Generated Code
The following is matlab code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction() % This is the "main function". In Matlab, things work best if you rename this function to match the filename. [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel(); end function [algebraicVariableCount] = getAlgebraicVariableCount() % Used later when setting a global variable with the number of algebraic variables. % Note: This is not the "main method". algebraicVariableCount =0; end % There are a total of 3 entries in each of the rate and state variable arrays. % There are a total of 12 entries in the constant variable array. % function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel() % Create ALGEBRAIC of correct size global algebraicVariableCount; algebraicVariableCount = getAlgebraicVariableCount(); % Initialise constants and state variables [INIT_STATES, CONSTANTS] = initConsts; % Set timespan to solve over tspan = [0, 10]; % Set numerical accuracy options for ODE solver options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1); % Solve model with ODE solver [VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options); % Compute algebraic variables [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS); ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI); % Plot state variables against variable of integration [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends(); figure(); plot(VOI, STATES); xlabel(LEGEND_VOI); l = legend(LEGEND_STATES); set(l,'Interpreter','none'); end function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends() LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = ''; LEGEND_VOI = strpad('time in component environment (day)'); LEGEND_STATES(:,1) = strpad('Tn in component Tn (cells_per_microlitre)'); LEGEND_CONSTANTS(:,1) = strpad('sn in component Tn (flux)'); LEGEND_CONSTANTS(:,2) = strpad('dn in component Tn (first_order_rate_constant)'); LEGEND_CONSTANTS(:,3) = strpad('kn in component model_parameters (first_order_rate_constant)'); LEGEND_CONSTANTS(:,4) = strpad('eta in component model_parameters (cells_per_microlitre)'); LEGEND_STATES(:,2) = strpad('C in component C (cells_per_microlitre)'); LEGEND_STATES(:,3) = strpad('Te in component Te (cells_per_microlitre)'); LEGEND_CONSTANTS(:,5) = strpad('alpha_n in component Te (dimensionless)'); LEGEND_CONSTANTS(:,6) = strpad('alpha_e in component Te (first_order_rate_constant)'); LEGEND_CONSTANTS(:,7) = strpad('de in component Te (first_order_rate_constant)'); LEGEND_CONSTANTS(:,8) = strpad('gamma_e in component Te (microlitre_per_cells_day)'); LEGEND_CONSTANTS(:,9) = strpad('Cmax in component C (cells_per_microlitre)'); LEGEND_CONSTANTS(:,10) = strpad('rc in component C (first_order_rate_constant)'); LEGEND_CONSTANTS(:,11) = strpad('dc in component C (first_order_rate_constant)'); LEGEND_CONSTANTS(:,12) = strpad('gamma_c in component C (microlitre_per_cells_day)'); LEGEND_RATES(:,1) = strpad('d/dt Tn in component Tn (cells_per_microlitre)'); LEGEND_RATES(:,3) = strpad('d/dt Te in component Te (cells_per_microlitre)'); LEGEND_RATES(:,2) = strpad('d/dt C in component C (cells_per_microlitre)'); LEGEND_STATES = LEGEND_STATES'; LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC'; LEGEND_RATES = LEGEND_RATES'; LEGEND_CONSTANTS = LEGEND_CONSTANTS'; end function [STATES, CONSTANTS] = initConsts() VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = []; STATES(:,1) = 1510.0; CONSTANTS(:,1) = 0.37; CONSTANTS(:,2) = 0.23; CONSTANTS(:,3) = 0.062; CONSTANTS(:,4) = 720.0; STATES(:,2) = 10000.0; STATES(:,3) = 20.0; CONSTANTS(:,5) = 0.14; CONSTANTS(:,6) = 0.98; CONSTANTS(:,7) = 0.30; CONSTANTS(:,8) = 0.057; CONSTANTS(:,9) = 230000; CONSTANTS(:,10) = 0.0057; CONSTANTS(:,11) = 0.024; CONSTANTS(:,12) = 0.0034; if (isempty(STATES)), warning('Initial values for states not set');, end end function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS) global algebraicVariableCount; statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; ALGEBRAIC = zeros(1, algebraicVariableCount); utilOnes = 1; else statesRowCount = statesSize(1); ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount); RATES = zeros(statesRowCount, statesColumnCount); utilOnes = ones(statesRowCount, 1); end RATES(:,1) = CONSTANTS(:,1) - ( CONSTANTS(:,2).*STATES(:,1)+ CONSTANTS(:,3).*STATES(:,1).*(STATES(:,2)./(STATES(:,2)+CONSTANTS(:,4)))); RATES(:,3) = ( CONSTANTS(:,5).*CONSTANTS(:,3).*STATES(:,1).*(STATES(:,2)./(STATES(:,2)+CONSTANTS(:,4)))+ CONSTANTS(:,6).*STATES(:,3).*(STATES(:,2)./(STATES(:,2)+CONSTANTS(:,4)))) - ( CONSTANTS(:,7).*STATES(:,3)+ CONSTANTS(:,8).*STATES(:,2).*STATES(:,3)); RATES(:,2) = CONSTANTS(:,10).*STATES(:,2).*log(CONSTANTS(:,9)./STATES(:,2)) - ( CONSTANTS(:,11).*STATES(:,2)+ CONSTANTS(:,12).*STATES(:,2).*STATES(:,3)); RATES = RATES'; end % Calculate algebraic variables function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI) statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; utilOnes = 1; else statesRowCount = statesSize(1); utilOnes = ones(statesRowCount, 1); end end % Pad out or shorten strings to a set length function strout = strpad(strin) req_length = 160; insize = size(strin,2); if insize > req_length strout = strin(1:req_length); else strout = [strin, blanks(req_length - insize)]; end end