Generated Code
The following is matlab code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction() % This is the "main function". In Matlab, things work best if you rename this function to match the filename. [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel(); end function [algebraicVariableCount] = getAlgebraicVariableCount() % Used later when setting a global variable with the number of algebraic variables. % Note: This is not the "main method". algebraicVariableCount =0; end % There are a total of 4 entries in each of the rate and state variable arrays. % There are a total of 13 entries in the constant variable array. % function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel() % Create ALGEBRAIC of correct size global algebraicVariableCount; algebraicVariableCount = getAlgebraicVariableCount(); % Initialise constants and state variables [INIT_STATES, CONSTANTS] = initConsts; % Set timespan to solve over tspan = [0, 10]; % Set numerical accuracy options for ODE solver options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1); % Solve model with ODE solver [VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options); % Compute algebraic variables [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS); ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI); % Plot state variables against variable of integration [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends(); figure(); plot(VOI, STATES); xlabel(LEGEND_VOI); l = legend(LEGEND_STATES); set(l,'Interpreter','none'); end function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends() LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = ''; LEGEND_VOI = strpad('time in component environment (day)'); LEGEND_STATES(:,1) = strpad('A in component A (dimensionless)'); LEGEND_CONSTANTS(:,1) = strpad('v in component A (first_order_rate_constant)'); LEGEND_CONSTANTS(:,2) = strpad('k in component A (dimensionless)'); LEGEND_CONSTANTS(:,3) = strpad('f in component A (dimensionless)'); LEGEND_CONSTANTS(:,4) = strpad('sigma1 in component A (first_order_rate_constant)'); LEGEND_CONSTANTS(:,5) = strpad('b1 in component A (first_order_rate_constant)'); LEGEND_CONSTANTS(:,6) = strpad('muA in component A (first_order_rate_constant)'); LEGEND_STATES(:,2) = strpad('G in component G (dimensionless)'); LEGEND_STATES(:,3) = strpad('R in component R (dimensionless)'); LEGEND_CONSTANTS(:,7) = strpad('pi1 in component R (first_order_rate_constant)'); LEGEND_CONSTANTS(:,8) = strpad('beta in component R (first_order_rate_constant)'); LEGEND_CONSTANTS(:,9) = strpad('muR in component R (first_order_rate_constant)'); LEGEND_STATES(:,4) = strpad('E in component E (dimensionless)'); LEGEND_CONSTANTS(:,10) = strpad('lambdaE in component E (first_order_rate_constant)'); LEGEND_CONSTANTS(:,11) = strpad('muE in component E (first_order_rate_constant)'); LEGEND_CONSTANTS(:,12) = strpad('gamma in component G (first_order_rate_constant)'); LEGEND_CONSTANTS(:,13) = strpad('muG in component G (first_order_rate_constant)'); LEGEND_RATES(:,1) = strpad('d/dt A in component A (dimensionless)'); LEGEND_RATES(:,3) = strpad('d/dt R in component R (dimensionless)'); LEGEND_RATES(:,4) = strpad('d/dt E in component E (dimensionless)'); LEGEND_RATES(:,2) = strpad('d/dt G in component G (dimensionless)'); LEGEND_STATES = LEGEND_STATES'; LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC'; LEGEND_RATES = LEGEND_RATES'; LEGEND_CONSTANTS = LEGEND_CONSTANTS'; end function [STATES, CONSTANTS] = initConsts() VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = []; STATES(:,1) = 1.0; CONSTANTS(:,1) = 1.25e5; CONSTANTS(:,2) = 5e7; CONSTANTS(:,3) = 1e-4; CONSTANTS(:,4) = 3e-6; CONSTANTS(:,5) = 0.25; CONSTANTS(:,6) = 0.25; STATES(:,2) = 1e8; STATES(:,3) = 0.0; CONSTANTS(:,7) = 0.016; CONSTANTS(:,8) = 200.0; CONSTANTS(:,9) = 0.25; STATES(:,4) = 0.0; CONSTANTS(:,10) = 1000.0; CONSTANTS(:,11) = 0.25; CONSTANTS(:,12) = 2000.0; CONSTANTS(:,13) = 5.0; if (isempty(STATES)), warning('Initial values for states not set');, end end function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS) global algebraicVariableCount; statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; ALGEBRAIC = zeros(1, algebraicVariableCount); utilOnes = 1; else statesRowCount = statesSize(1); ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount); RATES = zeros(statesRowCount, statesColumnCount); utilOnes = ones(statesRowCount, 1); end RATES(:,1) = ( CONSTANTS(:,3).*CONSTANTS(:,1).*STATES(:,2))./(CONSTANTS(:,2)+STATES(:,2)) - ( ( CONSTANTS(:,4).*STATES(:,3)+CONSTANTS(:,5)).*STATES(:,1)+ CONSTANTS(:,6).*STATES(:,1)); RATES(:,3) = ( CONSTANTS(:,7).*STATES(:,4)+CONSTANTS(:,8)).*STATES(:,1) - CONSTANTS(:,9).*STATES(:,3); RATES(:,4) = CONSTANTS(:,10).*STATES(:,1) - CONSTANTS(:,11).*STATES(:,4); RATES(:,2) = CONSTANTS(:,12).*STATES(:,4) - (( CONSTANTS(:,1).*STATES(:,2))./(CONSTANTS(:,2)+STATES(:,2))+ CONSTANTS(:,13).*STATES(:,2)); RATES = RATES'; end % Calculate algebraic variables function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI) statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; utilOnes = 1; else statesRowCount = statesSize(1); utilOnes = ones(statesRowCount, 1); end end % Pad out or shorten strings to a set length function strout = strpad(strin) req_length = 160; insize = size(strin,2); if insize > req_length strout = strin(1:req_length); else strout = [strin, blanks(req_length - insize)]; end end