# Size of variable arrays: sizeAlgebraic = 9 sizeStates = 7 sizeConstants = 35 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (second)" legend_states[0] = "IP3 in component IP3_dynamics (micromolar)" legend_algebraic[0] = "j_IP3 in component IP3_dynamics (micromolar_micrometre_per_second)" legend_constants[0] = "J_IP3 in component IP3_dynamics (micromolar_micrometre_per_second)" legend_constants[1] = "k_0 in component IP3_dynamics (first_order_rate_constant)" legend_constants[2] = "k_degr in component IP3_dynamics (first_order_rate_constant)" legend_constants[3] = "IP3_0 in component IP3_dynamics (micromolar)" legend_constants[4] = "Ca_ER in component ER (micromolar)" legend_states[1] = "Ca in component Calcium_dynamics (micromolar)" legend_constants[5] = "alpha in component Calcium_dynamics (dimensionless)" legend_algebraic[1] = "J_channel in component Channel_kinetics (flux)" legend_algebraic[7] = "J_pump in component SERCA_pump_kinetics (flux)" legend_algebraic[8] = "J_leak in component Leak (flux)" legend_constants[27] = "R_buffering in component Calcium_buffering (flux)" legend_constants[6] = "J_max in component Channel_kinetics (flux)" legend_states[2] = "h in component Channel_kinetics (dimensionless)" legend_constants[7] = "K_act in component Channel_kinetics (micromolar)" legend_constants[8] = "K_IP3 in component Channel_kinetics (micromolar)" legend_constants[9] = "K_inh in component Channel_kinetics (micromolar)" legend_constants[10] = "k_on in component Channel_kinetics (second_order_rate_constant)" legend_constants[11] = "V_max in component SERCA_pump_kinetics (flux)" legend_constants[12] = "K_p in component SERCA_pump_kinetics (micromolar)" legend_constants[13] = "L in component Leak (flux)" legend_constants[14] = "R1 in component Calcium_buffering (flux)" legend_constants[15] = "R2 in component Calcium_buffering (flux)" legend_states[3] = "B1 in component Calcium_buffering (micromolar)" legend_states[4] = "B2 in component Calcium_buffering (micromolar)" legend_states[5] = "CaB1 in component Calcium_buffering (micromolar)" legend_states[6] = "CaB2 in component Calcium_buffering (micromolar)" legend_algebraic[2] = "k1_on in component Calcium_buffering (second_order_rate_constant)" legend_algebraic[3] = "k1_off in component Calcium_buffering (first_order_rate_constant)" legend_algebraic[4] = "k2_on in component Calcium_buffering (second_order_rate_constant)" legend_algebraic[5] = "k2_off in component Calcium_buffering (first_order_rate_constant)" legend_constants[16] = "K1 in component Calcium_buffering (micromolar)" legend_constants[17] = "K2 in component Calcium_buffering (micromolar)" legend_constants[18] = "soma_or_neurite in component Plasma_membrane_extrusion_mechanisms (dimensionless)" legend_algebraic[6] = "j_Ca in component Plasma_membrane_extrusion_mechanisms (micromolar_micrometre_per_second)" legend_constants[19] = "gamma_0 in component Plasma_membrane_extrusion_mechanisms (micrometre_per_second)" legend_constants[30] = "gamma in component Plasma_membrane_extrusion_mechanisms (micrometre_per_second)" legend_constants[28] = "gamma_s in component Plasma_membrane_extrusion_mechanisms (micrometre_per_second)" legend_constants[29] = "gamma_n in component Plasma_membrane_extrusion_mechanisms (micrometre_per_second)" legend_constants[20] = "delta in component Plasma_membrane_extrusion_mechanisms (dimensionless)" legend_constants[21] = "sigma in component Plasma_membrane_extrusion_mechanisms (per_micrometre)" legend_constants[22] = "w_n in component Plasma_membrane_extrusion_mechanisms (dimensionless)" legend_constants[23] = "w_s in component Plasma_membrane_extrusion_mechanisms (dimensionless)" legend_constants[24] = "sigma_soma_2D in component Plasma_membrane_extrusion_mechanisms (per_micrometre)" legend_constants[25] = "sigma_neurite_2D in component Plasma_membrane_extrusion_mechanisms (per_micrometre)" legend_constants[26] = "Ca_c in component Plasma_membrane_extrusion_mechanisms (micromolar)" legend_rates[0] = "d/dt IP3 in component IP3_dynamics (micromolar)" legend_rates[1] = "d/dt Ca in component Calcium_dynamics (micromolar)" legend_rates[2] = "d/dt h in component Channel_kinetics (dimensionless)" legend_rates[3] = "d/dt B1 in component Calcium_buffering (micromolar)" legend_rates[5] = "d/dt CaB1 in component Calcium_buffering (micromolar)" legend_rates[4] = "d/dt B2 in component Calcium_buffering (micromolar)" legend_rates[6] = "d/dt CaB2 in component Calcium_buffering (micromolar)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; states[0] = 3.0 constants[0] = 20.86 constants[1] = 1.188 constants[2] = 0.14 constants[3] = 0.16 constants[4] = 400.0 states[1] = 0.05 constants[5] = 0.0 constants[6] = 3500.0 states[2] = 0.8 constants[7] = 0.3 constants[8] = 0.8 constants[9] = 0.2 constants[10] = 2.7 constants[11] = 3.75 constants[12] = 0.27 constants[13] = 0.1 constants[14] = 0.1 constants[15] = 0.1 states[3] = 450.0 states[4] = 75.0 states[5] = 0 states[6] = 0 constants[16] = 10.0 constants[17] = 0.24 constants[18] = -1 constants[19] = 8.0 constants[20] = 1.45 constants[21] = 0.263 constants[22] = 0.377 constants[23] = 0.623 constants[24] = 0.132 constants[25] = 0.479 constants[26] = 0.2 constants[27] = constants[14]+constants[15] constants[28] = (constants[19]*constants[21])/(constants[20]*constants[25]*constants[22]+constants[24]*constants[23]) constants[31] = constants[14] constants[32] = -constants[14] constants[33] = constants[15] constants[34] = -constants[15] constants[29] = (constants[19]*constants[21]*constants[20])/(constants[20]*constants[25]*constants[22]+constants[24]*constants[23]) constants[30] = custom_piecewise([less_equal(constants[18] , 0.00000), constants[28] , True, constants[29]]) return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic rates[3] = constants[31] rates[5] = constants[32] rates[4] = constants[33] rates[6] = constants[34] rates[0] = -(constants[2]*(states[0]-constants[3])) rates[2] = constants[10]*(constants[9]-states[2]*(states[1]+constants[9])) algebraic[1] = constants[6]*(power((states[0]/(states[0]+constants[8]))*(states[1]/(states[1]+constants[7]))*states[2], 3.00000))*(1.00000-states[1]/constants[4]) algebraic[7] = constants[11]*((power(states[1], 2.00000))/(power(states[1], 2.00000)+power(constants[12], 2.00000))) algebraic[8] = constants[13]*(1.00000-states[1]/constants[4]) rates[1] = constants[5]*(algebraic[1]+-algebraic[7]+algebraic[8])+constants[27] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[1] = constants[6]*(power((states[0]/(states[0]+constants[8]))*(states[1]/(states[1]+constants[7]))*states[2], 3.00000))*(1.00000-states[1]/constants[4]) algebraic[7] = constants[11]*((power(states[1], 2.00000))/(power(states[1], 2.00000)+power(constants[12], 2.00000))) algebraic[8] = constants[13]*(1.00000-states[1]/constants[4]) algebraic[0] = constants[0]*exp(-constants[1]*voi) rootfind_0(voi, constants, rates, states, algebraic) rootfind_1(voi, constants, rates, states, algebraic) algebraic[6] = custom_piecewise([greater(states[1] , constants[26]), constants[30]*(states[1]-constants[26]) , True, 0.00000]) return algebraic initialGuess0 = None def rootfind_0(voi, constants, rates, states, algebraic): """Calculate values of algebraic variables for DAE""" from scipy.optimize import fsolve global initialGuess0 if initialGuess0 is None: initialGuess0 = ones(2)*0.1 if not iterable(voi): soln = fsolve(residualSN_0, initialGuess0, args=(algebraic, voi, constants, rates, states), xtol=1E-6) initialGuess0 = soln algebraic[2] = soln[0] algebraic[3] = soln[1] else: for (i,t) in enumerate(voi): soln = fsolve(residualSN_0, initialGuess0, args=(algebraic[:,i], voi[i], constants, rates[:i], states[:,i]), xtol=1E-6) initialGuess0 = soln algebraic[2][i] = soln[0] algebraic[3][i] = soln[1] def residualSN_0(algebraicCandidate, algebraic, voi, constants, rates, states): resid = array([0.0] * 2) algebraic[2] = algebraicCandidate[0] algebraic[3] = algebraicCandidate[1] resid[0] = (constants[14]-(-(algebraic[2]*states[1]*states[3])+algebraic[3]*states[5])) resid[1] = (constants[16]-algebraic[3]/algebraic[2]) return resid initialGuess1 = None def rootfind_1(voi, constants, rates, states, algebraic): """Calculate values of algebraic variables for DAE""" from scipy.optimize import fsolve global initialGuess1 if initialGuess1 is None: initialGuess1 = ones(2)*0.1 if not iterable(voi): soln = fsolve(residualSN_1, initialGuess1, args=(algebraic, voi, constants, rates, states), xtol=1E-6) initialGuess1 = soln algebraic[4] = soln[0] algebraic[5] = soln[1] else: for (i,t) in enumerate(voi): soln = fsolve(residualSN_1, initialGuess1, args=(algebraic[:,i], voi[i], constants, rates[:i], states[:,i]), xtol=1E-6) initialGuess1 = soln algebraic[4][i] = soln[0] algebraic[5][i] = soln[1] def residualSN_1(algebraicCandidate, algebraic, voi, constants, rates, states): resid = array([0.0] * 2) algebraic[4] = algebraicCandidate[0] algebraic[5] = algebraicCandidate[1] resid[0] = (constants[15]-(-(algebraic[4]*states[1]*states[4])+algebraic[5]*states[6])) resid[1] = (constants[17]-algebraic[5]/algebraic[4]) return resid def custom_piecewise(cases): """Compute result of a piecewise function""" return select(cases[0::2],cases[1::2]) def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)