALGEBRAIC[149]+ALGEBRAIC[150]+ALGEBRAIC[151]+ALGEBRAIC[152]); ALGEBRAIC[158] = ( 3.00000*( ALGEBRAIC[156]*ALGEBRAIC[147] - ALGEBRAIC[153]*ALGEBRAIC[148])+ ALGEBRAIC[155]*ALGEBRAIC[144]) - ALGEBRAIC[154]*ALGEBRAIC[141]; ALGEBRAIC[159] = ALGEBRAIC[154]*CONSTANTS[199] - ALGEBRAIC[153]*CONSTANTS[198]; ALGEBRAIC[160] = 0.200000*CONSTANTS[194]*ALGEBRAIC[157]*( CONSTANTS[7]*ALGEBRAIC[158]+ CONSTANTS[8]*ALGEBRAIC[159]); ALGEBRAIC[190] = ( CONSTANTS[144]*STATES[9])/(CONSTANTS[145]+STATES[9]); ALGEBRAIC[186] = ( CONSTANTS[143]*4.00000*CONSTANTS[169]*( STATES[9]*exp( 2.00000*ALGEBRAIC[12]) - 0.341000*CONSTANTS[2]))/CONSTANTS[179]; ALGEBRAIC[188] = CONSTANTS[179]*(STATES[0] - CONSTANTS[165]); ALGEBRAIC[189] = (- 1.00000e-07<=ALGEBRAIC[188]&&ALGEBRAIC[188]<=1.00000e-07 ? ALGEBRAIC[186]*(1.00000 - 0.500000*ALGEBRAIC[188]) : ( ALGEBRAIC[186]*ALGEBRAIC[188])/(exp(ALGEBRAIC[188]) - 1.00000)); ALGEBRAIC[191] = (STATES[2] - STATES[9])/0.200000; ALGEBRAIC[192] = 1.00000/(1.00000+CONSTANTS[17]/ALGEBRAIC[42]); ALGEBRAIC[193] = CONSTANTS[147]*( (1.00000 - ALGEBRAIC[192])*STATES[47]+ ALGEBRAIC[192]*STATES[48]); ALGEBRAIC[46] = 1.00000/(1.00000+( CONSTANTS[26]*CONSTANTS[27])/pow(CONSTANTS[27]+STATES[2], 2.00000)+( CONSTANTS[28]*CONSTANTS[29])/pow(CONSTANTS[29]+STATES[2], 2.00000)); ALGEBRAIC[194] = ( CONSTANTS[168]*0.00437500*STATES[9])/(STATES[9]+0.000920000); ALGEBRAIC[195] = ( CONSTANTS[168]*2.75000*0.00437500*STATES[9])/((STATES[9]+0.000920000) - 0.000170000); ALGEBRAIC[196] = 1.00000/(1.00000+CONSTANTS[17]/ALGEBRAIC[42]); ALGEBRAIC[197] = ( 0.00393750*STATES[7])/15.0000; ALGEBRAIC[198] = CONSTANTS[148]*(( (1.00000 - ALGEBRAIC[196])*ALGEBRAIC[194]+ ALGEBRAIC[196]*ALGEBRAIC[195]) - ALGEBRAIC[197]); ALGEBRAIC[44] = 1.00000/(1.00000+( CONSTANTS[150]*CONSTANTS[23])/pow(CONSTANTS[23]+STATES[9], 2.00000)+( CONSTANTS[24]*CONSTANTS[25])/pow(CONSTANTS[25]+STATES[9], 2.00000)); ALGEBRAIC[199] = (STATES[7] - STATES[8])/100.000; ALGEBRAIC[48] = 1.00000/(1.00000+( CONSTANTS[30]*CONSTANTS[31])/pow(CONSTANTS[31]+STATES[8], 2.00000)); }