Generated Code
The following is python code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
# Size of variable arrays: sizeAlgebraic = 3 sizeStates = 1 sizeConstants = 9 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (second)" legend_states[0] = "Na_int in component concentrations (mM)" legend_constants[0] = "Na_ext in component concentrations (mM)" legend_constants[1] = "K_int in component concentrations (mM)" legend_constants[2] = "K_ext in component concentrations (mM)" legend_constants[3] = "NH4_ext in component concentrations (mM)" legend_algebraic[0] = "J_NaK_Na in component NaK (mM_per_s)" legend_algebraic[1] = "J_NaK_K in component NaK (mM_per_s)" legend_algebraic[2] = "J_NaK_NH4 in component NaK (mM_per_s)" legend_constants[5] = "K_Na in component NaK (mM)" legend_constants[6] = "K_K in component NaK (mM)" legend_constants[7] = "K_NH4 in component NaK (mM)" legend_constants[4] = "J_NaK_Na_Max in component NaK (mM_per_s)" legend_rates[0] = "d/dt Na_int in component concentrations (mM)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; states[0] = 0.0 constants[0] = 0.0 constants[1] = 39.0 constants[2] = 10.0 constants[3] = 0.0 constants[4] = 10.8 constants[5] = 0.200000*(1.00000+constants[1]/8.33000) constants[6] = 0.100000*(1.00000+constants[0]/18.5000) constants[8] = 1.00000 constants[7] = 0.200000*constants[6] return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic rates[0] = constants[8] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[0] = constants[4]*(power(states[0]/(states[0]+constants[5]), 3.00000))*(power(constants[2]/(constants[2]+constants[6]), 2.00000)) algebraic[1] = ((-2.00000/3.00000)*algebraic[0])/(1.00000+(constants[3]*constants[6])/(constants[2]*constants[7])) algebraic[2] = algebraic[1]*(power(constants[3]/constants[7], 1.00000))*(power(constants[6]/constants[2], 1.00000)) return algebraic def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)