Generated Code
The following is c_ida code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
/* There are a total of 18 entries in the algebraic variable array. There are a total of 8 entries in each of the rate and state variable arrays. There are a total of 12 entries in the constant variable array. */ /* * VOI is time in component environment (ms). * STATES[0] is V in component membrane (mV). * CONSTANTS[0] is C in component membrane (uF_per_mm2). * ALGEBRAIC[0] is i_Na in component sodium_current (uA_per_mm2). * ALGEBRAIC[8] is i_s in component slow_inward_current (uA_per_mm2). * ALGEBRAIC[13] is i_x1 in component time_dependent_outward_current (uA_per_mm2). * ALGEBRAIC[16] is i_K1 in component time_independent_outward_current (uA_per_mm2). * ALGEBRAIC[17] is Istim in component stimulus_protocol (uA_per_mm2). * CONSTANTS[1] is g_Na in component sodium_current (mS_per_mm2). * CONSTANTS[2] is E_Na in component sodium_current (mV). * CONSTANTS[3] is g_Nac in component sodium_current (mS_per_mm2). * STATES[1] is m in component sodium_current_m_gate (dimensionless). * STATES[2] is h in component sodium_current_h_gate (dimensionless). * STATES[3] is j in component sodium_current_j_gate (dimensionless). * ALGEBRAIC[1] is alpha_m in component sodium_current_m_gate (per_ms). * ALGEBRAIC[2] is beta_m in component sodium_current_m_gate (per_ms). * ALGEBRAIC[3] is alpha_h in component sodium_current_h_gate (per_ms). * ALGEBRAIC[4] is beta_h in component sodium_current_h_gate (per_ms). * ALGEBRAIC[5] is alpha_j in component sodium_current_j_gate (per_ms). * ALGEBRAIC[6] is beta_j in component sodium_current_j_gate (per_ms). * CONSTANTS[4] is g_s in component slow_inward_current (mS_per_mm2). * ALGEBRAIC[7] is E_s in component slow_inward_current (mV). * STATES[4] is Cai in component slow_inward_current (concentration_units). * STATES[5] is d in component slow_inward_current_d_gate (dimensionless). * STATES[6] is f in component slow_inward_current_f_gate (dimensionless). * ALGEBRAIC[9] is alpha_d in component slow_inward_current_d_gate (per_ms). * ALGEBRAIC[10] is beta_d in component slow_inward_current_d_gate (per_ms). * ALGEBRAIC[11] is alpha_f in component slow_inward_current_f_gate (per_ms). * ALGEBRAIC[12] is beta_f in component slow_inward_current_f_gate (per_ms). * STATES[7] is x1 in component time_dependent_outward_current_x1_gate (dimensionless). * CONSTANTS[11] is x1_open in component time_dependent_outward_current (uA_per_mm2). * CONSTANTS[5] is x in component time_dependent_outward_current (dimensionless). * ALGEBRAIC[14] is alpha_x1 in component time_dependent_outward_current_x1_gate (per_ms). * ALGEBRAIC[15] is beta_x1 in component time_dependent_outward_current_x1_gate (per_ms). * CONSTANTS[6] is IstimStart in component stimulus_protocol (ms). * CONSTANTS[7] is IstimEnd in component stimulus_protocol (ms). * CONSTANTS[8] is IstimAmplitude in component stimulus_protocol (uA_per_mm2). * CONSTANTS[9] is IstimPeriod in component stimulus_protocol (ms). * CONSTANTS[10] is IstimPulseDuration in component stimulus_protocol (ms). * RATES[0] is d/dt V in component membrane (mV). * RATES[1] is d/dt m in component sodium_current_m_gate (dimensionless). * RATES[2] is d/dt h in component sodium_current_h_gate (dimensionless). * RATES[3] is d/dt j in component sodium_current_j_gate (dimensionless). * RATES[4] is d/dt Cai in component slow_inward_current (concentration_units). * RATES[5] is d/dt d in component slow_inward_current_d_gate (dimensionless). * RATES[6] is d/dt f in component slow_inward_current_f_gate (dimensionless). * RATES[7] is d/dt x1 in component time_dependent_outward_current_x1_gate (dimensionless). * There are a total of 3 condition variables. */ void initConsts(double* CONSTANTS, double* RATES, double *STATES) { STATES[0] = -84.624; CONSTANTS[0] = 0.01; CONSTANTS[1] = 4e-2; CONSTANTS[2] = 50; CONSTANTS[3] = 3e-5; STATES[1] = 0.011; STATES[2] = 0.988; STATES[3] = 0.975; CONSTANTS[4] = 9e-4; STATES[4] = 1e-4; STATES[5] = 0.003; STATES[6] = 0.994; STATES[7] = 0.0001; CONSTANTS[5] = 0; CONSTANTS[6] = 10; CONSTANTS[7] = 50000; CONSTANTS[8] = 0.5; CONSTANTS[9] = 1000; CONSTANTS[10] = 1; CONSTANTS[11] = SampleUsingPDF(&pdf_0, 0, pdf_roots_0, CONSTANTS, ALGEBRAIC); RATES[0] = 0.1001; RATES[1] = 0.1001; RATES[2] = 0.1001; RATES[3] = 0.1001; RATES[4] = 0.1001; RATES[5] = 0.1001; RATES[6] = 0.1001; RATES[7] = 0.1001; } void computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { resid[0] = RATES[0] - (ALGEBRAIC[17] - (ALGEBRAIC[0]+ALGEBRAIC[8]+ALGEBRAIC[13]+ALGEBRAIC[16]))/CONSTANTS[0]; resid[1] = RATES[1] - ALGEBRAIC[1]*(1.00000 - STATES[1]) - ALGEBRAIC[2]*STATES[1]; resid[2] = RATES[2] - ALGEBRAIC[3]*(1.00000 - STATES[2]) - ALGEBRAIC[4]*STATES[2]; resid[3] = RATES[3] - ALGEBRAIC[5]*(1.00000 - STATES[3]) - ALGEBRAIC[6]*STATES[3]; resid[4] = RATES[4] - ( - 0.0100000*ALGEBRAIC[8])/1.00000+ 0.0700000*(0.000100000 - STATES[4]); resid[5] = RATES[5] - ALGEBRAIC[9]*(1.00000 - STATES[5]) - ALGEBRAIC[10]*STATES[5]; resid[6] = RATES[6] - ALGEBRAIC[11]*(1.00000 - STATES[6]) - ALGEBRAIC[12]*STATES[6]; resid[7] = RATES[7] - ALGEBRAIC[14]*(1.00000 - STATES[7]) - ALGEBRAIC[15]*STATES[7]; } void computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { } void computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[0] = ( CONSTANTS[1]*pow(STATES[1], 3.00000)*STATES[2]*STATES[3]+CONSTANTS[3])*(STATES[0] - CONSTANTS[2]); ALGEBRAIC[1] = ( - 1.00000*(STATES[0]+47.0000))/(exp( - 0.100000*(STATES[0]+47.0000)) - 1.00000); ALGEBRAIC[2] = 40.0000*exp( - 0.0560000*(STATES[0]+72.0000)); ALGEBRAIC[3] = 0.126000*exp( - 0.250000*(STATES[0]+77.0000)); ALGEBRAIC[4] = 1.70000/(exp( - 0.0820000*(STATES[0]+22.5000))+1.00000); ALGEBRAIC[5] = ( 0.0550000*exp( - 0.250000*(STATES[0]+78.0000)))/(exp( - 0.200000*(STATES[0]+78.0000))+1.00000); ALGEBRAIC[6] = 0.300000/(exp( - 0.100000*(STATES[0]+32.0000))+1.00000); ALGEBRAIC[7] = - 82.3000 - 13.0287*log( STATES[4]*0.00100000); ALGEBRAIC[8] = CONSTANTS[4]*STATES[5]*STATES[6]*(STATES[0] - ALGEBRAIC[7]); ALGEBRAIC[9] = ( 0.0950000*exp(- (STATES[0] - 5.00000)/100.000))/(1.00000+exp(- (STATES[0] - 5.00000)/13.8900)); ALGEBRAIC[10] = ( 0.0700000*exp(- (STATES[0]+44.0000)/59.0000))/(1.00000+exp((STATES[0]+44.0000)/20.0000)); ALGEBRAIC[11] = ( 0.0120000*exp(- (STATES[0]+28.0000)/125.000))/(1.00000+exp((STATES[0]+28.0000)/6.67000)); ALGEBRAIC[12] = ( 0.00650000*exp(- (STATES[0]+30.0000)/50.0000))/(1.00000+exp(- (STATES[0]+30.0000)/5.00000)); ALGEBRAIC[13] = ( STATES[7]*CONSTANTS[11]*(exp( 0.0400000*(STATES[0]+77.0000)) - 1.00000))/exp( 0.0400000*(STATES[0]+35.0000)); ALGEBRAIC[14] = ( 0.000500000*exp((STATES[0]+50.0000)/12.1000))/(1.00000+exp((STATES[0]+50.0000)/17.5000)); ALGEBRAIC[15] = ( 0.00130000*exp(- (STATES[0]+20.0000)/16.6700))/(1.00000+exp(- (STATES[0]+20.0000)/25.0000)); ALGEBRAIC[16] = 0.00350000*(( 4.00000*(exp( 0.0400000*(STATES[0]+85.0000)) - 1.00000))/(exp( 0.0800000*(STATES[0]+53.0000))+exp( 0.0400000*(STATES[0]+53.0000)))+( 0.200000*(STATES[0]+23.0000))/(1.00000 - exp( - 0.0400000*(STATES[0]+23.0000)))); ALGEBRAIC[17] = (CONDVAR[0]>=0.00000&&CONDVAR[1]<=0.00000&&CONDVAR[2]<=0.00000 ? CONSTANTS[8] : 0.00000); } void getStateInformation(double* SI) { SI[0] = 1.0; SI[1] = 1.0; SI[2] = 1.0; SI[3] = 1.0; SI[4] = 1.0; SI[5] = 1.0; SI[6] = 1.0; SI[7] = 1.0; } void computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { CONDVAR[0] = VOI - CONSTANTS[6]; CONDVAR[1] = VOI - CONSTANTS[7]; CONDVAR[2] = ((VOI - CONSTANTS[6]) - floor((VOI - CONSTANTS[6])/CONSTANTS[9])*CONSTANTS[9]) - CONSTANTS[10]; } double pdf_0(double bvar, double* CONSTANTS, double* ALGEBRAIC) { return ( (1.00000/ pow(( 2.00000* 3.14159265358979*1.00000e-06), 1.0 / 2))*exp(- pow(bvar - 0.00800000, 2.00000)/( 2.00000*1.00000e-06))); } double (*pdf_roots_0[])(double bvar, double*, double*) = {};